
Mastering
Enterprise
JavaBeans

Wiley Technology Publishing Timely. Practical. Reliable.

The bestselling classic is back—and covers the new EJB 2.1
specification!

Serving as the ultimate resource that
boasts the most up-to-date information
on EJB, this edition begins with the
fundamentals of building an EJB system
and gradually moves on to a discussion
of programming with EJB. You’ll learn
about advanced EJB concepts and best
practices that you won’t find anywhere
else, such as transactions, persistence,
clustering, integration, performance
monitoring, security, and choosing an
EJB server. Along the way, you’ll get
in-depth coverage of:

• EJB security mechanisms

• Best practices for EJB application
development, deployment, and
testing

• Tips for selecting appropriate Web
frameworks and EJB containers

• EJB integration with back-end
enterprise information systems
using J2EE Connector technology

• Performance optimizations for
various types of EJB

Ed Roman is an independent
consultant, a leading authority
on EJB, and the author of the
first two bestselling editions of
Mastering Enterprise JavaBeans

(Wiley).

Rima Patel Sriganesh is a member
of Technical Staff in the
Technology Outreach group at
Sun Microsystems, Inc., and is
a coauthor of Developing Java

Web Services (Wiley).

Gerald Brose is a Security
Software Architect at Xtradyne
Technologies. He is an expert in
EJB and CORBA and the author
of Java Programming with

CORBA, Third Edition (Wiley).

The companion Web site includes
sample code, updates to the book,
and links to useful software used
in the book.

Building on the overwhelming success
of his previous two editions, renowned
author Ed Roman has returned—along
with Enterprise JavaBeans (EJB) gurus
Gerald Brose and Rima Patel Sriganesh—
to offer you the inside scoop on the
EJB 2.1 specification and related
enhancements in J2EE™ 1.4. Continuing
the tradition of providing you with an
unparalleled EJB tutorial, this expert
team of authors has revised more than
30 percent of the book and added new
chapters that explore the dramatic
changes in the way EJB is now used for
building applications.

Visit our companion Web site at www.wiley.com/compbooks/roman
Also visit www.TheServerSide.com

M
astering Enterprise JavaBeans

™

Roman
Sriganesh

Brose

,!7IA7G4-fhgicj!:p;o;p;K;K
ISBN: 0-7645-7682-8

Programming Languages/Java $45.00 USA/$64.99 CAN/£29.99 UK

*85555-IJDJEi

Third Edition

Third Edition

™

Ed Roman
Rima Patel Sriganesh
Gerald Brose

576828 Cover 10/26/04 9:37 AM Page 1

Ed Roman
Rima Patel Sriganesh

Gerald Brose

Mastering Enterprise
JavaBeans™

Third Edition

01_576828 ffirs.qxd 11/3/04 11:36 AM Page i

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

Mastering Enterprise JavaBeans™, Third Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Ed Roman, Gerald Brose, and Rima Patel Sriganesh
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 0-7645-7682-8
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

3B/RX/RR/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis,
IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations
or warranties with respect to the accuracy or completeness of the contents of this work and specif-
ically disclaim all warranties, including without limitation warranties of fitness for a particular
purpose. No warranty may be created or extended by sales or promotional materials. The advice
and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other profes-
sional services. If professional assistance is required, the services of a competent professional per-
son should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a
potential source of further information does not mean that the author or the publisher endorses the
information the organization or Website may provide or recommendations it may make. Further,
readers should be aware that Internet Websites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

IN NO EVENT SHALL THE AUTHOR OR PUBLISHER BE LIABLE TO ANY PERSON FOR ANY
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT
LIMITATION TO, LOSS OF PROFITS, LOSS OF DATA, BUSINESS INTERRUPTION OR ANY AND
ALL OTHER SIMILAR DAMAGES OR LOSS, EVEN IF AUTHOR OR PUBLISHER OR THEIR SUP-
PLIERS OR THEIR AGENTS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

For general information on our other products and services or to obtain technical support, please
contact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Control Number: 2004114268

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Enterprise JavaBeans is a trademark of Sun
Microsystems, Inc. in the U.S. or other countries. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned
in this book.

01_576828 ffirs.qxd 11/3/04 11:36 AM Page ii

To my wonderful wife, Christine, and to our boys, Johannes and Julius.

Rima wishes to dedicate this book to her dearest and loving husband
Sriganesh, and her most wonderful parents.

