
Dynamic Web Page: 1
Date/Time: 9/19/2004 2:01 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Dynamic Web Page
Allows data to by served dynamically to consumers. The implementation of this pattern
may facilitate varying degrees of software development best-practises such as loose
coupling and separation of concerns.

«executable»

Browser

«container»

Web
Component
Container

«executable»

Web Server

«component»

Web
Component«request» «request» «dispatch»

Background
A consumer requests information from a Web site in order to receive a view of pertinent
live data. The business Web site must reply to the request with a well-formatted response
that contains the data the consumer expects to see. The developers desire to use software
development best practices in the development of the site. The business supports the
developers’ desires since it will promote reuse and maintainability, thereby lowering
operation costs.

Value and Benefits
Dynamic Web pages are an invaluable business asset. They are matchless in their ability
to deliver business information in a timely manner.

Putting It to Work
When a user request reaches the Web server it is in the form of a URL. The URL must
contain some directives that inform the Web server how to handle the request. A basic
request will have a URL that references a static Web page, graphic file, or other kind of
file that can be served directly by the Web server. This is a basic URL:

http://www.somedomain.com/index.html

This URL requests a static Web page. Embedded references to graphics files are also
in the form of URLs. However, there are no dynamic aspects to this request. If Web sites
were limited to static content they would provide very limited value to enterprise
businesses.

Custom Components
Web servers must, therefore, also handle requests for dynamic data. The Web server
dispatches a URL containing a special directive to a special request handler. Note the
difference between the two kinds of URLs:

http://www/somedomain.com/dyna-container/dyna-service?param1=x

The second URL has what could be considered a special directive. When correctly
configured and the server receives a URL with the text pattern /dyna-
container/dyna-service, the request is dispatched to the special request handler

Dynamic Web Page: 2
Date/Time: 9/19/2004 2:01 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

mapped to the pattern in the server’s configuration. In this example dyna-container
represents some sort of technology request processing engine, and dyna-service is a
custom component managed by the engine.

Because some request processing engines manage custom components privately,
including their deployment and runtime execution, they may be called containers.
Containers will many times provide other custom facilities, and resource access
mechanisms, as well as a standard API for the components to use.

The request handler, or container, further parses the request URL and determines
which of its custom components to dispatch the request to (dyna-service). It may
also find parameters on the URL, such as param1=x above. The request handler must
factor the parameters into a format or data structure suitable to be accepted as parameters
to the specific component. Finally the request is dispatched to the custom component
along with any parameters.

The custom component receives the request and performs some sort of processing. It
may look up data in one or more data sources, or delegate such responsibilities to one or
more other components. Whichever components are designed to produce all or some of
the results in the response, they output information to an output stream. The output
stream may be in memory or it may be written to a temporary file. In either case the
response output must be appropriate for the Web server to use in its response to the
requester. This usually means formatting the response in HTTP format. The inner
response data is traditionally HTML, but may use other formats such as XML.

The process of delegating partial responsibility to other custom components takes two
forms: components that are managed by the request processing engine or Web component
container, and those managed outside (perhaps in another kind component container).

Components managed inside the Web component container may use an API to
dispatch requests to other, sibling components. Dispatching takes the form of redirecting
and forwarding. Redirecting changes the URL, and requires that the response go back to
the browser (or other request sender) and then back to the Web server to be processed.
Forwarding does not require that the request make a round-trip to the browser and back.
Rather, it simply forces the request handling to be supplemented by the component that it
forwards the request to. Note the difference between redirecting and forwarding as
illustrated in the next two diagrams:

«executable»

Browser

«container»

Web
Component
Container

«executable»

Web Server

«component»

Web
Component A

Web
Component B

«redirect»«redirect»

«request»

«redirected dispatch»

«redirect»

«dispatch»
«request»

Web Component A redirects request handling to Web Component B. This requires the
URL redirection to make a round-trip to the Browser and back to the Web Component
Container before Web Component B receives the request. Essentially Web Component A

Dynamic Web Page: 3
Date/Time: 9/19/2004 2:01 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

forces the Browser to make an entirely new request to the Web Server and tells the
Browser what URL to request.

