
Identity Grouping: 1
Date/Time: 11/10/2004 9:39 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Identity Grouping
Facilitates the assembly of users into a collection that has a unique name and maintains
a set of distinct characteristics, such that all the users assembled by the collection have
all the characteristics of the collection.

Group

- name: String

MemberIFUser

«realize»

0..*-members
«realize»

Background
You have many clusters of users of your system, where users in a given cluster all need to
be assigned identical characteristics. Managing each of the users individually will make
for an administrative headache. If you have to change one characteristic of a given cluster
of users you would have to manually modify each user’s characteristics individually. This
is both time consuming and extremely error prone.

Value and Benefits
What we need is a way to associate every user that is part of a given cluster to a
collection that can be given the desired characteristics, rather than the characteristics
being given to the individual users. Thus, when you modify the characteristics of the
collection all of the users that are maintained by it automatically receive the changes by
way of association. Assembling users together has the added advantage of providing
further identity to the users in the collection, and the collections serve as a convenient
point of reference regarding who fits in where, and what they are like.

In identity and access management and in traditional system security models the
collections of users are called groups. Each group has a unique name. Users assembled
by a group are called members.

The characteristics given to the group are generally permissions, but might not be
strictly limited to access and other security concerns. Individual users may be members of
none, one, or many groups. While the groups themselves are discussed here, the roles and
permissions are treated in Role (page #). It should be stated here that a role is different
from a group. A role is similar to a group in that it can hold a number of members and
characteristics on its own. The characteristics are generally associated with access rights
and privileges.

Note that I favor roles over adding permissions to a group (or user for that matter)
because the enterprise deals more favorably with a line-of-business approach to access
management than to a traditional access control list (ACL) approach. Therefore, you will
not find any treatment of permissions here or in the User (page #) pattern. See the Role

Identity Grouping: 2
Date/Time: 11/10/2004 9:39 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

(page #) pattern for all access control constraint mechanisms. If you must support
permissions on users and groups then you may add them easily enough to the
implementations of the two related patterns. There are a plethora of permissions and
ACL-based security mechanisms on the market, such as those built in to Unix™,
Windows™, and Novell™.

Just about everyone would rather deal with maintaining the characteristics of groups
of users rather than maintaining the characteristics on individual users. Just because
groups are at play does not mean that the characteristics of some individual users cannot
be maintained separately.

Putting It to Work
A group is an entity with a unique name and a set of associated entities. The entities in
the set are members of the group. A member is any domain object that implements a
specific interface, such as MemberIF. This implies that both users and groups can be
members of a group. Thus, there may be groups within groups.

When creating a new group, make sure that that name given to the group is unique.
This is the same constraint as is placed on usernames. You will need to ensure that every
user and/or group added to a group as a member is unique. The members can be enforced
as unique if you use a collection that supports the behavior of a Set. This may be
accomplished using an implementation of the java.util.Set interface, for example,
to gather the users and groups in memory before persisting them. Once persisted all
element entities are guaranteed to be unique:

import java.util.Set;
import java.util.HashSet;

public class Group implements GroupIF {
 private Set members;

 public Group() {
 super();
 characteristics = new HashSet();
 users = new HashSet();
 }

 public void addMember(MemberIF aMember) {
 }

 public void removeMember(MemberIF aMember) {
 }
 // ...
}

If you are using an LDAP-based identity management system then the group is

created as a simple LDAP entry. Here is the directory hierarchy that I might build for my
company:

�������� �	
�������
com organization
 jubatus organization
 groups organizationalUnit
 admin posixGroup
 members groupOfUniqueNames
 customer posixGroup
 members groupOfUniqueNames
 employee posixGroup

Identity Grouping: 3
Date/Time: 11/10/2004 9:39 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 members groupOfUniqueNames
 people organizationalUnit
 nicole ebpUserAccount
 tristan ebpUserAccount
 vaughn ebpUserAccount
 Vaughn Vernon inetOrgPerson

The members entries under each group are of the LDAP class

groupOfUniqueNames. This class has an attribute that I use to hold the directory
context strings for each member of the group. You only use the group’s members entry
to find out who its members are. If you find a member that you are interested in then you
use their member context to find out where their personal information can be found
elsewhere in the directory. For example, if I were a member of the admin group the
members entry would have included in its uniqueMember attribute values my uid:

uid=tristan,ou=people,dc=jubatus,dc=com
uid=nicole,ou=people,dc=jubatus,dc=com
uid=vaughn,ou=people,dc=jubatus,dc=com

We would then use my uniqueMember attribute value to look up my personal

information in the people directory hierarchy.
If you are using a relational database then each group could be represented by a row

in a GROUPS table. It would make use of GROUP_MEMBERS table to hold unique group
elements.