01_576828 ffirs.qxd 11/3/04 11:36 AM Page iii

Credits

iv

Acquisitions Editor
Robert M. Elliott

Development Editor
Sydney Jones

Technical Editor
Floyd Marinescu

Copy Editor
Michael Koch

Editorial Manager
Kathryn Malm Bourgoine

Vice President
& Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists
Sean Decker
Kelly Emkow
Jennifer Heleine

Quality Control Technician
Brian H. Walls

Proofreading and Indexing
TECHBOOKS Production Services

01_576828 ffirs.qxd 11/3/04 11:36 AM Page iv

cmalone
Rectangle

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

Acknowledgments xvi

Introduction xvii

Part One Overview 1

Chapter 1 Overview 3
The Motivation for Enterprise JavaBeans 4
Component Architectures 7

Service-Oriented Architectures 8
Divide and Conquer to the Extreme with Reusable Services 9
Introducing Enterprise JavaBeans 11

Why Java? 12
EJB as a Business Tier Component 13

The EJB Ecosystem 15
The Bean Provider 16
The Application Assembler 16
The EJB Deployer 17
The System Administrator 17
The Container and Server Provider 18
The Tool Vendors 18
Summary of Roles 19

The Java 2 Platform, Enterprise Edition (J2EE) 21
The J2EE Technologies 22

Summary 26

Chapter 2 EJB Fundamentals 27
Enterprise Beans 27

Types of Beans 28
Distributed Objects: The Foundation for EJB 30
Distributed Objects and Middleware 32

Contents

v

02_576828 ftoc.qxd 11/3/04 11:36 AM Page v

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

Explicit Middleware 33
Implicit Middleware 34

What Constitutes an Enterprise Bean? 36
The Enterprise Bean Class 36
The EJB Object 37
The Home Object 42
The Local Interfaces 44
Deployment Descriptors 48
Vendor-Specific Files 49
Ejb-jar File 49
Summary of Terms 50

Summary 52

Chapter 3 Writing Your First Bean 53
How to Develop an EJB Component 54
The Remote Interface 55
The Local Interface 56
The Home Interface 57
The Local Home Interface 59
The Bean Class 61
The Deployment Descriptor 64
The Vendor-Specific Files 65
The Ejb-jar File 65
Deploying the Bean 66
The Optional EJB Client JAR File 67
Understanding How to Call Beans 68

Looking up a Home Object 68
Running the System 72

The Server-Side Output 73
The Client-Side Output 73

Implementing Component Interfaces 73
A Solution 74

Summary 75

Part Two The Triad of Beans 77

Chapter 4 Introduction to Session Beans 79
Session Bean Lifetime 79
Session Bean Subtypes 80

Stateful Session Beans 80
Stateless Session Beans 81

Special Characteristics of Stateful Session Beans 83
Achieving the Effect of Pooling with Stateful Beans 83
The Rules Governing Conversational State 84
Activation and Passivation Callbacks 85
Method Implementation Summary 88
A Simple Stateful Session Bean 88
Life Cycle Diagrams for Session Beans 98

Summary 102

vi Contents

02_576828 ftoc.qxd 11/3/04 11:36 AM Page vi

Chapter 5 Writing Session Bean Web Services 103
Web Services Concepts 103

Web Services Standards 106
XML Artifacts and Platform Independence 109

Implementing a Web Service 110
The JAX-RPC Service Endpoint Interface 111
WSDL and the XML/Java Mapping 113
Packaging and Deploying a Web Service Session Bean 113

Implementing a Web Service Client 114
Summary 117

Chapter 6 Introduction to Entity Beans 119
Persistence Concepts 119

Object-Relational Mapping 120
What Is an Entity Bean? 122

About the Files That Make Up an Entity Bean 124
Features of Entity Beans 125

Entity Beans Survive Failures 125
Entity Bean Instances Are a View into a Database 126
Several Entity Bean Instances May Represent the Same

Underlying Data 127
Entity Bean Instances Can Be Pooled 128
There Are Two Ways to Persist Entity Beans 131
Creation and Removal of Entity Beans 132
Entity Beans Can Be Found 136
You Can Modify Entity Bean Data without Using EJB 136

Entity Contexts 137
getEJBLocalObject() / getEJBObject() 138
getPrimaryKey() 138

Summary 139

Chapter 7 Writing Bean-Managed Persistent Entity Beans 141
Entity Bean Coding Basics 141

Finding Existing Entity Beans: Finder Methods 143
Bean-Managed Persistence Example: A Bank Account 150

Account.java 151
AccountLocal.java 152
AccountHome.java 153
AccountLocalHome.java 155
AccountPK.java 156
AccountBean.java 158
AccountException.java 170
Client.java 171
The Deployment Descriptor 173
The Container-Specific Deployment Descriptor 175
Setting up the Database 175

Running the Client Program 175
Server-Side Output 175
Client-Side Output 177

Contents vii

02_576828 ftoc.qxd 11/3/04 11:36 AM Page vii

Putting It All Together: Walking through a
BMP Entity Bean’s Life Cycle 177

Summary 180

Chapter 8 Writing Container-Managed Persistent Entity Beans 181
Features of CMP Entity Beans 181

CMP Entity Beans Are Subclassed 181
CMP Entity Beans Have No Declared Persistent Fields 182
CMP Get/Set Methods Are Defined in the Subclass 184
CMP Entity Beans Have an Abstract Persistence Schema 186
CMP Entity Beans Have a Query Language 187
CMP Entity Beans Can Have ejbSelect() Methods 189

