
Identity Management: 1
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Identity and Access Management
Provides a means for the users of a system to register their identity and thereby gain
access to a system. Their identity and access is managed over time. A user’s identity
includes both relevant personal information as well as business related attributes, such
as roles and permissions as well as preferences.

User Administrator

Register Identity

Register
Characteristics

Sign On

Assign Role

«include»

«self service usage»

«self service usage»

Background
Potential users of a business system must be provided a means of volunteering credentials
and other information about themselves in exchange for access to the business resources
being offered by the product or services organization. This includes the registration, sign
on, access control, and other extended features of identity management.

The registration and sign on features are required to ensure that the user is who they
claim to be. Over time the user should be permitted to make necessary changes to their
identity. They may need to change contact information and perhaps their password from
time to time. The user should be provided a way to sign on to the system if they have
forgotten their password. The more emphasis placed on user self service, the less the
solution will cost the hosting organization to support their users.

Besides the obvious consumer facing identify management components, there are
vital back-office features that protect the system resources that the business offers use of.
These are known as access management, and include authorization. A wide variety of
resources, such as data and software components may be protected from unauthorized use
by applying line-of-business security mechanisms around them.

Value and Benefits
If you want to provide restricted and qualified access to your company’s valued
resources, and you want to know something about the persons accessing them, then some
degree of Identity and Access Management is clearly a necessity. Providing a centralized
service for managing all users of an enterprise application is extremely valuable. Users

Identity Management: 2
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

are those outside and inside your organization, as well as those you consider business
partners.

A business’s employees must be able to log on to their own individual workstations
and the company’s private network. As the organization grows it will burden a single,
centralized identity and access management system. Therefore, one major advantage to
enterprise management is, not only centralized control of all users and their access rights,
but the ability to push or propagate user identity and access information out to expanding
operational and reporting infrastructure on the enterprise and extranet.

Imagine a day in the life of the system administrators in your organization. When a
new employee comes on board the administrator must have a workstation pre-configured
for their specific job assignment. At many companies system administrators must setup a
user account with specific privileges, they must also install a lot of software and
configure it per the group or specific job task the individual will work within. There are
tremendous benefits to having a centralized identity and access management system that
cares for most of the needed account enabling, configuration, and customization.

Now think about your business partners. Companies in some industries have affiliated
agents that remotely interact with the hosting organization’s systems. These agents are
the sellers of the service or product. There are also the consumers of the service or
product that will need to interact with the base organization once the agent has
successfully completed their sales task. If you are involved in a similar industry, how will
your administrators care for agent accounts without proper identity and access
management? Then add to that the management of credentials for the hundreds,
thousands, or even millions that will be accessing your site perhaps as a commerce
consumer. A centralized, self-service identity management system will virtually eliminate
the overhead associated with servicing the variety of system users. Additionally, allowing
administrators and managers to provided access control to system resources based on user
or job profile, rather than as individuals, will greatly reduce the cost of doing business.

Consider the reality that internal users are running on a Windows platform, while
your application and database servers are running on Linux. Practically speaking, all of
the heterogeneous computing devices need to access the same centralized identity and
access management facilities in order to reduce the complexity of your enterprise.

When you determine to cross the threshold of managing users on both sides of the
firewall complexity is raised considerably. Although you may find the challenge quite
interesting, you may not be able to justify building an identity and access management
solution of the scope and magnitude required by such an extensive vision. On the other
hand you may not be able to afford a commercial off-the-shelf (COTS) enterprise identity
management product if you are just getting started in your business endeavors. You
should measure the value and benefits of quality against the buy versus build tradeoffs
before you embark on this task.

Putting It to Work
Designing and implementing your required rendition of identity and access management
can be more easily managed by dissecting it into solution pattern strategies, which are
distinctly recognizable. For example, the solution pattern strategy for capturing and
maintaining the basics of individual, personal identity is called Fundamental Identity
(page#), while the individual as a system consumer is defined by the User (page#)

Identity Management: 3
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

pattern. The encapsulating solution pattern strategy that facilitates the user’s voluntary
disclosure of personal and user-level information in a self-service fashion is called
Registration (page#). The ability to group identities by organizational hierarchy is
defined by Identity Grouping (page#). The authentication of a user that is logging in to
use the system is called Sign On (page#). The configuration of various line-of-business
responsibilities is embodied in the Role (page#) solution pattern strategy. The roles of
usage are mapped to various system resources, such as data and executable software
components, via the Security Policy (page #) pattern. Exactly how it is determined
whether a user will be granted access to a given system resource is embodied in the
Access Authorization (page #) pattern. Consider the use of these and other strategies as
we put the Identity and Access Management pattern to work.