«executable»

Browser

«container»

Web
Component
Container

«executable»

Web Server

«component»

Web
Component A

Web
Component B

«request» «request» «dispatch»

«forward»

«forwarded dispatch»

Here Web Component A forwards the request handling to Web Component B. The
major difference here is that the Web Component Contain simply re-dispatches the
request to Web Component B directly. No Browser round-trip is necessary. While this is a
more optimal approach, the Browser’s address text box will contain the URL of the
original request to Web Component A, rather than Web Component B. But an identical
request to Web Component A will result in an identical response in the future; that is, as
long as the component logic and backing data driving the request remain unchanged.

It is not within the scope of this pattern to define the use of components that reside
outside the Web component container. But suffice it to say that this may be managed
using the native API of the consumed component container (such as COM or EJB).

Template Pages and Scriptlets
In all of the above cases one or more custom component must generate the response
output that gets served back to the requester. While that does fulfill the definition of a
Dynamic Web Page, it is certainly not the most convenient to use. If you want to alter the
presentation of the response, you must update the custom component, which is likely
implemented in some sort of modern programming language. The output itself is difficult
to produce because any HTML or XML output produced is being shoved through an
output file stream. It’s much more convenient to use an HTML or XML editor to create
the page layout and then merge in runtime data on the fly as needed.

So another important aspect of the Dynamic Web Page is the use of template pages
interspersed with programming logic hosted by a scripting syntax to produce the live
data. The URL that requests a template page is generally different from those used to
request custom components. In fact a template page is requested in the same way static
HTML pages are requested:

http://www.somedomain.com/page.type

The filename suffix is important to the Web server’s ability to dispatch the template
page request. In the same way that a URL identifies a custom component, a URL also
identifies a template page. The .type filename suffix tells they Web server to direct the
request to the template page’s special request handler.

Here is what the markup in a template page might look like:

Dynamic Web Page: 4
Date/Time: 9/19/2004 2:01 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

<html>
<head>
<title>Acme, Inc.</title>
</head>
<body>
. . .
<table>
 <tr>
 <td>Info 1</td>
 <td><%= info1.getInfo() %></td>
 </tr>
 <tr>
 <td>Info 2</td>
 <td><%= info2.getInfo() %></td>
 </tr>
</table>

</body>
</html>

Without getting too deep into the meaning of the embedded scripting language (yet),

note how concerns are divided. The HTML markup and standard presentation text is
provided as natural, static HTML. Dynamic, live data, on the other hand, is brought into
the page by executing the logic in the scriptlets. The scriptlet is the programming logic
surrounded by the <%= and %> directives. So your page design, including graphics and
layout, can be performed using an HTML editor (textual or WYSIWYG), and
programming logic can be inserted later (or the other way around, depending on how
your development is planned).

Depending on the implementation you use, the template pages may be generated as
first-class custom components that are native to the Web component container, or they
may be interpreted at runtime. If they are generated into native custom components,
expect better performance than those that are interpreted.

A container that turns a template page into a native custom component will compare
the date and time stamp of the template page with that of its corresponding custom
component, if the generated component exists yet at all. If the template page is newer
than the generated component, or if no corresponding generated component exists, then
one is generated. From that point forward the generated component is executed in place
of requests for the template page.

Custom Tag Libraries
A third important aspect of the Dynamic Web Page is the ability to extend or augment the
tag-based markup language used by the template page. Basically the Web component
container allows developers to define their own set of tags, housing them in a set of
custom tag libraries. A class or other programming implementation mechanism backs the
custom tags. The programming logic in the mechanism is executed at runtime when the
page is requested and logical location of the tag is reached. The tags are used in place of
most of the scriptlets, although scriptlets may be necessary to provide runtime
information to the custom tags, as can be seen here:

<html>
<head>
<title>Acme, Inc.</title>
</head>
<body>
. . .
<table>

Dynamic Web Page: 5
Date/Time: 9/19/2004 2:01 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 <tr>
 <td>Info 1</td>
 <td><info:show-info id=”<%= info1.getId() %>”></td>
 </tr>
 <tr>
 <td>Info 2</td>
 <td><info:show-info id=”<%= info2.getId() %>”></td>
 </tr>
</table>

</body>
</html>

The tags may provide the ability to use namespaces, such as can be seen above where

info is the namespace and show-info is the name of the custom tag. The tag’s id
attribute is used to locate the actual information being displayed live. Here a scriptlet is
used to get the identification of the specific “info” object to display. In essence the Web
component container, when generating a representative native custom control, reads the
custom tags and replaces the tag with an invocation of the programming logic provided
by the backing implementation mechanism. By using a combination of custom
components, template pages with scriptlets, and custom tag libraries, we have a good
foundation on which to build out an enterprise-strength Dynamic Web Site.