Implementation Guidelines for Container-Managed Persistence 191
Container-Managed Persistence Example: A Product Line 196

Product.java 197
ProductLocal.java 198
ProductHome.java 198
ProductLocalHome.java 200
ProductPK.java 201
ProductBean.java 203
The Deployment Descriptor 207
The Container-Specific Deployment Descriptor 210
Client.java 212

Running the Client Program 214
The Life Cycle of a CMP Entity Bean 214
Summary 216

Chapter 9 Introduction to Message-Driven Beans 217
Motivation to Use Message-Driven Beans 217
The Java Message Service 219

Messaging Domains 220
The JMS API 222

Integrating JMS with EJB 226
What Is a Message-Driven Bean? 227

Developing Message-Driven Beans 231
The Semantics 231
A Simple Example 234

Advanced Concepts 241
JMS Message-Driven Bean Gotchas 244

Message Ordering 245
Missed ejbRemove() Calls 245
Poison Messages 246
How to Return Results Back to Message Producers 249
The Future: Asynchronous Method Invocations 254

Summary 254

Chapter 10 Adding Functionality to Your Beans 255
Calling Beans from Other Beans 255

Default JNDI Lookups 256
Understanding EJB References 257

viii Contents

02_576828 ftoc.qxd 11/3/04 11:36 AM Page viii

Resource Factories 259
Environment Properties 262
Understanding Handles 263

Home Handles 264
Summary 265

Part Three Advanced Enterprise JavaBeans Concepts 267

Chapter 11 EJB Best Practices 269
When to Use EJB 270
How to Choose a Web Application Framework to Work with EJB 272
Applying Model Driven Development in EJB Projects 275
Applying Extreme Programming in EJB Projects 277
Testing EJB 279

EJB Unit Testing 279
Use Frameworks for EJB Unit Testing 280

Implementing Client-Side Callback Functionality in EJB 282
JMS 282
Remote Method Invocation 283
Web Service 283

Choosing Between Servlets and Stateless Session Beans
as Service Endpoints 284

Considering the Use of Aspect-Oriented Programming
Techniques in EJB Projects 284

Aspect-Oriented Programming 285
When to Use AOP in EJB Applications 285

Reflection, Dynamic Proxy, and EJB 287
Deploying EJB Applications to Various Application Servers 288
Debugging EJB 290
Inheritance and Code Reuse in EJB 291
Writing Singletons in EJB 293
When to Use XML with EJB 293
When to Use Messaging Versus RMI-IIOP 294
Summary 297

Chapter 12 Transactions 299
Motivation for Transactions 300

Atomic Operations 300
Network or Machine Failure 301
Multiple Users Sharing Data 302

Benefits of Transactions 303
The ACID Properties 304

Transactional Models 306
Flat Transactions 306
Nested Transactions 308
Other Transactional Models 310

Enlisting in Transactions with Enterprise JavaBeans 310
Underlying Transaction System Abstraction 310
Declarative, Programmatic, and Client-Initiated Transactions 310
Choosing a Transaction Style 314

Contents ix

02_576828 ftoc.qxd 11/3/04 11:36 AM Page ix

Container-Managed Transactions 317
EJB Transaction Attribute Values 318

Programmatic Transactions in EJB 324
CORBA Object Transaction Service 324
The Java Transaction Service 325
The Java Transaction API 325
Declarative versus Programmatic Transactions Example 328

Transactions from Client Code 330
Transactional Isolation 331

The Need for Concurrency Control 332
The Dirty Read Problem 334
The Unrepeatable Read Problem 336
The Phantom Problem 336
Transaction Isolation Summary 337
Isolation and EJB 338
Pessimistic and Optimistic Concurrency Control 339

Distributed Transactions 340
Durability and the Two-Phase Commit Protocol 340
The Transactional Communications Protocol

and Transaction Contexts 342
Designing Transactional Conversations in EJB 343
J2EE Transaction Service and Extended Transactions 346
Summary 348

Chapter 13 Security 349
Introduction 350

Violations, Vulnerabilities, and Risk 351
Controls 351

Web Application Security 353
Authentication in Web Applications 354
Authorization 355
Confidentiality and Integrity 356

Understanding EJB Security 357
Authentication in EJB 357
Authorization in EJB 368
Security Propagation 377

Secure Interoperability 378
IIOP/SSL 379
CSIv2 379

Web Services Security 381
End-to-End Security 382
XML Digital Signature and XML Encryption 383
SAML 386
WS-Security 387

Summary 389

Chapter 14 EJB Timers 391
Scheduling 391
EJB and Scheduling 392

x Contents

02_576828 ftoc.qxd 11/3/04 11:36 AM Page x

The EJB Timer Service 394
Timer Service API 395
Interaction between the EJB and the Timer Service 398

Timer Example: CleanDayLimitOrdersEJB 399
The CleanDayLimitOrders EJB Remote Interface 400
The CleanDayLimitOrders EJB Bean Class 400
The CleanDayLimitOrders EJB Home Interface 403
The CleanDayLimitOrders EJB Deployment Descriptor 403
The CleanDayLimitOrders EJB Client 404
Running the Client 405