Information and Structure
When approaching an Identity and Access Management solution, no matter what backing
third-party tools you use, you must first identify your users and organizational groupings,
the information you will collect about them, and how you will control their access to
system resources. This information will depend on the kind of system you are
implementing. The dataset may be quite simplistic or moderately complex, but will
generally be about persons, or systems, or both. Let’s consider two examples, each of
which is at the opposite ends of the complexity and usability spectrum.

Your company provides a free tool to help developers. You’d like to have some idea
of how many people are using your tool and who they are. So in exchange for
downloading they must tell you their name and their email address. You promise to
inform your tool’s users when there are updates, which you can fulfill because you have
their email address. Further, since you have their name you can address them in a
courteous way, such as “Dear Toni,” in the email body. You’ll use her email address as a
unique identifier.

Clearly your fundamental user data is very basic. Here’s an idea of what a user
identity tree might look like in plain-text format, along with a domain object
representation:

people
 person
 person-info
 emailAddress (unique-1)
 firstName
 lastName
 . . .
 person
 person-info
 emailAddress (unique-N)
 . . .

Now let’s consider the other end of the spectrum. Your company functions with the
full complement of enterprise business patterns: Business to Consumer, Business to
Business, and Business to Enterprise. This fact alone requires more primary branch nodes
on the Identity Grouping (page#) tree, for example:

customers

Person

- emailAddress: String
- firstName: String
- lastName: String

Identity Management: 4
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 . . .
employees
 . . .
partners
 . . .
people
 . . .

The people branch is still useful. It is where you will keep all information regarding
the people your system knows about. Additionally, you will also want to create contexts,
similar to groups, which distinguish the people you know about as customers,
employees, or partners.

Besides having a more complex tree, you also want to collect much more detailed
information for each kind of identity. For employees you need to know both business
information and some degree of personal information. At a minimum you must know the
pager and cell phone numbers of system admin personnel, for example. Collecting both
business and personal information implies the probability of having more than one set of
contacts for each employee.

Your partners will probably be grouped under business entities, and you may
want to categorize each partner’s identities by resource and departmental groups, such as
systems, accounting, and inventory. Partner system identities have names and
descriptions. A partner’s accounting and inventory groups will include a number of
staffers who will interact with your back-office systems through a Dynamic Web Site
(page #).

You will also collect information about the external users (non-employees, non-
partners) of the system (e.g. your customers). While you probably want to know the
external user’s name and email address, it’s also likely that you’ll want to capture the
company they represent and other common, primary contact information for them.

You could attempt to obtain nearly as much information about external users as you
do employees, but for most systems this is neither necessary nor practical. Depending
on the line of business you are conducting it may not be proper or legal to probe for such
data (minor children, for example). It will require a delicate balance to avoid
overwhelming users by prompting them for too much information during registration.
One worthy strategy is to obtain only very basic information at initial registration (email
address, personal name, user name, and password), and then gather more at points when
you absolutely need it (shipping address, date of birth, and gender).

Based on these requirements your identity tree might have the following logical
composition:

customers
 person
 username (unique-ID)
 firstName
 lastName
 companyName
 jobTitle
 contactInfo
 emailAddress
 postalAddress
 telephoneNumber

Identity Management: 5
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 . . .

employees
 departmentName
 manager (person)
 person
 username (unique-ID)
 firstName
 middleName
 lastName
 maidenName
 jobTitle
 uniquePersonIdentifier (e.g. SSN)
 dateOfBirth
 contactInfo
 emailAddress[]
 postalAddress[]
 telephoneNumber[]
 . . .

partners
 companyName
 primaryContact (person)
 departmentName
 primaryContact (person)
 person
 username (unique-ID)
 firstName
 lastName
 jobTitle
 contactInfo
 emailAddress
 postalAddress
 telephoneNumber
 . . .
 system
 username (unique-ID)
 description
 location
 . . .

people
 username (unique-ID, 1)
 password
 pin
 hint
 . . .
 username (unique-ID, N)
 password
 pin
 hint

The people context, providing a common set of all system users, is key because
every other major context (customers, employees, and partners) relies on
usernames and passwords to obtain access to the system. It is only after a user has signed
on to the system that it is important to know who they are and what they can do. Even

Identity Management: 6
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

partner back-office systems access your B2B back-office systems via username and
password. As you will see, the User (page #) pattern is the essential bootstrap for
supporting the link between the Fundamental Identity (page #) and User Account (page
#) pattern (and others). While users have authentication credentials and identities they
also have accounts, roles, and other characteristics.