Implementations and Examples
A somewhat antiquated means of supporting dynamic page generation is called cgi-bin.
CGI stands for Common Gateway Interface, which represents a standard way to access
live data via a Web request. The bin part of cgi-bin stands for binary, and is
representative of the Unix environment. Recall that the /bin and /usr/bin
directories, for example, are traditional locations where executable program files reside
on a Unix system. So cgi-bin is the directory in which executable programs and
utilities reside that allow a Web site to produce dynamic pages upon request.1 When the
Web URL contains the text /cgi-bin/executable-file, the Web server knows
to run the specific executable-file that follows the /cgi-bin/ directory
reference.

There are many issues with using traditional cgi-bin. It is usually slow because an
executable file must be loaded and run each time a cgi-bin request is made. Loading an
executable file on most operating systems is one of the most expensive system-level
services that can be employed. Also each request may require loading its own dedicated
executable, putting even greater load on the system.

There are other issues, such as those concerning caching and security that I will not
describe here (as they are generally well known). Because of the various issues around
cgi-bin, its use today is rare. Other technologies such a Java Servlets, JavaServer Pages
(JSP), Active Server Pages (ASP and ASP.NET), PHP, and others have largely replaced
the use of cgi-bin.

The basic idea behind more modern solutions to the dynamic Web page problem
domain is the use of a scripting language inside static pages. When the consumer requests
a page containing a scriptlet, its logic is executed. The scriptlet logic produces dynamic

1 Note that cgi-bin generally does not refer to a literal directory. More than likely the location is logical,
an alias that tells the Web server that it needs to execute some runtime behavior. The actually location is
usually unknown to the consumer in order to provide a measure of security.

Dynamic Web Page: 6
Date/Time: 9/19/2004 2:01 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

data that gets inserted into key areas of the output stream. The end result is that the page
response contains a snapshot of live data at the time of the request. The scripting helps to
separate programming logic from presentation. Here’s an example using JSP:

<tr>
 <td>Wholesale Price:</td> <td><%= productDataChannel.getWholesalePrice() %></td>
</tr>
<tr>
 <td>Retail Price:</td> <td><%= productDataChannel.getRetailPrice() %></td>
</tr>

This is a portion of a JSP, which is basically an HTML document with embedded

Java. This example shows a portion of an HTML table definition. The definition of two
table rows is shown (surrounded by <tr></tr> tags), and each row has two columns
(surrounded by <td></td> tags). The first row contains the wholesale price of a
particular product, and the second row contains the same product’s retail price. The first
column of each row is the description text in plain HTML. The second column is filled
with live data, using the following scriptlet notation:

<%= object.method () %>

This particular JSP syntax (<%=expression %>) directs that the String results of
the expression should be inserted into the page at the given location. The object in
both example expressions is productDataChannel. The method binding of the first
expression is getWholesalePrice(), and that of the second expression is
getRetailPrice().

Well, this is very useful. But unless other advantages are realized the improvements
over using cgi-bin may be somewhat marginal. For example, what about addressing
performance concerns, data formatting, and design best practices?

Another advantage of using ASP.NET, JSP, and the like, is that pages are pre-
compiled into native components, and therefore optimized (not so with original ASP).
When the scripted page is requested the generated, pre-compiled native component is
executed, which means that live data is accessed at the speed of the underlying
implementation language. Depending on the selected technology, the speed is determined
by compiled C# or VisualBasic, or by Java and its virtual machine, for example. In the
case of JSP, the page definition is compiled into a Java Servlet class. This is
accomplished by essentially inverting the JSP page. The scripting logic becomes the body
of the servlet’s doService() method, while the text of the HTML portion of the page
becomes the core of the servlet’s output to the response stream.

Many dynamic Web containers, such as a Java Servlet container, typically load only
one instance of the scripted executable. This reduces memory and load-time overhead by
reusing a single copy of the Java Servlet, which is actually an executable class object.

When ASP, JSP, and Java Servlets were first used, some problems were encountered
because core business logic tended to creep into presentation logic (an even by design!).
Efforts have been made to reduce this problem. Some of the solutions have simply been
provide through education, such as with patterns. Other solutions have come in the form
of technologies, such as tag libraries and frameworks.