Strengths and Limitations of EJB Timer Service 406
Summary 408

Chapter 15 BMP and CMP Relationships 409
The CMP and BMP Difference 410
Cardinality 411

1:1 Relationships 412
1:N Relationships 416
M:N Relationships 421

Directionality 428
Implementing Directionality with BMP 429
Implementing Directionality with CMP 430
Directionality May Not Map to Database Schemas 431
Bidirectional or Unidirectional? 433

Lazy Loading 433
Aggregation Versus Composition and Cascading Deletes 434
Relationships and EJB-QL 436
Recursive Relationships 437
Circular Relationships 438
Referential Integrity 439

Relationships, Referential Integrity, and Client Code 441
Summary 444

Chapter 16 Persistence Best Practices 445
Comparing Entity Beans with Other Persistence Approaches 446

Control 446
Data retrieval 446
Procedural versus Object-Oriented 447
Caching 448
Enforcement of Schema Independence 448
Migration 449
Rapid Application Development 449

Choosing Between CMP and BMP 450
Code Reduction and Rapid Application Development 450
Performance 450
Bugs 451
Control 451
Application Server and Database Independence 451
Relationships 452
Learning Curve and Cost 452

Contents xi

02_576828 ftoc.qxd 11/3/04 11:36 AM Page xi

Choosing the Right Granularity for Entity Beans 453
Persistence Tips and Tricks 454

Beware the Object-Relational Impedance Mismatch 454
Hard-Coded versus Soft-Coded SQL 454
When to Use Stored Procedures 455
Normalizing and Denormalizing 457
Use Your EJB Object Model to Drive Your Data Model 459
Follow a Good Data Design Process 459
Use Surrogate Keys 460
Understand the Impacts of Database Updates 461
Versioning EJB Components 461
Living with a Legacy Database Design 463
Handling Large Result Sets 474

Summary 475

Chapter 17 EJB Integration 477
Why Does Integration Matter? 477

Integration Styles 478
EJB and Integration 479
J2EE Connector Architecture 480

Why J2EE Connectors? 480
Resource Adapter Interaction with J2EE Components 483
Resource Adapter Interaction with Application Server 484

The J2EE Connector API 486
The javax.resource Package 486
The javax.resource.cci Package 487
The javax.resource.spi Package 490
The javax.resource.spi.endpoint Package 492
The javax.resource.spi.security Package 493
The javax.resource.spi.work Package 493

System Contracts 494
Lifecycle Management 494
Connection Management 495
Security Management 498
Transaction Management 501
Work Management 504
Message In-flow 506

Connector Example: OutboundLoanRA 508
Example Architecture 508
JavaLoanApp.java 509
LoanApp.dll 510
OutboundLoanRA 511
LoanRatesEJB 535
LoanRatesClient 538
Running the Client 539
Extending OutboundLoanRA 541

xii Contents

02_576828 ftoc.qxd 11/3/04 11:36 AM Page xii

Integration Best Practice: When to Use Which Technology 541
When to Use JMS and JMS-Based MDB 542
When to Use J2EE Connectors 542
When to Use Java Web Services 543

Summary 543

Chapter 18 EJB Performance Optimizations 545
It Pays to Be Proactive! 545
The Stateful Versus Stateless Debate from a

Performance Point of View 547
How to Guarantee a Response Time with Capacity Planning 549
Use Session Façade for Better Performance 550
Choosing Between Local Interfaces and Remote Interfaces 552
Partitioning Your Resources 553
Tuning Stateless Session Beans 554
Tuning Stateful Session Beans 555
Tuning Entity Beans 556
Tuning Message-Driven Beans 563
Tuning Java Virtual Machine 563
Miscellaneous Tuning Tips 565
Choosing the Right EJB Server 567
Summary 568

Chapter 19 Clustering 569
Overview of Large-Scale Systems 569

What Is a Large-Scale System? 570
Basic Terminology 572
Partitioning Your Clusters 573

Instrumenting Clustered EJBs 578
How EJBs Can Be Clustered 578
The Concept of Idempotence 579
Stateless Session Bean Clustering 581
Stateful Session Bean Clustering 583
Entity Bean Clustering 584
Message-Driven Bean Clustering 588

Other EJB Clustering Issues 589
First Contact 589
Initial Access Logic 590

Summary 591

Chapter 20 Starting Your EJB Project on the Right Foot 593
Get the Business Requirements Down 593
Decide Whether J2EE Is the Right Choice 594
Staff Your Project 598
Design Your Complete Object Model 600
Implement a Single Vertical Slice 601
Choose an Application Server 603
Divide Your Team 604

Contents xiii

02_576828 ftoc.qxd 11/3/04 11:36 AM Page xiii

Invest in Tools 606
Invest in a Standard Build Process 607
Next Steps 607
Summary 608

