
Security Policy: 1
Date/Time: 11/26/2004 10:37 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Security Policy
Facilitates the assigment and encorcement of security costraints to sensitive system
resources, such as data and components, by providing a mapping between the resource
and its access role.

SecurityPolicy Role

Resource

Background
We have a resource to protect and a Role (page #) to protect it with. How do we associate
the resource with its assigned role to ensure that only those authorized to access it may do
so?

Value and Benefits
The Security Policy acts as a mapping between the protector and the protected. This
mapping means that the piece parts of access management are decoupled. Therefore, the
parts can be changed independently. This pattern is chiefly concerned with structure,
while it does provide a fare share of behavior as well.

A Security Policy promotes maintainability, because it decouples the protected
resources from the security constraints that authorize their access. Additionally,
versatility is baked in. The decoupling implies that some system resources may be
protected (policy exists) and others may not be (policy does not exist), at the
discrimination of security administrators. Thus, if a resource is included in a Security
Policy mapping, its access will be checked. If it is not included in any such mapping then
access is not checked. Further, new components and potentially new kinds of constraints
may be added to a working system without requiring either implement security directly.

Putting It to Work
All basic Security Policy instances in a system may be maintained in a dictionary or map
object, which may serve as the underlying design pattern. A single Security Policy,
therefore, may be as simply as a key and a value pair. The key is the name or other unique
identifier of the resource. The value is the name of the Role (page #) that secures the
resource by regulating its access to only those who qualify.

Security Policy: 2
Date/Time: 11/26/2004 10:37 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

How can a resource such as a data object (e.g. a data source), or an executable
component be uniquely identified? The following table provides some guidance for
standard Web-based enterprise applications:

Resource Type Unique Identifier
Web Page or Component URL of the Web Page, including wildcards that encompass multiple URLs
Enterprise Component Registry URL or GUID, such as JNDI directory context or COM identifier
Message Queue Unique queue name, JNDI directory context, or COM identifier
Database, Data Source Database URL, JNDI directory context, or ODBC identifier

Enterprise platforms, such as J2EE and .NET, have standards for uniquely identifying
each type of resource.

A security policy may be defined in any text file that can be used to express key-value
pairs. A properties file may do, or an XML document. J2EE defines policies in XML
documents that are deployed along with the component they apply to. Most J2EE
application servers allow you to provide Security Policy definitions for data resources
from within a custom management console. The .NET solution, provided by the
Microsoft Access Manager product, uses Active Directory LDAP entries or XML
document-based flat files to store policy definitions.

A Security Policy actually has two object representations. There is the composite
representation illustrated in this pattern’s introduction. There is also the map or
dictionary representation that allows quick and convenient lookup. The backing Map
(or Dictionary) uses the resource identifier as the key, and the role name as the value.

SecurityPolicies
«interface»

Map

+ get(Object) : Object
+ put(Object, Object) : void

String String RoleIF

resourceIdentifier roleName role

Access to a non-Web identifier is straightforward:

SecurityPolicies securityPolicies = SecurityPolicies.getInstance();
securityPolicies.addSecurityPolicy(componentIdentifier, roleName);
. . .
RoleIF role = securityPolicies.getResourceRole(componentIdentifier);
boolean canAccess = role.isUserInRole(username);

One approach to dealing with Web policies is to insert a single entry in the

SecurityPolicyMap for all URL resource identifiers. The key might be / or www.
The value, in this case, is not a role, but an object that facilitates a hierarchy of directory
names and contained filenames. Associated with each directory name are links to lower-

Security Policy: 3
Date/Time: 11/26/2004 10:37 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

level directories, contained filenames (which may include wildcards), and a role, if one is
mapped to the directory. Filename entries will have associated roles. The class
SecurityPolicies parses the requested URL to separate each directory and possible
filename, and walk the links until there are no more URL segments. If a match is found,
the associated role name is used to find the role and return it to the consumer:

/
 accounting
 *.jsp = Accountant (role)
 controller
 accounting = Accountant (role)

AccountingDataSource = Accountant (role)

BalanceSheet = Accountant (role)

GeneralLedger = Accountant (role)

The first entry is the Web site directory hierarchy. The second entry is a data
resource, the AccountingDataSource. The third and forth entries are the
BalanceSheet and GeneralLedger components, respectively. Each entry,
including Web sub-entries, which have a role associate with them, may resolve as a valid
Security Policy entry. Entries not having role associations are not valid Web Security
Policy entries.

To help the SecurityPolicies deal with Web requests more efficiently it is best
to provide a different method for requesting roles:

SecurityPolicies securityPolicies = SecurityPolicies.getInstance();
RoleIF role = securityPolicies.getWebResourceRole(aRequestedURL);
boolean canAccess = role.isUserInRole(username);

The method getWebResourceRole() distinguishes Web resource requests from

those involving data and non-Web component resources.

Examples
The J2EE platform uses XML documents to define security policies. Web site security
policies in particular are defined in the web.xml file that is part of a Web Archive, or
WAR file. The following web.xml security constraint defines the Web sub-entries as
shown in the above SecurityPolicies map layout:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>AccountingAppSecurity</web-resource-name>
 <url-pattern>accounting/*.jsp</url-pattern>
 <url-pattern>controller/accounting</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Accountant</role-name>
 </auth-constraint>
</security-constraint>

Security Policy: 4
Date/Time: 11/26/2004 10:37 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

As you can see, Security Policy may, of necessity, be more complex then a set of key-
value pairs. In the above J2EE web.xml example the policy itself has a unique name,
which is AccountingAppSecurity. The policy packet is named security-
constraint. Within this single web-resource-collection you may declare
multiple URLs or URL patterns in a single policy. What is more, you may distinguish
between Web request types: GET and POST. In the case of the above policy both GET
and POST are covered by the same access constraints. But in other cases you may want to
allow everyone to read (GET), but only allow special roles to write/update (POST), for
example. In the case of the above policy, any user that is in the Accountant role may
perform both Web request types on all URLs that have the patterns
accounting/*.jsp and controller/accounting.

While the J2EE Web implementation of Security Policy is more complex, the
principles of the basic approach to the pattern apply. Admittedly the policy for an
Enterprise JavaBean (EJB) is much simpler than the Web edition, because the EJB is
accessed using an exact unique identifier. Even if the implementation you develop or
otherwise obtain and use is of necessity a bit more complex, the basic name-value pair
mappings comprise the essence of the pattern—a uniquely referenced resource is secured
by a specific Role (page #) definition.

Consequences
Consider the completing forces related to this pattern:

• Not Used: If you don’t use Security Policy the Access Authorization (page #)
pattern will have to use another means of looking up the security permissions that
must be enforced to access the resource. This will likely be cumbersome.

Related Patterns
The following patterns are closely related to the Security Policy pattern.

• Access Authorization (page #): Uses Security Policy to check the access
constraints of the system resource that the requester is attempting to access.

• Role (page #): Defines the access constraints mapped by the Security Policy.

Frameworks and Tools
• J2EE: See the J2EE specification, in particular the web.xml and ejb-

jar.xml document types, for examples of this pattern.
• Microsoft Access Manager: This Microsoft product provides an implementation

of Security Policy.