The relationships presented above form the basis of a static domain model structure.
The exact information that you collect will be determined by your own analysis. For
example, your partners might not access your systems via services. In the case of a
manufacturer, for example, a partner might be a wholesaler, and you may also have some
relationships with retails with which you act as the wholesaler. So your partner node may
have people (perhaps not within separate departments) but not systems, and they will
likely access your systems via a web GUI very similarly to B2C customers. Unless they
support supply chain management, a manufacturer may not need to provide back-office
services. However, you will still want more information about such partners than you
would know about typical B2C customers.

Detailed analysis notwithstanding, the information structure presented above is more
or less suitable for many businesses. Detailed UML diagram are provided in relevant
solution patterns, providing further clarity to the textual rendition of the above identity
tree. Note, however, that how you implement your identity and access persistence
mechanism will determine the physical structure of the logical layout presented above.

Technology Considerations
The backing technology you end up using may be dictated for you. Organizations that
have been managing users as described by this pattern will have had some form of
identity and access management infrastructure in place for some time. If corporate
direction mandates that existing infrastructure continue to be used, and that infrastructure
is not a directory service, then much of this section will be purely academic for you.

However, in the rare case where you are able to start from scratch, or in the not so
rare case where part of your mission is to replace existing identity and access
management infrastructure, I highly recommend that you consider the use of a directory
service. While it is out of the scope of this book to provide exhaustive coverage of
directory services, suffice it to say that directory services are tailor made to deal with
identity and access management. Much of identity and access management’s core feature
definition is a standard, out-of-the-box feature of directory services. Such standard
features include highly efficient hierarchical tree structures that are tuned for quick
searching, customizable type and attribute capabilities, and identity replication, which
will allow you to propagate your identity structure as your needs grow. Using a directory
service with such built-in features will save you many hours of implementation, testing,
and deployment time. Just the area of identity replication alone could require many
person months of design and development that can be sidestepped by obtaining a
commercial or open source directory service.

The most widely used kind of directory service uses LDAP, or Lightweight Directory
Access Protocol. My examples use OpenLDAP specifically. Again, it is out of the scope
of this book to provide an extensive treatment of LDAP. Therefore I assume that you are
already familiar with or will familiarize yourself with LDAP. An excellent Web site
supporting LDAP documentation is http://ldap.akbkhome.com/. Clayton Donley has

Identity Management: 7
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

produced a practical guide to LDAP programming [LDAP-PMI]. I believe these are
useful reference works and guides.

However, none of these suggestions indicate that the use of a relational database is
out of the question for use as an identity and access management system. You may lose
some advantages that a directory service provides, but most directory services are backed
by some kind of database anyway. For example, OpenLDAP uses the Berkeley Sleepy
Cat Database as its backing persistence mechanism.

Architectural and Design Decisions
The following diagram illustrate some possible architectural and design direction from a
component model perspective:

Business Tier

«remote facade»

IdentityManager

«domain object»
Person

«domain object»
ContactInformation

«enterprise platform»

DirectoryServ ice

Directory Serv ice Tier

LDAPServer

«domain object»
User

LDAP protocol

The diagram shows the major architectural concerns. For example,
IdentityManager is the Remote Façade [P of EAA] through which clients gain
access. The User and Person components are of the domain objects involved. The
DirectoryService component is the platform specific access to LDAP, namely
JNDI or ??? [.NET API…]. Since the LDAP or database server is at least logically (and
most likely physically) on a separate tier—generically called the data integration tier—
the component diagram shows that separation by placing it in a separate package.