Chapter 21 Choosing an EJB Server 609
J2EE Standard Compliance 610
Pluggable JRE 610
Conversion Tools 610
Complex Mappings 611
Third-Party JDBC Driver Support 611
Lazy Loading 611
Deferred Database Writes 611
Pluggable Persistence Providers 611
In-Memory Data Cache 612
Integrated Tier Support 612
Scalability 612
High Availability 613
Security 613
IDE Integration 614
UML Editor Integration 615
Intelligent Load Balancing 615
Stateless Transparent Fail-over 615
Clustering 616
Java Management Extension (JMX) 616
Administrative Support 616
Hot Deployment 617
Instance Pooling 617
Automatic EJB Generation 617
Clean Shutdown 617
Real-Time Deployment 618
Distributed Transactions 618
Superior Messaging Architecture 618
Provided EJB Components 619
Web Services 619
Workflow 619
Open Source 620
Specialized Services 620
Nontechnical Criteria 621
Summary 621

Chapter 22 EJB-J2EE Integration: Building a Complete Application 623
The Business Problem 623
A Preview of the Final Web Site 624
Scoping the Technical Requirements 630

The Business Logic Tier 631
The Presentation Tier 637

Example Code 643
Summary 651

xiv Contents

02_576828 ftoc.qxd 11/3/04 11:36 AM Page xiv

Appendix A RMI-IIOP and JNDI Tutorial 653

Appendix B CORBA Interoperability 683

Appendix C Deployment Descriptor Reference 705

Appendix D The EJB Query Language (EJB-QL) 739

Appendix E EJB Quick Reference Guide 757

Index 801

Contents xv

02_576828 ftoc.qxd 11/3/04 11:36 AM Page xv

This book has been a project spanning several years. Many have commented
that the first edition was one of the best technical books they ever read. What’s
made this book a reality are the many people who aided in its development.

As a special thanks, we’d like to acknowledge the great folks at John Wiley
& Sons. They have been absolutely outstanding throughout this book’s evolu-
tion. In particular, we thank Bob Elliott, Sydney Jones, and Kathryn Malm for
their incredible efforts. We also thank Floyd Marinescu of The Middleware
Company for his insightful technical reviews, and Jörg Bartholdt of Xtradyne
Technologies for technical discussions. Finally, we thank Theserverside.com
community for providing us with their very helpful reviews.

Acknowledgments

xvi

03_576828 flast.qxd 11/3/04 11:37 AM Page xvi

cmalone
Rectangle

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

This book is a tutorial on Enterprise JavaBeans (EJB). It’s about EJB concepts,
methodology, and development. This book also contains a number of
advanced EJB topics, giving you a practical and real-world understanding of
the subject. By reading this book, you will acquire a deep understanding of EJB.

Make no mistake about it—what you are about to read is not easy. EJB incor-
porates concepts from a wealth of areas, including distributed computing, data-
bases, security, component-driven software, and more. Combining them is a
magnificent stride forward for the Java community, but with that comes a myr-
iad of concepts to learn and understand. This book will teach you the concepts
and techniques for authoring reusable components in Java, and it will do so
from the ground up. You need only to understand Java to understand this book.

While you’re reading this book, you may want to download the EJB specifi-
cation, available at http://java.sun.com/products/ejb/docs.html.

Goals for This Edition

The first edition of this book came out in 1999, and the second edition in 2002.
We had to make some tough calls when writing the second and third editions,
and we are confident you’ll like them. Here were our goals:

■■ To update the book for EJB 2.1. EJB 2.1 has many new useful features
that we detail throughout the book.

■■ To be broad and also deep. We do not regurgitate the complete EJB
specification in this book, nor do we cover every last detail of EJB.
Rather, we cover the most important parts of EJB, leaving room to dis-
cuss advanced issues. For a complete reference while you are coding,

Introduction

xvii

03_576828 flast.qxd 11/3/04 11:37 AM Page xvii

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

search through the EJB specification using Adobe Acrobat. Readers who
are looking for a well-written book that is interactive and fun to read
and covers the basics through advanced subjects have come to the right
place.

■■ To be concise. Your time as a reader is extremely valuable, and you’re
likely waiting to read a stack of books besides this one. Given that most
people don’t have time to read 1,000-plus–page books, we actually
wanted to reduce the size of this book as much as possible. So we’ve
tightened things up and eliminated redundant examples. This way, you
can get to actually program with EJB, rather than read a book for
months on end. The irony of this story is that it was harder for us to
write a shorter book than a long book!

■■ To be a book for developers. This book is not intended for high-level
businesspeople. This is a technical book for a technical audience.

■■ To write a book the right way. This book’s primary author, Ed Roman,
has taken his skills in training and knowledge transfer and applied
them to this book. Thus, we’ve infused this book with the following
attributes:

■■ A conversational style. When you read this book, sometimes you’ll
feel like you’re almost having a discussion with us. We think this is
far superior to spending eons trying to re-read a formal writing style
over and over again.

