
Printer-Friendly Article: 1
Date/Time: 9/6/2004 12:36 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Printer-Friendly Article
Remove stylized formatting and preserves the pure article text and images, allowing the
text and graphics fit the width of any printer.

Raw Content

Printer-Friendly
Content

/read

consumer selects printable /transform

Background
A consumer is reading a page from a Web site. The page was created using Dynamic Web
Page (page #) and Stylized Page (page #). The think that the information on the page is
helpful and they would like to make a hardcopy of it. However, the page design and
layout favor online readability and aesthetics, not printability.

The business needs to provide the means to reformat the page to make it compatible
with the wide variety of printers that consumers may use.

Value and Benefits
We could simply design two pages, one for online viewing and one for print. However,
that is a time consuming, labor intensive solution. Making the second article on our site
doesn’t really reuse and effort expended to make the first article printable. The same goes
for the third, fourth, fifty, and well, you get the point.

There is value in reusing the same automated engine that produced the Stylized Page
(page #) to create the bland page too. The benefit is reuse of tools and expertise, creating
a solution that works time and again, and providing the consumer a way use the
information in a way they are comfortable with.

Putting It to Work
Place one or more links on every page for which you will provide a printer-friendly
version. The link can be as simple as this:

�������������	
���������

This is a minor point, but many times I find this link only at the top of the page. It is

many times not until I have reached the bottom of the page that I decide to print it. So
why not place two such links on the page, one at the top and one at the bottom?

Create a transformation description that takes the raw content, both text and graphics,
as input and produced bland content as output. What is meant by bland content is

Printer-Friendly Article: 2
Date/Time: 9/6/2004 12:36 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

formatting the page so that text lines break according to the browser window width, not
according to a ridged design layout. When lines break naturally per the browsers width,
they will also naturally fit the printed page’s width.

Using HTML markup, this means placing each paragraph between separate paragraph
tags (<p>…</p>). To make some text, such as the title and headings, standout, use the
HTML heading markup (<h1>…</h1>, etc.) or appropriately sized graphic images.
There is no reason to use HTML tables to format the text. In fact any such constructs
could interfere with allowing the browser to format the page for the printer.

If your consumers are printing a standard US Letter size page, or to the more
international A4 page, make sure that graphic illustrations are not more than around 6
inches or XX cm wide. Also limited the height of illustrations to those that are clear, but
that are no higher than, say, half or three-quarters of the page height (at most!). For both
width and height considerations, remember that the page margins will reduce the real
estate you actually have to print on. All graphics should be on the left margin (for left-to-
right languages, anyway), or centered (align="middle").

Banner and sidebar advertisements are probably inappropriate for printer-friendly
pages. Consumers will probably not find a good way to respond to ads since they are not
reading the page online. They will also find it more challenging to filter ads from article
illustrations as they read the printed page.

Make sure that your raw content in some way indicates that it can be transformed into
a Printer-Friendly Article. This may be indicated with a special indicator, or by some
value that is native to the printable articles. If you use XML and XSL to generate pages,
you might include a <printable/> element in your DTD or schema. If you are
dealing with legacy content that you cannot easily add logic to, you might probe for one
or more native nodes and/or content that all printable articles would have at least one of.
This will allow Stylized Page (page #) to generate Printer-Friendly Version links
automatically.

When the consumer selects the Printer-Friendly Version link, run the raw content
through your transformation engine using the “bland” transformation description. When
the page response is generated return it to the browser.

Example
There are a few suitable implementation strategies. I present one here in detail. It uses a
simple Java utility class that creates HTML from text content. It is simple so as not to
cloud the point of the pattern:

public class TextToHtmlTransformer implements TransformerIF
{
 public TextToHtmlTransformer()
 {
 super();
 }

 public byte[] transform(TransformerInputSourceIF anInputSource)
 throws TransformationException
 {
 StringBuffer tempHtmlDoc = new StringBuffer();
 String tempTitle = (String) anInputSource.getAttribute("title");

 tempHtmlDoc.append("<html>\n");
 tempHtmlDoc.append("<head>\n");
 tempHtmlDoc.append(

Printer-Friendly Article: 3
Date/Time: 9/6/2004 12:36 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=iso-8859-1\">\n");
 tempHtmlDoc.append("<title>");
 tempHtmlDoc.append(tempTitle);
 tempHtmlDoc.append("</title>\n");
 tempHtmlDoc.append("</head>\n");
 tempHtmlDoc.append("<body bgcolor=\"#FFFFFF\">\n\n");
 tempHtmlDoc.append("<h1>" + tempTitle + "</h1>");

 String tempTextDoc = new String(anInputSource.getContent());

 StringTokenizer tempStrTok = new StringTokenizer(tempTextDoc, "\r\n");

 while (tempStrTok.hasMoreTokens())
 {
 String tempPara = tempStrTok.nextToken();

 tempHtmlDoc.append("<p>");
 tempHtmlDoc.append(tempPara);
 tempHtmlDoc.append("</p>");
 tempHtmlDoc.append("\n");
 }

 tempHtmlDoc.append("\n");
 tempHtmlDoc.append("</body>\n");
 tempHtmlDoc.append("</html>\n");

 return tempHtmlDoc.toString().getBytes();
 }
}

This TextToHtmlTransformer does not handle graphic images, it only

transform plain ANSI text with line breaks (such as a source code listing or README
file). Significant is that the HTML output is generated in a stoically bland way. The title
text is marked up with an HTML H1 style (heading level 1), and each text paragraph is
set in its own HTML paragraph.

Key to this implementation is two interfaces, TransformerIF and
TransformerInputSourceIF. TransformerIF defines the contract between
transformer clients and transformers. It defines a single method that must be implemented
by all transformers:

public interface TransformerIF
{
 public byte[] transform(TransformerInputSourceIF anInputSource)
 throws TransformationException;
}

The transform() method answers an array of bytes that contains the results of

the transformation. It takes a TransformerInputSourceIF instance as a parameter:

public interface TransformerInputSourceIF
{
 public Object getAttribute(String aName) throws TransformationException;

 public Object getAttribute(String aName, int anIndex) throws TransformationException;

 public byte[] getContent() throws TransformationException;
}

This interface allows the transformer to read the content and metadata about the

content. For example, class TextToHtmlTransformer uses the getContent()
method to read the content as bytes. The overloaded getAttribute() methods

Printer-Friendly Article: 4
Date/Time: 9/6/2004 12:36 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

provide metadata about the content. Class TextToHtmlTransformer uses the non-
indexed form of the method to get the content’s title. The indexed form of
getAttribute()is used to get elements of metadata arrays. The implementers must
supply the data.

Another implementation strategy that works well uses XML and XSL
transformations. This strategy is presented in Stylized Page (page #). It is probably the
most versatile method and supports a rich input document model. It may be a bit slower,
however. In fact the input document stream would not change from that presented in
Stylized Page. You would basically just dumb-down the style sheet used to transform the
XML document.

Consequences
These are the competing forces within the Printer-Friendly Article solution pattern.

• Choose the Right Pages: It is not a good idea to provide printer-friendly links on
every page on your site. Make sure you have some means of identifying all such
articles, and excluding pages that should not be specially formatted for print.

Frameworks and Tools
• Frameworks and Tools: The same tools used by Stylized Page (page #) are

appropriate for use by this pattern.

