Reviewers: Please enter your comment directly into this document and email them to Sydney_Argenta@msn.com.

Chapter

14
EJB Timers

Reviewers: Please enter your comment directly into this document and email them to Sydney_Argenta@msn.com.

All these years, what was lacking in the Enterprise Java Beans standard was a decent scheduling mechanism. EJB 2.1 addresses this requirement by introducing EJB Timer Service. In this chapter, we examine how to use the EJB timer service with different types of beans. We also provide a sample to walk you through a typical EJB timer development.

Scheduling

Scheduling functionality is required in many business applications. There are various scenarios involving scheduling such that certain code gets executed at a given point in time. For instance, imagine a system that handles huge loads during the peak hours and so during the off hours wants to run maintenance chores such as cleaning the file system of temporary files, generating the activity reports, cleaning the databases, preparing audit reports of access from various parties to its subsystems, etc. These tasks can be carried out automatically by scheduling them to run during the off hours. This way your IT will not be pressed for resources during the peak traffic hours and also will be able to perform their routine maintenance tasks and thereby, be able to better utilize the resources.

There are many other such situations wherein scheduling can help—workflows are another example. Simply put, a workflow is a set of activities, each of which are scheduled to run upon meeting a specific time or conditional criteria. For example, consider a reservation workflow rule wherein if the customer does not guarantee a reservation with credit card within 24 hours, the reservation is cancelled, and the email notification is sent to the customer’s travel agent and also possibly to the customer. There are numerous ways in which scheduling can help in implementing various use cases.

Scheduling techniques have been around for the many years in the computer science world. UNIX based operating systems have supported job scheduling mechanisms via system services such as Cron for a long time now. Cron is basically a daemon that uses system clock to facilitate scheduling of jobs for execution at any given time of day. Scheduled jobs or Cron jobs, as they might be called, are UNIX commands or scripts that you want to run on particular schedule. These jobs are maintained in Cron tables. Authorized UNIX users create/edit these Cron tables, which are then read by Cron daemon almost every minute to start these jobs. Cron table is an ASCII text file consisting of entries for Cron jobs, each specified with the UNIX command to execute and its scheduled time of execution in terms of hours and minutes, day of week, day of month, and month. Another variant of Cron service is At utility. While cron allows you to schedule a repetitive task, At lets you schedule a one-time task for execution. UNIX also supports another form of scheduling via its Batch utility. Batch executes a set of tasks instead of a single task, however it is similar to At in that it executes only once.

Windows based operating systems support a similar kind of functionality via its At utility, which basically takes the information about the command or batch program to execute, time to execute, and other such parameters, and schedules the job for execution. Linux too offers system level scheduling capabilities quite similar to UNIX.

Hence, almost all the operating environments today support sophisticated scheduling mechanisms. It should come as no surprise that developers would want similar scheduling functionality in their programming platforms to be able to exploit scheduling techniques in different applications—EJB developers are no different.

EJB and Scheduling

If you think scheduling operating system commands and programs is powerful, think how powerful it would be to be able to schedule execution of parts of your code or say, methods on your components? Yes, that is what scheduling with EJB should allow us to do. EJB container should let us schedule a given method to run at a particular point in time such that the container can callback that method once the scheduled time has elapsed. This capability can open a whole new world of possibilities with EJB.

Unfortunately though, scheduling support for EJB was not available until EJB 2.1. However, the need for this kind of capability was always there and so as a result, there are a variety of non-standard schedulers available for J2EE platform today. In fact, quite a few projects we have worked on involved the use of these non-standard schedulers, such as the open source Quartz scheduler or Sims Computing’s Flux Scheduler, due to lack of standard scheduler support in EJB container at the time.

Java Platform and Scheduling

Java language platform has been providing basic scheduling capabilities since J2SE 1.3 via java.util.Timer and java.util.TimerTask APIs. Together, these are termed as the Java Timer APIs. Java Timer APIs provides a programming model in which your schedulable task or in other words the worker class will extend the TimerTask abstract class. TimerTask implements Runnable and it represents a Java class that can be scheduled to run once or repeatedly by a timer. Thus, the action you need to perform when the timer calls your class should be put in run() method of your TimerTask implementation.