■■ Use of diagrams and bulleted lists. The adage “a picture is worth a
thousand words” applies here. These tactics are great for breaking
up blocks of text. They keep things varied and make the book a
much faster read.

■■ A consistent voice. Even though several co-authors wrote this book,
you’ll hear one voice. This was done to combine best-of-breed
knowledge from several expert co-authors while maintaining a uni-
form look and feel throughout the book.

■■ To be an introductory book, but also to get quickly into advanced
topics. We figured that the average developer has had enough of books
that merely skim the surface. We wanted to write a book that pushed
beyond the basics. Our approach when writing this book was always to
err on the side of being advanced. To achieve this, we did an immense
amount of research. We participated in the mailing lists, performed
many real-world projects, attended conferences and seminars, and net-
worked with the top experts throughout the world.

■■ To be vendor-neutral. All vendor-specific deployment steps are exter-
nalized to the book’s accompanying source code. This makes this book
useful for any EJB server.

xviii Introduction

03_576828 flast.qxd 11/3/04 11:37 AM Page xviii

■■ To add useful EJB information garnered from our instructor-led train-
ing classes. Having taught EJB/J2EE for years, we have learned signifi-
cantly from our students. We have interlaced this book with many of
our own students’ questions and answers in relevant sections.

■■ To take all the source code and make it available online. Because we’ve
made the code available on the Web, you know it’s the latest version.
This will ensure that the code you receive works right the first time.

Organization of the Book

The text is organized into the following five parts:

■■ Part One is a whirlwind introduction to EJB programming. Part One
serves as a great overview for people in a hurry. While Part One is
essential information to EJB newcomers, veterans will also find nuggets
of useful knowledge. The following chapters are covered:

■■ Chapter 1 is a tour of enterprise computing. We’ll talk about compo-
nents, service-oriented architectures, distributed computing frame-
works, and containers. In this regard, we’ll introduce EJB and J2EE.

■■ Chapter 2 moves on to the fundamentals of building an EJB system,
including the tricky concept of request interception. We’ll also look
at the various source code files that make up an enterprise bean.

■■ Chapter 3 shows you how to put together a simple enterprise bean.
We’ll also learn how JNDI is used in EJB and see how to call that
bean from a client.

■■ Part Two devotes exclusive attention to programming with EJB. We’ll
see how to use the triad of beans: entity beans, session beans, and mes-
sage-driven beans. We’ll cover the basics of writing each type of bean,
including an example as well as detailed lifecycle diagrams.

■■ Chapter 4 introduces session beans. We’ll look at the difference
between stateful and stateless session beans, how to code a session
bean, and what’s going on behind the scenes with session beans.

■■ Chapter 5 shows how Web services can be implemented using EJB.
In particular, we show how a stateless session bean can be made
available as a Web service.

■■ Chapter 6 is a conceptual introduction to entity beans. We’ll look at
persistence concepts, what makes entity beans unique, and the files
involved when building entity beans.

Introduction xix

03_576828 flast.qxd 11/3/04 11:37 AM Page xix

■■ Chapter 7 covers bean-managed persistent (BMP) entity beans. We’ll
see how to program a BMP entity bean, and also look at what’s hap-
pening behind the scenes with BMP.

■■ Chapter 8 covers container-managed persistent (CMP) entity beans.
We’ll focus on the exciting features of EJB 2.x CMP, learn how to pro-
gram a CMP entity bean, and look at what’s happening behind the
scenes with CMP.

■■ Chapter 9 covers message-driven beans. We’ll first review the Java
Message Service (JMS), which is the messaging framework used
mostly with message-driven beans. We’ll then dive in and under-
stand how to program with message-driven beans.

■■ Chapter 10 discusses the EJB environment, along with services pro-
vided by the container. This includes environment properties,
resource factories, references between beans, and handles.

■■ Part Three, the most exciting part of the book, covers advanced EJB
concepts. The following chapters are included:

■■ Chapter 11 explains guidelines for using various Web application
frameworks, model-driven development tools, and so on, in EJB
applications. It also presents proven best practices for EJB design,
development, and testing.

■■ Chapter 12 tackles transactions. Transactions are a crucial topic for
anyone building an EJB application that involves state. We’ll discuss
transactions at a conceptual level followed by a discussion on how
to apply them to EJB. We’ll also learn about the Java Transaction API
(JTA) as well as J2EE Extended Transaction concepts.

■■ Chapter 13 provides an in-depth treatment of EJB security and cov-
ers Java Authentication and Authorization Service (JAAS), secure inter-
operability, and Web Services security.

■■ Chapter 14 introduces the new EJB timer service that lets you sched-
ule tasks for automatic execution.

■■ Chapter 15 covers relationships between entity beans. This is a criti-
cal concept for anyone performing complex persistence. We’ll
understand the concepts of cardinality, directionality, referential
integrity, and cascading deletes. We’ll also see how to code relation-
ships for both CMP and BMP entity beans.