With either approach I recommend the use a persistent domain objects with a
framework that knows how to save, find, and read the groups. This is the approach I use
in my examples.

Dynamic Groups
The notion of a dynamic group allows you to create groups of users on the fly based on
certain qualifying criteria (one or more). The group is assembled from the search results
using the query criteria that qualify users to be part of a given group.

This has advantages over manually assembling groups. An administrator, for
example, can simply provide a query that is used to find all users with a specific set of
characteristics. This has an advantage over having to manually place all desired users
directly into the group. On the other hand, it does require that each user that will qualify
for a group will have to be given the proper characteristic. So here’s a rule of thumb for
using dynamic groups: Consider only using a dynamic group when the set of
characteristics that the group is qualified by is guaranteed to be part of the user’s
characteristics. That is, administrators will not have to provide the extra set of
characteristics, since the users themselves or some application operation will have
automatically created it. Otherwise administrations may as well manually assemble
groups.

A dynamic group could be made up of all users with the same first letter of their last
name:

Object[] tempParams = new Object[2];
tempParams[0] = "uid=*,ou=people,dc=jubatus,dc=com";
TempPararms[1] = "sn=A*";
GroupIF tempDynGroup = DynamicGroupFactory.getGroup(tempParams);

Identity Grouping: 4
Date/Time: 11/10/2004 9:39 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

The DynamicGroupFactory would be responsible for interpreting the meaning
of the parameters and building the group. In this case it would look under all user
accounts for all sir names that start with the letter ‘A.’ Of course this simple example
assumes that LDAP is the identity management storage of choice. A more natural way of
getting such a dynamic groups would be as follows:

GroupIF tempDynGroup = new DynamicGroup("User#sirName", "sn=A*");

Class DynamicGroup would have the built-in query criteria for qualifying the
group based on the group type. The group type has the name "User#sirName". The
qualifying criteria is "sn=A*". No doubt the administrative provisioning console would
allow the criteria parameter types for each dynamic group type to be specified when the
dynamic group type is created.

Examples
The interfaces used to define the contract between significant players in this pattern are
GroupIF and MemberIF:

public interface GroupIF extends DirectoryDomainObjectIF {
 public void addMember(MemberIF aMember);
 public int getId();
 public Set getMembers();
 public String getName();
 public boolean isMember(MemberIF aMember);
 public void removeMember(MemberIF aMember);
 public void setId(int aUniqueId);
 public void setName(String aUniqueName);
}

public interface MemberIF extends DirectoryDomainObjectIF {
 public Object getUniqueId();
 public boolean isGroup();
 public boolean isUser();
}

The interface DirectoryDomainObjectIF is the one described in the

overarching Identity and Access Management (page #) pattern. It allows implementers to
provide their persistence manager of choice. MemberIF implementers have to produce a
unique identity, so that each member of the group can qualify as a unique entry. Members
of a group may be users. If I chose to support groups within groups I could also define an
isGroup() method, which would provide a distinction from isUser().

Here is the full (and predictable) implementation of GroupIF:

public class Group implements GroupIF, MemberIF {

 private DirectorySessionIF directorySession;
 private int id;
 private Set members;
 private String name;

 public Group() {
 super();

 this.setMembers(new HashSet());
 }

 public void addMember(MemberIF aMember) {

Identity Grouping: 5
Date/Time: 11/10/2004 9:39 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 this.getMembers().add(aMember);
 }

 public DirectorySessionIF getDirectorySession() {
 if (directorySession == null) {
 directorySession = new GroupDirectorySession();
 }
 return directorySession;
 }

 public int getId() {
 return id;
 }

 public Set getMembers() {
 return members;
 }

 public String getName() {
 return name;
 }

 public Object getUniqueId() {
 return this.getName();
 }

 public boolean isGroup() {
 return true;
 }

 public boolean isMember(MemberIF aMember) {
 return this.getMembers().contains(aMember);
 }

 public boolean isUser() {
 return false;
 }

 public void removeMember(MemberIF aMember) {
 this.getMembers().remove(aMember);
 }

 public void setId(int aUniqueId) {
 id = aUniqueId;
 }

 public void setName(String aUniqueName) {
 name = aUniqueName;
 }

 protected void setMembers(Set aSet) {
 this.members = aSet;
 }
}

There’s nothing really special going on here. The group has a unique name and a

unique identification number (optional). It’s also concerned with the maintenance of its
members Set instance. After the members are updated in memory they will be
persisted out to a directory service. In the case of my example, OpenLDAP is used and it
is accessed via JNDI. Class GroupDirectorySession implements the interface that
serves to allow the GroupIF domain objects the in behalf of groups, namely
DirectorySessionIF. The following code snippet shows how groups are saved and
updated:

class GroupDirectorySession implements DirectorySessionIF {

Identity Grouping: 6
Date/Time: 11/10/2004 9:39 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 private static final String COMMON_NAME = "cn";
 private static final String GROUP_ID = "gidNumber";
 private static final String MEMBERS_TYPE = "members";
 private static final String UNIQUE_MEMBER = "uniqueMember";

 GroupDirectorySession() {
 super();
 }

 public void save(DirectoryDomainObjectIF anObject) throws DirectoryException {
 if (anObject == null) {
 throw new NullPointerException("GroupIF must not be null");
 }
 GroupIF tempGroup = (GroupIF) anObject;
 DirectoryService tempDirService = DirectoryService.getInstance();
 this.createGroup(tempDirService, tempGroup);
 this.saveMembers(tempDirService, tempGroup);
 }

 public void setParentContext(String aContext) {
 // not used
 }

 public void update(DirectoryDomainObjectIF anObject) throws DirectoryException {
 if (anObject == null) {
 throw new NullPointerException("GroupIF must not be null");
 }
 GroupIF tempGroup = (GroupIF) anObject;
 DirectoryService tempDirService = DirectoryService.getInstance();
 this.updateMembers(tempDirService, tempGroup);
 }

 protected void createGroup(DirectoryService aDirService, GroupIF aGroup)
 throws DirectoryException {
 String tempGroupContext = aDirService.getGroupContext(aGroup.getName());
 Attributes tempAttrs = new BasicAttributes();
 tempAttrs.put(aDirService.getGroupObjectClasses());
 tempAttrs.put(new BasicAttribute(COMMON_NAME, aGroup.getName()));
 tempAttrs.put(new BasicAttribute(GROUP_ID, ""+aGroup.getId()));
 aDirService.createSubcontext(tempGroupContext, tempAttrs);
 }

 protected void saveMembers(DirectoryService aDirService, GroupIF aGroup)
 throws DirectoryException {
 String tempGroupContext = aDirService.getGroupMembersContext(aGroup.getName());
 Attributes tempAttrs = new BasicAttributes();
 tempAttrs.put(aDirService.getGroupMembersObjectClasses());
 tempAttrs.put(COMMON_NAME, MEMBERS_TYPE);
 Attribute tempUniqueMemberAttr = new BasicAttribute(UNIQUE_MEMBER);
 tempAttrs.put(tempUniqueMemberAttr);
 Iterator tempIter = aGroup.getMembers().iterator();
 while (tempIter.hasNext()) {
 MemberIF tempMember = (MemberIF) tempIter.next();
 String tempUniqueId = (String) tempMember.getUniqueId();
 if (tempMember.isUser()) {
 tempUniqueMemberAttr.add(aDirService.getUserAccountContext(tempUniqueId));
 } else if (tempMember.isGroup()) {
 tempUniqueMemberAttr.add(aDirService.getGroupContext(tempUniqueId));
 }
 }

 aDirService.createSubcontext(tempGroupContext, tempAttrs);
 }

 protected void updateMembers(DirectoryService aDirService, GroupIF aGroup)
 throws DirectoryException {
 String tempGroupContext = aDirService.getGroupMembersContext(aGroup.getName());
 Attribute tempUniqueMemberAttr = new BasicAttribute(UNIQUE_MEMBER);
 Iterator tempIter = aGroup.getMembers().iterator();
 while (tempIter.hasNext()) {
 MemberIF tempMember = (MemberIF) tempIter.next();

Identity Grouping: 7
Date/Time: 11/10/2004 9:39 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 String tempUniqueId = (String) tempMember.getUniqueId();
 if (tempMember.isUser()) {
 tempUniqueMemberAttr.add(aDirService.getUserAccountContext(tempUniqueId));
 } else if (tempMember.isGroup()) {
 tempUniqueMemberAttr.add(aDirService.getGroupContext(tempUniqueId));
 }
 }
 ModificationItem tempModItem =
 new ModificationItem(DirContext.REPLACE_ATTRIBUTE, tempUniqueMemberAttr);

 aDirService.modifyAttributes(
 tempGroupContext, new ModificationItem[] { tempModItem });
 }
}