When storing identity and access data in LDAP you use an object class to specify
what you are storing. Listed here in class hierarchical order are a few of the more obvious
LDAP object classes that might be suitable for storing our person identity data. Note that
these are standard LDAP classes available with most directory implementations:

Identity Management: 8
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

person
 organizationalPerson
 inetOrgPerson
 residentialPerson

I will be using both standard and custom object classes in my examples. For details
on standard ones, see http://ldap.akbkhome.com/objectclasstree.html, an online LDAP
Schema Viewer. The person object class is the most basic, and therefore the most
limited. Only a few attributes are supported, and certainly not enough to support some
moderately complex identity management requirements. There are only a unique name,
password, and telephone number. The organizationalPerson object class extends
person, and introduces a more complete set of attributes, but it still fails to provide the
richest identity management option. We must navigate two subclasses below person
before we find the inetOrgPerson object class, one that is suitable for my examples,
but may be somewhat limited for many businesses.

There are two possible issues with inetOrgPerson. First, it is not always standard
in all directory services, including the servers I reference below, namely OpenLDAP and
ActiveDirectory. This proved not to be a serious issue as both servers provide
inetOrgPerson as an add-on schema. If it is not available for your server perhaps you
may add it in yourself, or your LDAP server may provide a similar or better object class.
The second potential issue is that inetOrgPerson may not be rich enough for your
production implementation. If this is the case you could easily extend it, or create a
completely unique object class that has much richer set of attributes. That should be the
least of your problems. The point of my selection is, at least you will be able to glean the
general ideas behind the pattern by studying my examples and use of inetOrgPerson.

Solution Pattern Strategies
The following are the primary solution patterns strategies for the Identity and Access
Management EBP. The strategies are presented in more or less logical order.

Registration
Registration (page#) allows the potential user of a system to volunteer credentials and
other information about themselves in exchange for granted access to all or part of the
system. System access may be automatically granted when the user submits their
registration information, or the system provider may require some approval process to be
managed by a set of business workflow tasks.

Likely the sensitivity of information and/or the value of resources being offered by
the system will dictate the level of approval enforced. Of course, in many cases the
business would do well not to make the registration and (optional) approval process so
strict that it discourages new users from completing their access request or returning to
the system for future use. (I have seen this happen.)

A simple strategy to ensure that you at least verify the user’s valid email address is to
send a confirmation of registration email message to the user’s registered address that
requires their confirmation reply before registration is completed. The Registration
(page#) solution pattern deals with the user interface portion of the Identity and Access
Management pattern, while it relies on the Fundamental Identity (page#) solution pattern

Identity Management: 9
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

to define what user information gets collected. While this pattern will most often be a
self-service facility, it may also be an administrative facility since system administrators
may need to setup default user accounts in behalf of new employees and partners.

User
User (page#) provides the structure behind persisting the user’s credentials that are
entered via Registration (page#). Sign On (page#) also uses it to authenticate a user that
is attempting to access the system. This pattern may provide additional authentication
credentials, such as a PIN. Further, if the user loses their password or other authentication
principal information, Sign On (page#) can use this pattern to provide a recovery scheme
for the user.

Fundamental Identity
Fundamental Identity (page#) is the solution pattern strategy that defines the structure of
and facilitates the storage and retrieval of registration information. It focuses on what
kind of information the registration process must collect, and provides a standard API for
accessing and updating the data once it has been stored. It is used by the Registration
(page#) pattern to determine what data is collected about each user.

Sign On
Sign On (page#) solution-pattern strategy defines how the registered user submits their
credentials in order to gain access to the system’s resources. It also encapsulates how the
user terminates their session by signing off. While this pattern seems simple enough,
examining the details of the pattern will reveal some conveniences that make the user
experience more pleasant in the case where credentials are forgotten. The approach of
Single Sign On (SSO) is a strategy provided by this pattern.

Identity Grouping
The Identity Grouping (page #) pattern maintains a set of unique members that can be
granted common characteristics such as access-based roles. A group may contain users
and one or more other groups (nested groups, or groups within groups). Basically groups
have the benefit of defining additional identity and allowing roles and other possible
characteristics to be more efficiently granted across a broad range of users.

Role
Role (page#) facilitates a means for the business to grant levels of access and
responsibility to each user according to the level of trust recognition. Such access levels
and responsibilities are often referred to as permissions or privileges. Often times
extended access and special responsibility definition may be required only for internal
users, while a very limited set of access rights is implied toward external users (such as
through a default “guest” grant). Note that the Role (page#) pattern focuses on line-of-
business access control. Thus, users and groups do not have permissions/privileges per
se. They are only granted permissions by being in a role that has the
permissions/privileges to access a given system resource.