■■ Chapter 16 covers persistence best practices. You’ll learn exciting
concepts such as how to choose between entity beans and other per-
sistence techniques, how to choose between BMP and CMP, and
you’ll survey a collection of persistence best practices that we’ve
assembled from our knowledge and experience.

xx Introduction

03_576828 flast.qxd 11/3/04 11:37 AM Page xx

■■ Chapter 17 covers integration to and from EJB platform in-depth. It
provides introduction to the various styles of integration, followed
by a discussion of various techniques for integrating EJB with the
outside world. It explains the J2EE Connector Architecture, a pre-
dominant framework for integrating EJB with back-end enterprise
applications, and discusses a connector example.

■■ Chapter 18 covers EJB tips and techniques for designing and
deploying EJB for better performance. You’ll learn about design
strategies that will help you make decisions such as when to choose
between stateful versus stateless session beans, when to choose
between local and remote interfaces, and so on. The chapter also
focuses a great deal on providing performance tuning tips for differ-
ent types of beans.

■■ Chapter 19 discusses clustering in large-scale EJB systems. You’ll
learn about how clustering works behind the scenes and learn a few
strategies for how containers might achieve clustering. This is a criti-
cal topic for anyone building a system that involves several
machines working together.

■■ Chapter 20 covers EJB project management. We’ll talk about how to
get your project started on the right foot. This includes guidelines on
choosing between J2EE and .NET frameworks for your projects,
building a first pass of your system, dividing your development
team, and many such concepts.

■■ Chapter 21 provides guidelines for choosing the right EJB server for
your needs. We’ll describe our methodology for how an organiza-
tion can compare and contrast different vendors’ offerings. We’ll
also list our set of criteria for what we would want in an EJB server.

■■ Chapter 22 shows how to build a real-world J2EE system using EJB
components. We’ll see how the EJB components should be used
together in an enterprise, as well as how to connect them with clients
using Java servlets and JavaServer Pages (JSP) technology. We’ll also
demonstrate how to design an EJB object model using UML.

■■ The Appendixes are a collection of ancillary EJB topics. Some develop-
ers may want to read the appendices, while some may not need to do so.

■■ Appendix A teaches you Java Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP) and the Java Naming and
Directory Interface (JNDI). These technologies are prerequisites for
using EJB. If you’re just starting down the EJB road, you must read
this appendix first.

■■ Appendix B discusses how to integrate EJB and CORBA systems.
We’ll learn about how EJB and CORBA are interoperable through

Introduction xxi

03_576828 flast.qxd 11/3/04 11:37 AM Page xxi

RMI-IIOP and see sample code for calling an EJB component from a
CORBA client.

■■ Appendix C is a deployment descriptor reference guide. This will be
useful for you later, when you’re working with deployment descrip-
tors and need a guide.

■■ Appendix D covers the EJB query language (EJB-QL) in detail.

■■ Appendix E is an API and diagram reference guide. This is useful
when you need to look up the purpose of a method or class in EJB.

Throughout the book, this icon will signal a tip, note, or other helpful advice
on EJB programming.

In a similar paradigm to our training courses, the content of this book is
very interactive. We have taken our knowledge of adult learning and
scattered boxes like this throughout the book. Each box asks you a question
to get you thinking. The answers to the questions are posted on the book’s
accompanying Web site. What do you think are the benefits of this
paradigm?

Illustrations in the Text

Almost all of the illustrations in this book are written in the Unified Modeling
Language (UML). UML is the de facto standard methodology for illustrating
software engineering concepts in an unambiguous way. If you don’t know
UML, pick up a copy of The Unified Modeling Language User Guide (Addison-
Wesley, ISBN 0201571684), which illustrates how to effectively use UML in
your everyday software. UML is a highly important achievement in object-ori-
ented methodology. It’s a common mechanism for engineers to communicate
and design with, and it forces you to abstract your object model prior to imple-
mentation. We cannot stress its use enough.

The Accompanying Web Site

This book would not be complete without a way to keep you in touch after it
was published. A Web site is available for resources related to this book. There
you’ll find:

■■ All of the source code you see in this book. The code comes complete
with Ant scripts, ready to build and run. It should be deployed on any
application server that is J2EE 1.4–compliant.

■■ Updates to the source code examples.

xxii Introduction

03_576828 flast.qxd 11/3/04 11:37 AM Page xxii

■■ Error corrections from the text.

■■ A PDF copy of this book

The Web site is at www.wiley.com/compbooks/roman.

Feedback

When you begin your EJB programming, we’re sure you’ll have many experi-
ences to share with other readers. Feel free to e-mail examples, case studies,
horror stories, or tips that you’ve found helpful in your experiences, and we’ll
post them on the Web site.

Send bug reports to books@middleware-company.com.

From Here

Now that we’ve gotten the logistics out of the way, let’s begin our exploration
of Enterprise JavaBeans.