The save() method creates a new group under the entry named
ou=groups,dc=jubatus,dc=com. The group itself is given a distinguished name
made from the group’s common name appended to the general groups entry, such as:
cn=admin,ou=groups,dc=jubatus,dc=com. Within this group are created the
members distinguished-named entry:

cn=members,cn=admin,ou=groups,dc=jubatus,dc=com

All totaled, the following shows and distinguished names in hierarchical format using
the admin group as an example:

dc=jubatus,dc=com
 ou,groups,dc=jubatus,dc=com
 cn=admin,ou=groups,dc=jubatus,dc=com
 cn=members,cn=admin,ou=groups,dc=jubatus,dc=com

The cn=members entry contains a multi-value attribute named uniqueMember.
When saving this attribute for the first time I simply instantiate the attribute and add one
value for each uniquely referenced people (user) entry in the group. I then create the new
members sub-context:

 Attribute tempUniqueMemberAttr = new BasicAttribute(UNIQUE_MEMBER);
 tempAttrs.put(tempUniqueMemberAttr);
 // . . .
 while (tempIter.hasNext()) {
 MemberIF tempMember = (MemberIF) tempIter.next();
 String tempUniqueId = (String) tempMember.getUniqueId();
 if (tempMember.isUser()) {
 tempUniqueMemberAttr.add(aDirService.getUserAccountContext(tempUniqueId));
 } else if (tempMember.isGroup()) {
 tempUniqueMemberAttr.add(aDirService.getGroupContext(tempUniqueId));
 }
 }

 aDirService.createSubcontext(tempGroupContext, tempAttrs);

A slightly different approach is used to update the uniqueMember attribute when

one or more unique names are added to and/or removed from it (during group
maintenance, for example). After the attribute is built in the same way it was during its
creation, the following methods are used:

 ModificationItem tempModItem =
 new ModificationItem(DirContext.REPLACE_ATTRIBUTE, tempUniqueMemberAttr);

 aDirService.modifyAttributes(

Identity Grouping: 8
Date/Time: 11/10/2004 9:39 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 tempGroupContext, new ModificationItem[] { tempModItem });

I create a ModificationItem and set its type to REPLACE_ATTRIBUTE. This

indicates that the attribute already existing in the directory should be replaced part and
parcel with the attribute just created. Finally I use the DirectoryService method
modifyAttributes(). This method arranges for the method of the same name to be
invoked on the JNDI DirContext object, which actually effects the change to the new
uniqueMember attribute.

See the overarching Identity and Access Management (page #) pattern example for a
listing of the JNDI utility class, DirectoryService.

Consequences
The following competing forces may be considered when selecting an implementation
approach.

• Assigning Roles to Groups: Some identity and access management systems do

not assign security users and groups to roles. Some systems assign roles to users
and groups, where the users and groups act as a container of both permissions and
roles. Frankly this is a matter of perspective. If the notion of users and groups
existed long before role-based access control was introduced, then it may be
easier not to change the composition of users and groups by adding roles to them.
It would be easier to make roles contain the legacy objects. However, if your
design is starting fresh then it may be more advantageous to assign roles to users
and groups. It may be much more optimal to ask the in-context user object if it is
in a specific role by name, than to fetch the specific role by name and ask if the
in-context user is in the role. If possible favor the approach that is most natural to
the administrators and developers directly accessing the domain objects and API.
Assigning users and groups to roles has the overall least impact on the overall
structure of a domain model.

• Groups Within Groups: Some find it advantageous to accumulate members in
finer-grained group collections and then collect those groups into one outer group,
rather than to capture them all in one self-defining container. After all, it is easier
to add an all-encompassing group later than to redefine several smaller groups
into one new one. Note, however, that the detailed semantics of groups within
groups are not intuitively obvious. For example, what if mutually exclusive
permissions or roles cause a conflict when one inner group may have a permission
or play a role but the outer group cannot? Is this an error or does one role’s
existence overrule the denial of service defined by another one? These conflicts
do not occur when using single-level groups.

Frameworks and Tools
• OpenLDAP: I used OpenLDAP to test my examples. You may migrate toward a

commercial implementation, but you may also find this open source product to
suit your needs.

• Sun J2SE JDK Implementation of JNDI: I used the Sun implementation of JNDI
provided in the freely available JDK 1.4. This includes the

Identity Grouping: 9
Date/Time: 11/10/2004 9:39 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

com.sun.jndi.ldap.LdapCtxFactory JNDI factory and provider
classes.

• JXplorer: I find this open source tool from Computer Associates to be very useful
when examining the changes I make to LDAP directories. It is freely available for
download under the CA Open Source License.