Roles also may be dynamic; that is, a user may qualify as being in a role because of
meeting some special dynamic criteria. The dynamic criteria may be based on the time of

Identity Management: 10
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

day, the day of the month, time of year, according to the amount of money spent, and so
forth.

Security Policy
Security Policy (page #) maps access to system resources from the specific resource to
the Role (page #) that the requester must play to access it. Such policies may be very
simple, or complex depending on the nature of the platform and environment that it
supports. In essence policies serve as the grant of permissions on system resources.

Access Authorization
Can a given user access a specific system resource at a moment in time? The Access
Authorization (page #) pattern uses Role (page #) definitions to determine whether or not
a user will be granted access to such as resource when they attempt it. But the required
Role (page #) is found by looking at the resource’s assigned Security Policy (page #).

Examples
All reference implementation details for the Identity and Access Management are
provided in the underlying solution patterns. I supply some key supporting code and
configuration examples here that are consumed by the solution patterns. The static
structure of a simple framework is depicted in the following class diagram:

«interface»

DirectorySessionIF

DirectorySession

User Person

«interface»

DirectoryDomainObjectIF

+ getDirectorySession() : DirectorySessionIF

UserDirectorySession

PersonDirectorySession

DirectoryServ ice

«realize»

«realize» «realize»

«realize»

«realize»

Identity Management: 11
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Class DirectorySession is used to initiate the persistence and retrieval of all
directory-based domain objects:

package com.jubatus.business.service.directory;

import com.jubatus.business.domain.DirectoryDomainObjectIF;

public class DirectorySession implements DirectorySessionIF {

 public static DirectorySessionIF getInstance() {
 return new DirectorySession();
 }

 public Object read(DirectoryDomainObjectIF anObject) throws DirectoryException {
 return anObject.getDirectorySession().read(anObject);
 }

 public void save(DirectoryDomainObjectIF anObject) throws DirectoryException {
 anObject.getDirectorySession().save(anObject);
 }

 public void setParentContext(String aContext) {
 // unused
 }

 public void update(DirectoryDomainObjectIF anObject) throws DirectoryException {
 anObject.getDirectorySession().update(anObject);
 }
}

When a component such as the IdentityManager Remote Façade saves a new

User to the directory service, it would do so in the following manner:

UserIF tempUser = . . .
DirectorySessionIF tempSession = DirectorySession.getInstance();
tempSession.save(tempUser);

As you can see from the save() method the common DirectorySession

simply dispatches the persistence request onto the directory domain object’s own
DirectorySessionIF implementation. Therefore, every directory domain object
must implement the DirectoryDomainObjectIF interface:

package com.jubatus.business.domain;

import java.io.Serializable;

import com.jubatus.business.service.directory.DirectorySessionIF;

public interface DirectoryDomainObjectIF extends Serializable {

 public DirectorySessionIF getDirectorySession();
}

Example implementers as seen in the diagram are UserDirectorySession and

PersonDirectorySession. These classes are included in the User (page #) and
Fundamental Identity (page #) patterns, respectively.

The responsibility of the implementing directory domain object (such as User and
Person) is to answer its own specific implementation of DirectorySessionIF.
Every directory-based domain object uses interface DirectorySessionIF to
actually control its own persistence details:

Identity Management: 12
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

package com.jubatus.business.service.directory;

import com.jubatus.business.domain.DirectoryDomainObjectIF;

public interface DirectorySessionIF {

 public Object read(DirectoryDomainObjectIF anObject) throws DirectoryException;
 public void save(DirectoryDomainObjectIF anObject) throws DirectoryException;
 public void setParentContext(String aContext);
 public void update(DirectoryDomainObjectIF anObject) throws DirectoryException;
}

When the common DirectorySession dispatches the persistence request on to

the directory domain object’s DirectorySessionIF, that implementation is
responsible for interacting with the directory service. There is a helper class use by the
domain objects. It is the class DirectoryService. My examples use Java and its
JNDI API, so the DirectoryService component provides some basic utility that is
common to all directory domain objects in my examples:

package com.jubatus.business.service.directory;

import java.util.Properties;

import javax.naming.NamingException;
import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.BasicAttribute;
import javax.naming.directory.DirContext;
import javax.naming.directory.InitialDirContext;
import javax.naming.directory.ModificationItem;