Timer object provides methods that you can use to schedule TimerTask objects for future execution in a background thread. Corresponding to each Timer object is a single background thread that is used to execute all the timer’s tasks sequentially. Thus, if you used the same timer object to schedule multiple timer tasks and if a certain timer task takes a longer than expected time to complete, the subsequent timer task will be hold up until the previous one completes.

Timer object, and hence the corresponding background thread, is kept alive by the JVM as long as there is an outstanding task to complete. Once all the tasks associated with the given timer object are done executing, the JVM will kill the thread and release the timer object in the subsequent garbage collection cycle. By default, your application could be held up as long as the timer is alive. This means that if you have a repeated timer task your application can theoretically keep running forever. To get around this you can create timer object such that it uses a daemon thread so that it does not keep the application from terminating.

An important point to understand about scheduling on Java platform is that due to inherent nature of Java it is impossible to guarantee that timer will execute a given timer task at exactly the specified moment. In other words, Java does not provide us with a consistently met real-time guarantee. Main reason being that the implementation of thread scheduling, on which job scheduling is dependent, is inconsistent across various JVMs. The timer object schedules tasks via the Object.wait() mechanism, and so the exact moment at which the JVM wakes up the timer task objects is dependent on JVM’s thread scheduling policy and such factors. Garbage collection adds yet another parameter and further makes job scheduling on Java platform non-deterministic.

Thus, Java Timer API is more than enough for simple scheduling activities for non-managed Java applications. If you need more sophisticated functionality then you can use scheduling frameworks such as Quartz et al to meet those needs. There is also another timer API in Java i.e. the JMX (Java Management Extensions) timer API. However, it is very tightly coupled with JMX framework and hence, not suitable for generic purposes.

EJB Timer Service

EJB 2.1 supports scheduling through the container managed EJB Timer Service. Developers interact with the EJB Timer Service through various timer service APIs. These APIs can be used for creating timers for specified dates and periods. You can also create timers scheduled to expire at recurring intervals. As soon as the date or period specified for the timer is reached, the timer expires and the container notifies your bean of the timer expiration by calling a specific callback method on the EJB. This timer method will implement the logic that you want to execute upon timer expiration(s). Figure 14.1 describes the high level interaction between timer service and an EJB interested in receiving timer notifications.

Figure 14.1 Interaction between Timer service and EJB

Enterprise beans interested in receiving timer notifications via the callback methods will register themselves to the timer service. Stateless session beans, entity beans and message-driven beans can all receive timed notifications from the container. Timers cannot be created for stateful session beans. In the future versions of EJB, we can expect support for stateful session bean timers as well. The timer created for an entity bean is associated with entity bean’s identity and so when the entity bean is removed the container will remove all the timers associated with the bean.

Timer Service API

The timer service API consists of four interfaces—javax.ejb.TimedObject, javax.ejb.Timer, javax.ejb.TimerHandle, and javax.ejb.TimerService.

javax.ejb.TimerService interface provides enterprise bean components access to the container’s timer service. It provides various createTimer() methods to create timers and thereby register with container timer service for timer notifications. Using these createTimer() methods you can create mainly four types of timers depending on your needs.

*
Recurrent expiration timers whose first expiration occurs at a given point in time as specified by the Date argument to createTimer() method and the subsequent timer expirations occur at interval durations specified in milliseconds.

*
One time expiration timers whose first and only expiration occurs at a given point in time as specified by the Date argument to createTimer() method.

*
Recurrent expiration timers whose first expiration occurs after the specified number of milliseconds has elapsed and the subsequent timer expirations occur at interval durations specified in milliseconds.

*
One time expiration timer whose first and only expiration occurs after the specified number of milliseconds has elapsed.

Apart from various methods for creating timers, TimerService has made available a getTimers() method which retrieves all the timers associated with the given bean.