Tag libraries allow software developers to create their own custom tags that can be
inserted into pages. This is done much like inserting standard HTML tags. Using JSP tag

Dynamic Web Page: 7
Date/Time: 9/19/2004 2:01 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

libraries, page developers must import the tag library into the page so it can be
referenced. Next the tag must be referenced:

<%@ taglib uri="netui-tags-html.tld" prefix="netui"%>
. . .
<netui:button value="Sign On" type="submit" style="font-family:verdana;font-size:7pt;"/>

The above example uses the custom tag library provided by BEA and its WebLogic

platform. This example deals specifically with HTML syntax such as forms and their
input fields. Here an HTML button is defined. The face of the button will have the text
“Sign On,” and if clicked will cause the form to be submitted to the Web site. Rather than
using the scripting method to produce product-pricing information, as follows:

<tr>
 <td>Wholesale Price:</td> <td><%= productDataChannel.getWholesalePrice() %></td>
</tr>

What if you use a custom tag library instead?

<%@ taglib uri="channel-product-tags.tld" prefix="channel"%>
. . .
<tr>
 <td>
 <channel:product-wholesale-price-title/>
 </td>
 <td>
 <channel:product-wholesale-price
 style=”font-family:verdana;font-size:7pt;”
 format=”$999,999.99”
 product-id="<%= product.getId() %>”/>
 </td>
</tr>

Note in the above tag (<channel:product-wholesale-price/>) that

display formatting is supported, whereas in the scriptlet implementation it was not
considered. Of course formatting could have been supported in the scriptlet example, but
it would have been more complex to accomplish. The strength of the custom tag
approach is that you can easily manage both data access and presentation concerns in a
page-centric manner, removing both from page layout concerns. The JSP custom tags are
implemented using Java classes. Thus, the implementations of both access and formatting
may be changed without impacting the pages themselves.

You also have the versatility to change the tag parameters. For example, instead of
hard coding the style and format attributes, you may decide to use symbolic names:

<td>
 <channel:product-wholesale-price
 style=”Std_Style”
 format=”Locale_Currency”
 product-id="<%= product.getId() %>”/>
</td>

Now you simply leave it to dynamically executed presentation logic to map the actual

display styles and formats used. In the previous example the Std_Style may be
changed by the business whenever appropriate, or even map to a user preference. Further,
the Locale_Currency parameter allows the business to present prices according to
the locale of the consumer, making your Dynamic Web Site dynamically

Dynamic Web Page: 8
Date/Time: 9/19/2004 2:01 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

internationalized. Presentation and business logic is not only separated, but a more
powerful presentation engine can be facilitated more easily as well.

Consequences
You will find tradeoffs among the following competing forces within the Dynamic Web
Page solution pattern.

• Separation of Concerns and Programming Power: An indispensable advantage of
having a strong backing technology for Web development is the power it
provides. When you can separate page design and layout from dynamic data
access and formatting, your site will be more maintainable. When your selected
technology allows you to embed dynamic data access into the page, you have the
power to provide the kinds of solutions needed by consumers.

• Natural Page Development: The closer you can get to a fully tag-based page
implementation to more responsibility that can be delegated to less technical
developers. It will “feel” natural to developers who are already strong in HTML
skills.

• Ease of Use Versus Underlying Complexity: The easier that you make
development of pages, the more complexity that resides below the surface.
Providing a set of custom tab libraries puts more power into the hands of less
technical developers (see Natural Page Development above). However, designing
a complete and highly reusable set of dynamically functioning tags will cost your
technical development staff in terms of complexity and, therefore, effort.

Related Patterns
See the other solution patterns within the Dynamic Web Site EBP. Since most or all of the
patterns in this catalog may be implemented as Web-based solutions, this pattern is a
foundation to the entire catalog. In addition, the following patterns make use of the
Dynamic Web Page solution pattern.

• Business Portal (page #): This EBP makes use of the Dynamic Web Page solution
pattern. Also the Portlet Application (page #) solution pattern makes heavy use of
this solution pattern.

Frameworks and Tools
• Frameworks: The Jakarta Struts framework provides an implementation of all

aspects of this pattern. The Spring Framework provides an alternative to Struts.
Some believe that Spring is a more intuitive and easier to use Java-based Web
framework than Struts.