public class DirectoryService {

 // some of these should be properties or managed dynamically via JMX
 private static final String BASE_DOMAIN_NAMING_CONTEXT = "dc=jubatus,dc=com";
 private static final String COMMON_NAME = "cn";
 private static final String DEFAULT_HOST = "localhost";
 private static final String DEFAULT_PORT = "389";
 private static final String DEFAULT_ROOT_DN = "cn=admin," + BASE_DOMAIN_NAMING_CONTEXT;
 private static final String DEFAULT_ROOT_PASSWORD = "secret";
 private static final String EBP_USER_ACCOUNT = "ebpUserAccount";
 private static final String GROUP_OBJECT_CLASS = "posixGroup";
 private static final String GROUP_OF_UNIQUE_NAMES_OBJECT_CLASS = "groupOfUniqueNames";
 private static final String GROUPS_CONTEXT = "ou=groups";
 private static final String INET_ORG_PERSON_OBJECT_CLASS = "inetOrgPerson";
 private static final String MEMBERS = "members";
 private static final String OBJECT_CLASS = "objectClass";
 private static final String ORG_PERSON_OBJECT_CLASS = "organizationalPerson";
 private static final String PEOPLE_CONTEXT = "ou=people,";
 private static final String PERSON_OBJECT_CLASS = "person";
 private static final String TOP_OBJECT_CLASS = "top";
 private static final String UID = "uid";

 private DirContext dirContext;

 public static DirectoryService getInstance() {
 return new DirectoryService();
 }

 public void createSubcontext(String aContext, Attributes anAttrs) throws
DirectoryException {
 try {
 this.getDirContext().createSubcontext(aContext, anAttrs);
 } catch (NamingException e) {
 e.printStackTrace();

Identity Management: 13
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 throw new DirectoryException("Naming exception", e);
 }
 }

 public String getDomainNamingContext() {
 return BASE_DOMAIN_NAMING_CONTEXT;
 }

 public String getGroupContext(String aGroupName) {
 return COMMON_NAME + "=" + aGroupName + "," + this.getGroupsContext();
 }

 public String getGroupsContext() {
 return GROUPS_CONTEXT + "," + this.getDomainNamingContext();
 }

 public String getGroupMembersContext(String aGroupName) {
 return COMMON_NAME + "=" + MEMBERS + "," + this.getGroupContext(aGroupName);
 }

 public Attribute getGroupMembersObjectClasses() {
 Attribute tempAnswer = new BasicAttribute(OBJECT_CLASS);
 tempAnswer.add(TOP_OBJECT_CLASS);
 tempAnswer.add(GROUP_OF_UNIQUE_NAMES_OBJECT_CLASS);
 return tempAnswer;
 }

 public Attribute getGroupObjectClasses() {
 Attribute tempAnswer = new BasicAttribute(OBJECT_CLASS);
 tempAnswer.add(TOP_OBJECT_CLASS);
 tempAnswer.add(GROUP_OBJECT_CLASS);
 return tempAnswer;
 }

 public String getPeopleContext() {
 return PEOPLE_CONTEXT + this.getDomainNamingContext();
 }

 public String getPersonContext(String aUserAccountContext, String aCn) {
 return COMMON_NAME + "=" + aCn + "," + aUserAccountContext;
 }

 public Attribute getPersonObjectClasses() {
 Attribute tempAnswer = new BasicAttribute(OBJECT_CLASS);
 tempAnswer.add(TOP_OBJECT_CLASS);
 tempAnswer.add(PERSON_OBJECT_CLASS);
 tempAnswer.add(ORG_PERSON_OBJECT_CLASS);
 tempAnswer.add(INET_ORG_PERSON_OBJECT_CLASS);
 return tempAnswer;
 }

 public String getUserAccountContext(String aUsername) {
 return UID + "=" + aUsername + "," + this.getPeopleContext();
 }

 public Attribute getUserAccountObjectClasses() {
 Attribute tempAnswer = new BasicAttribute(OBJECT_CLASS);
 tempAnswer.add(TOP_OBJECT_CLASS);
 tempAnswer.add(EBP_USER_ACCOUNT);
 return tempAnswer;
 }

 protected DirContext getDirContext() throws NamingException {

 if (dirContext == null) {
 Properties tempEnv = new Properties();

 tempEnv.put(
 DirContext.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 tempEnv.put(