Source 14.1 shows the definition of TimerService interface.

public interface javax.ejb.TimerService {

 public Timer createTimer(long duration, Serializable info)

 throws IllegalArgumentException, IllegalStateException, EJBException;

 public Timer createTimer(long initialDuration, long intervalDuration,

 Serializable info)

 throws IllegalArgumentException, IllegalStateException, EJBException;

 public Timer createTimer(Date expiration, Serializable info)

 throws IllegalArgumentException, IllegalStateException, EJBException;

 public Timer createTimer(Date initialExpiration, long intervalDuration,

 Serializable info)

 throws IllegalArgumentException, IllegalStateException, EJBException;

 public Collection getTimers()

 throws IllegalStateException, EJBException;

}

Source 14.1 The javax.ejb.TimerService interface.

javax.ejb.Timer interface represents a timer instance that was created through TimerService. Its methods provide information about timer such as the point in time when the next timer expiration is scheduled to set, the number of milliseconds that will elapse before the next scheduled timer expiration, etc.

Also, this interface provides access to the timer information class which is a serializable instance representing all the application specific information pertaining to the timer. This information class is written by the application provider and is passed as an argument to the respective createTimer() method in TimerService. If there is no application specific information, then you can pass null while creating the timer.

Finally, the getHandle() method retrieves the serializable handle to the timer. This handle can be persisted and retrieved at a later time to obtain reference to the timer instance.

Source 14.2 shows the definition of Timer interface.

public interface javax.ejb.Timer {

 public void cancel()

 throws IllegalStateException, NoSuchObjectLocalException, EJBException;

 public long getTimeRemaining()

 throws IllegalStateException, NoSuchObjectLocalException, EJBException;

 public Date getNextTimeout()

 throws IllegalStateException, NoSuchObjectLocalException, EJBException;

 public Serializable getInfo()

 throws IllegalStateException, NoSuchObjectLocalException, EJBException;

 public TimerHandle getHandle()

 throws IllegalStateException, NoSuchObjectLocalException, EJBException;

}

Source 14.2 The javax.ejb.Timer interface.

javax.ejb.TimedObject interface contains a single method i.e. ejbTimeout(). The container calls this callback method to notify the EJB of timer expiration. Therefore, in order for an EJB to receive notification(s) from the container about its timer expiration(s), it should implement this interface and hence, implement the ejbTimeout() method. ejbTimeout() contains the logic that you want to execute upon timer expiration. The container passes a corresponding instance of Timer associated with the bean to ejbTimeout().

Source 14.3 shows the definition of TimedObject interface.

public interface javax.ejb.TimedObject {

 public void ejbTimeout(Timer timer);

}

Source 14.3 The javax.ejb.TimedObject interface.

javax.ejb.TimerHandle interface contains a single method i.e. getTimer() which retrieves the reference to Timer represented by the given handle. This method throws NoSuchObjectException if invoked for a timer that has already expired or cancelled.

Source 14.4 shows the definition of TimerHandle interface.

public interface javax.ejb.TimerHandle

 extends Serializable {

 public Timer getTimer()

 throws IllegalStateException, NoSuchObjectException, EJBException;

}

Source 14.4 The javax.ejb.TimerHandle interface.

Durations in timer API are specified in milliseconds, taking into consideration that rest of the J2SE APIs use millisecond as the unit of time. However, do not expect the timers to expire with the millisecond precision given the incapability of the Java platform to support real-time notifications.

So as is clear from this section, TimerService is the top-level API that allows you to create timers. The question is—how to get access to TimerService instance? You can get hold of TimerService instance through EJBContext. EJBContext interface has been updated to include the getTimerService() method in EJB 2.1. Hence, within any business method in your bean you can create a timer by getting hold of the timer service instance through the EJB context object.

What happens if you create a timer from one of your EJB methods without implementing TimedObject interface for that EJB? Check it out.

Figure 14.2 shows the sequence diagram of interaction between EJB and Timer service.

Figure 14.2 Sequence diagram of interaction between EJB and Timer Service.

Timers and Transactions

The creation of timers is supported within transactions.

Therefore, if an enterprise bean method, which creates the timer, is executed as part of a transaction and if that transaction is rolled back, the timer creation is rolled back too. Similarly, if an enterprise bean method cancels the timer by calling cancel() on Timer interface within a transaction and if that transaction is rolled back, the container rolls back the timer cancellation as well. Container restores the duration of the timer to the duration it would have had, had it not been rolled back.

ejbTimeout() can also be called within a transaction. Hence, if the transaction rolls back, the container will call ejbTimeout() again.