Identity Management: 14
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 DirContext.PROVIDER_URL,
 "ldap://" + DEFAULT_HOST + ":" + DEFAULT_PORT);
 tempEnv.put(
 DirContext.SECURITY_AUTHENTICATION,
 "simple");
 tempEnv.put(
 DirContext.SECURITY_PRINCIPAL,
 DEFAULT_ROOT_DN);
 tempEnv.put(
 DirContext.SECURITY_CREDENTIALS,
 DEFAULT_ROOT_PASSWORD);

 dirContext = new InitialDirContext(tempEnv);
 }

 return dirContext;
 }

 public void modifyAttributes(String aContext, ModificationItem[] aModsArray)
 throws DirectoryException {
 try {
 this.getDirContext().modifyAttributes(aContext, aModsArray);
 } catch (NamingException e) {
 e.printStackTrace();
 throw new DirectoryException("Naming exception", e);
 }
 }

 private DirectoryService() {
 super();
 }
}

Consequences
You will find tradeoffs among the following competing forces within the Identity
Management business pattern.

• Potential for True Reuse: Since you are taking the time to think things through

on a topic that many dismiss as rudimentary or a complete nuisance, you may be
able to ensure that your organization never has a competing, incomplete, or dead-
end user registration and sign on facility. True, each application that your
organization develops will have its own special configuration and user
preferences requirements, but need they all have their own unique way of
managing user identity, authentication, and authorization? Hopefully not. If your
organization is not already out of control—perhaps politically hamstrung, as I
have seen before on this very topic—on this front, make every reasonable effort
now to ensure the reuse of this essential, critical, part of every serious enterprise
application.

• Keep It Simple: For the most basic of Web-based enterprise applications
supporting a single database table for user credentials and another for preferences,
may be all that is really needed. This is especially the case if you have very
limited timeframes for development and you just can’t introduce another
complexity. In this case avoiding a top-shelf identity management solution may
be in your best interests. Of course you will still need to support registration and
sign on, and you may want to provide facilities for users to configure simple
preferences. But you will probably want to avoid going down the path of a full-

Identity Management: 15
Date/Time: 11/27/2004 11:48 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

featured Role (pg#) or Identity Propagation (pg#) strategies. As previously stated,
buy versus build are options you will have to study carefully. In many cases
buying will contribute more toward simplicity than building your own identity
management solution, especially if “full-featured” is part of your checklist.

• Make It Complete and Robust: This is the exact opposite competing force to
Keep It Simple. I argued sufficiently under the Value and Benefits section for
many of the reasons that you will want to invest in this pattern to the fullest
extent. Insert all those arguments and more (it is outside the scope of this book to
discuss every advance to using a directory service) here, which will heavily
weight your decision toward implementing a full-featured, enterprise, extensible,
and scalable identity management system.

• Involve Everyone: Similar to the reasoning behind the Keep It Simple
consequence, there is the tradeoff of having to involve a lot of your IT staff in
order to provide an extensible identity management solution. There’s far more
involved than a software developer simply accessing an API from your enterprise
application (such as accessing JNDI from Enterprise JavaBeans, or
ActiveDirectory from COM objects). You must give careful consideration to the
directory service selection, buy versus build, how your selection should be
deployed, and how it will expand in the future. This is likely going to involve
executive management (at least your CIO and/or CTO) as well as network and
application architects, and the system administrators who are going to have to
support it from cradle to grave. Of course the requirements of the business users
must absolutely be met. Be prepared for some churn and heartache before
anything useful gets accomplished.

Related Patterns
The following are the solution patterns that may be used in conjunction with the solution
patterns key to the Identity and Access Management pattern.

• User Account (page #): Whenever a business system user can make purchases,

there must be a user account associated with the user identity. While user identity
manages the basics of who’s who, the user account manages the details about
transactions that the user has made or will make.

Frameworks and Tools
• Products and Frameworks: See products such as Netegrity’s IdentityMinder and

SiteMinder, IBM’s Tivoli Identity Management, Sun ONE Directory Server, Sun
Java™ System Identity Manager, RSA’s ClearTrust, and Microsoft’s Access
Manager. Many COTS products can be used as near-turnkey and custom solution
platforms.

• Tools: The sub-pattern strategies above make use of freely and commercially
available tools such as OpenLDAP and ActiveDirectory for storing and retrieving
user identity and related information. In addition our recommended suite of tools,
including Tomcat and JBoss are used in my example solutions.