Timer Example: CleanDayLimitOrdersEJB

Let us now examine the code for stateless session bean timers. Entity bean and message-driven bean timers are written exactly the same way as stateless session bean timers. To understand this example, take into consideration an online securities trading system. The system allows the customer to place limit orders for a given security, say for example stocks, such that the buy or sell transaction for the given security can be limited to occur anytime during a day or anytime during the trading week or anytime until the end of current month, etc. so long as the buy/sell criteria specified by the customer is met. Limit orders are supported by most of the contemporary online securities trading systems. Now not all limit orders are executed since the criteria, mainly the price criteria, set by the customer could not be met during the specified limit period. Obviously, such limit orders should be removed upon expiry of limit periods.

Our example bean, CleanDayLimitOrdersEJB, demonstrates an elegant way of cleaning the trading database by removing all the limit orders that were not executed during the limit period. As per our scenario, a client application, CleanDayLimitOrdersClient, will invoke the cleanPeriodicallyDayLimitOrders() method on CleanDayLimitOrdersEJB. cleanPeriodicallyDayLimitOrders() creates a recurrent expiration timer based on current date such that at the end of every trading day a timer expires and container callbacks to ejbTimeout() method takes place. For now, we are least concerned with the database logic and hence, this example code does not elaborate the database part.

Note that the all the source files for this example is available on the book’s accompanying website http://www.wiley.com/compbooks/roman.

You can also implement the CleanDayLimitOrdersEJB functionality on the so called Order entity bean, assuming that you have such an entity bean in your application. Each Order entity bean will need to create and associate a one-time expiration timer to itself, upon creation. Also your Order entity bean class will implement the TimedObject. Thus, if the order’s limit is day, the entity timer will expire at the market close of the current trading session; similarly, if the order limit is end of week, the timer will expire at the market close of the last trading session of the week, and so on. Once your Order entity bean is removed, the timer associated with it will also be removed. Hence, if the object model for such a securities trading system involves an Order entity bean, then associating timers with entity bean provides for an elegant solution.

CleanDayLimitOrdersEJB’s remote interface

First let us define our bean’s remote interface. The code is shown in Source 14.5. Our remote interface defines a single business method, cleanPeriodicallyDayLimitOrders(), which we will implement in the enterprise bean class.

package examples;

import javax.ejb.EJBObject;

import java.rmi.RemoteException;

public interface CleanDayLimitOrders extends EJBObject {

 public void cleanPeriodicallyDayLimitOrders () throws RemoteException;

}

Source 14.5 The examples.CleanDayLimitOrders interface.

CleanDayLimitOrdersEJB’s bean class

Our bean implements TimedObject apart from SessionBean interface, since it is interested in receiving timer expiration notifications. Our bean class has one business method, cleanPeriodicallyDayLimitOrders(), which is responsible for cleaning the trading system database of expired day limit orders. The implementation of this method makes use of java.util.TimeZone and java.util.Calendar types to manipulate the time. It does various calculations to arrive at the number of milliseconds that should expire until the market close on the current day. This example takes into consideration the US exchanges’ market close time, which is 4 PM Eastern. Finally the method creates a recurrent expiration timer, whose subsequent expirations occur at an interval of 86400000 milliseconds (24 hours). The idea is that once the first timer is fired off sometime after 4 PM Eastern, the subsequent timers will fire off exactly 24 hours after that instant.

As noted earlier, ejbTimeout() has not been implemented in its entirety in that the database code has been omitted for brevity. Source 14.6 shows the CleanDayLimitOrdersBean.java code.

package examples;

import javax.ejb.*;

import java.util.Calendar;

import java.util.TimeZone;

import java.util.SimpleTimeZone;

import java.util.GregorianCalendar;

import java.util.Date;

public class CleanDayLimitOrdersBean implements SessionBean, TimedObject {

 private SessionContext context;

 public void cleanPeriodicallyDayLimitOrders() {

 // Get hold of the eastern time zone assuming that the securities are being

 // traded on NYSE and NASDAQ exchanges.

 String[] timezoneIDs = TimeZone.getAvailableIDs (-5 * 60 * 60 * 1000);

 SimpleTimeZone est = new SimpleTimeZone (-5 * 60 * 60 * 1000,

 timezoneIDs[0]);

 // Provide the rules for start and end days of daylight savings time.

 est.setStartRule (Calendar.APRIL, 1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);

 est.setEndRule (Calendar.OCTOBER, -1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);

 // Get hold of a calendar instance for the eastern time zone.

 Calendar cal = new GregorianCalendar(est);

 // Set the calendar to the current time.

 cal.setTime (new Date ());

 // Calculate the difference between now and market close i.e. 4 PM Eastern.

 int hourofday = cal.get (cal.HOUR_OF_DAY);

 int minuteofhour = cal.get (cal.MINUTE);

 // If this method is invoked after the market close, then set the timer

 // expiration immediately i.e. start=0. Otherwise, calculate the

 // milliseconds that needs to elapse until first timer expiration.

 long start = 0;

 if (hourofday < 16)

 {

 int hourdiff = 16 - hourofday - 1;

 int mindiff = 60 - minuteofhour;

 start = (hourdiff * 60 * 60 * 1000) + (mindiff * 60 * 1000);

 }

 // Finally, get hold of the timer service instance from EJBContext object

 // and create the recurrent expiration timer.

 TimerService timerService = context.getTimerService();

 Timer timer = timerService.createTimer(start, 86400000, null);

 System.out.println("CleanDayLimitOrdersBean: Timer created to first expire

 after " + start + " milliseconds.");

 }

 public void ejbTimeout(Timer timer) {

 System.out.println("CleanDayLimitOrdersBean: ejbTimeout called.");

 // Put here the code for cleaning the database of day limit orders that have

 // not been executed.

 }

 public void setSessionContext(SessionContext sc) {

 System.out.println("CleanDayLimitOrdersBean: setSessionContext called.");

 context = sc;

 }

 public void ejbCreate() {

 System.out.println("CleanDayLimitOrdersBean: ejbCreate called.");

 }

 public CleanDayLimitOrdersBean() {}

 public void ejbRemove() {}

 public void ejbActivate() {}

 public void ejbPassivate() {}

}

Source 14.6 The examples.CleanDayLimitOrdersBean class.
When trying this example, you might want to provide smaller values for both start and interval periods to immediately see the timer expiration results.

CleanDayLimitOrdersEJB’s home interface

To complete our timer session bean code, we must define a home interface. The home interface details how to create and destroy our CleanDayLimitOrders EJB object. The code for our home interface is shown in Source 14.7.

package examples;

import java.io.Serializable;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.EJBHome;

public interface CleanDayLimitOrdersHome extends EJBHome {

 CleanDayLimitOrders create() throws RemoteException, CreateException;

}

Source 14.7 The examples.CleanDayLimitOrdersHome interface.

CleanDayLimitOrdersEJB’s deployment descriptor

Now that we have implemented our bean, we need to define the deployment descriptor to let the container know of the requisite settings for our bean. The deployment descriptor settings we use are listed in Source 14.8.

<?xml version='1.0' encoding='UTF-8'?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 version="2.1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">

 <display-name>CleanDayLimitOrdersEJB</display-name>

 <enterprise-beans>

 <session>

 <ejb-name>CleanDayLimitOrdersBean</ejb-name>

 <home>examples.CleanDayLimitOrdersHome</home>

 <remote>examples.CleanDayLimitOrders</remote>

 <ejb-class>examples.CleanDayLimitOrdersBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Bean</transaction-type>

 <security-identity>

 <use-caller-identity>

 </use-caller-identity>

 </security-identity>

 </session>

 </enterprise-beans>

</ejb-jar>

Source 14.8 The ejb-jar.xml.
CleanDayLimitOrdersEJB client

Now that our bean is ready, we need to write the client. Our client is a typical EJB client. It gets hold of the JNDI initial context and looks up the EJB home object and creates the EJB remote object thereof. Finally, it invokes the cleanPeriodicallyDayLimitOrders() on the EJB remote object. The source for CleanDayLimitOrdersClient.java is shown below.

package examples;

import java.util.Properties;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;

public class CleanDayLimitOrdersClient {

 public static void main(String[] args) {

 try {

 Properties env = new Properties();

 env.put("java.naming.factory.initial",

 "com.sun.jndi.cosnaming.CNCtxFactory");

 env.put("java.naming.provider.url", "iiop://localhost:3700");

 InitialContext ctxt = new InitialContext(env);

 Object objref = ctxt.lookup("CleanDayLimitOrdersBean");

 CleanDayLimitOrdersHome home = (CleanDayLimitOrdersHome)

 PortableRemoteObject.narrow(objref,

 CleanDayLimitOrdersHome.class);

 CleanDayLimitOrders cleanDayLimitOrders = home.create();

 cleanDayLimitOrders.cleanPeriodicallyDayLimitOrders();

 System.out.println ("cleanPeriodicallyDayLimitOrders() returned

 successfully. Take a look at the application server log or console

 for messages from bean.");

 cleanDayLimitOrders.remove();

 } catch (Exception ex) {

 System.err.println("Caught an unexpected exception!");

 ex.printStackTrace();

 }

 }

}
Source 14.9 The examples.CleanDayLimitOrdersClient class.

Running the client

In order to run the client, look at the Ant scripts bundled along with this example. The following is the client side output you will get upon running the CleanDayLimitOrdersClient.

C:\MEJB3.0\examples\CleanDayLimitOrders>ant runClient

cleanPeriodicallyDayLimitOrders() returned successfully. Take a look at the appl

ication server log or console for messages from bean.

On the application server console, you should see the following output.

[#|2004-07-19T15:24:08.918-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=23;|

CleanDayLimitOrdersBean: Timer created to first expire after 2160000 milliseconds.|#]

[#|2004-07-19T16:00:08.724-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=24;|

CleanDayLimitOrdersBean: setSessionContext called.|#]

[#|2004-07-19T16:00:08.724-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=24;|

CleanDayLimitOrdersBean: ejbCreate called.|#]

[#|2004-07-19T16:00:08.724-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=24;|

CleanDayLimitOrdersBean: ejbTimeout called.|#]

Take a careful look at the highlighted portions. You’ll notice that our timer was first created at around 3:24 PM Eastern and the first timer was fired at 4:00:08 PM Eastern time. You should continue to get these notifications for as long as the enterprise bean is deployed and its respective J2EE application is running. Of course, the application server has to be running in order to receive these notifications.

Finally note that this output is for an EJB deployed on the reference implementation of J2EE 1.4.

We can generalize our CleanDayLimitOrdersEJB further so that it can clean the end of week or end of month limit orders as well. For this, we can create multiple timers associated with our bean such that each of these timers expire at different intervals.

Now that we know how to develop EJB timers, let us take a look at some shortcomings of EJB timer service.

Limitations of EJB Timer Service

EJB timer service, although simple to use, is limited in its functionality. Mainly, it lacks the following two features. The hope is that in the subsequent EJB specifications, these features will be added.

* Support for declaration of timer intervals in the deployment descriptors is not available today. As a result, the developer has to embed the timer expiration period and the subsequent expiration interval information in the EJB bean class. This restricts the ability of the developer to declaratively provide timer related information at the time of deployment.

* There is not much flexibility in the way the timers could be specified today. Take our example into consideration. Since the only unit of time that the timer APIs accept is milliseconds, we had to write the logic for converting the hours and minutes into milliseconds in order to create the timer for CleanDayLimitOrders EJB. Had the timer API given a provision for creating timers wherein the periods could be specified in terms of hours or days or months, it would have been much more powerful and simpler to use.

Also, we cannot create timers such that they would expire on given days of week and not on other days. Again, take CleanDayLimitOrders EJB into consideration. Here, we actually want a timer that would expire after 4 PM Eastern everyday from Monday through Friday. We do not want our timer to expire on Saturdays and Sundays. However, because there is no mechanism to specify this level of finer grained scheduling information to the EJB Timer service right now, we will have to add this logic in our code. Our implementation does not have this but a real trading system should have the logic in place to avoid hitting the database when the timer expiration occurs on Saturdays, Sundays and other non-trading days (such as public holidays, etc.).

Summary

In this chapter we provided a complete overview of using EJB timer service. We learnt that although EJB timer service is simple to use and very helpful for implementing certain scenarios, it has some shortcomings, which should be addressed in the upcoming EJB specifications.

In the next chapter, we learn about an advanced topic i.e. entity bean relationships. So sit up tight and read on!