About the Authors

Ed Roman is one of the world’s leading authorities on high-end middleware
technologies. He has been heavily involved with Sun Microsystems’ enterprise
Java solutions from their inception and has designed, built, and deployed a
variety of enterprise applications, including architecting and developing com-
plete application server products. He devotes a significant amount of time to
influencing and refining Sun’s enterprise specifications, contributes regularly
to middleware interest mailing lists, and regularly speaks at middleware-
related conferences.

Ed is the founder of The Middleware Company (which can be found on the
Web at www.middleware-company.com). The Middleware Company offers the
world’s leading knowledge network for middleware professionals. The Mid-
dleware Company enables developers, technology vendors, and enterprises to
implement, innovate, and communicate emerging technology offerings. The
Middleware Company solutions include TheServerSide Communities, Mid-
dlewareREACH, and MiddlewarePRO. TheServerSide Communities inform
over half a million professionals monthly using an open forum to discuss and
solve the most challenging middleware issues. Clients of The Middleware
Company include the world’s top software organizations including BEA Sys-
tems, Compuware, HP, IBM, Microsoft, Oracle, Sun Microsystems, and VERI-
TAS Software. Ed also is the founder of TheServerSide.com, which is the de
facto J2EE community Web site. Every day, thousands of developers get

Introduction xxiii

03_576828 flast.qxd 11/3/04 11:37 AM Page xxiii

together on TheServerSide.com to share EJB design patterns, hear about the
latest EJB news, ask and answer EJB development questions, and read articles.
After you’ve read this book, visit TheServerSide.com to catch up on the latest
EJB information. TheServerSide.com is a completely free service and is
intended to help the community.

Rima Patel Sriganesh is a Member of Technical Staff presently working in
the Technology Outreach group at Sun Microsystems, Inc. She specializes in
Java, XML, and Integration platforms. Her areas of technology passion include
Distributed Computing Models, Security and Trust Computing, Semantic
web, Grid Computing, and Quantum Physics. She speaks regularly at pre-
miere industry conferences such as JavaOne, Web Services Edge, SIGS 101,
Sun Technology Days, and others. She also represents Sun at various security,
choreography, and financial services technology standards.

Rima is a co-author of Developing Java Web Services (Wiley, 2002). She fre-
quently publishes her take on technology and industry in the form of papers
and blogs.

Rima graduated in Mathematics from M. S. University, Gujarat, India. She
currently lives with her husband in the Greater Boston area.

To find out more about her work, use the Google queries “Rima Patel” Sun
Microsystems or “Rima Patel Sriganesh.”

Gerald Brose works as Security Software Architect at Xtradyne Technolo-
gies. Gerald is an expert in middleware security, including CORBA, J2EE, and
Web Services. He is a regular speaker at international conventions and the
author of several publications on middleware security and related issues. Ger-
ald is a co-author of Java Programming with CORBA (Wiley, 2001).

As a member of the open source community, Gerald maintains JacORB, the
most widely used Open Source ORB for Java, which is also part of the JBoss
J2EE application server. Gerald holds a Ph.D. in computer science from Freie
University, Berlin. He lives with his wife and two sons in Berlin, Germany.

xxiv Introduction

03_576828 flast.qxd 11/3/04 11:37 AM Page xxiv

PA R T

Overview

In Part One, we introduce the server-side development platform, the Java 2
Platform, Enterprise Edition (J2EE), of which the Enterprise JavaBeans (EJB)
component architecture is a vital piece. J2EE is a conglomeration of con-
cepts, programming standards, and innovations—all written in the Java
programming language. With J2EE, you can rapidly construct distributed,
scalable, reliable, and portable secure server-side deployments.

■■ Chapter 1 begins by exploring the need for server-side component
architecture such as EJB. You’ll see the rich needs of server-side com-
puting, such as scalability, high availability, resource management,
and security. We’ll discuss how EJB architecture relates to the Service-
oriented Architecture (SOA) paradigm. We’ll also take a look at the
J2EE server-side development platform.

■■ Chapter 2 moves on to the fundamentals of Enterprise JavaBeans.
We’ll look at the concept of request interception, which is crucial for
understanding how EJB works. We’ll also look at the different files
that go into a bean and how they work together.

■■ Chapter 3 gets down and dirty with EJB programming. Here, we’ll
write our first simple bean. We’ll explain how to code each of the files
that compose the bean, and we’ll also look at how to call that bean
from clients.

One

04_576828 pt01.qxd 11/3/04 11:37 AM Page 1

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

04_576828 pt01.qxd 11/3/04 11:37 AM Page 2

3

Enterprise JavaBeans (EJB) is a server-side component architecture that sim-
plifies the process of building enterprise-class distributed component applica-
tions in Java. By using EJB, you can write scalable, reliable, and secure
applications without writing your own complex distributed component
framework. EJB is about rapid application development for the server side;
you can quickly and easily construct server-side components in Java by lever-
aging a prewritten distributed infrastructure provided by the industry. EJB is
designed to support application portability and reusability across any ven-
dor’s enterprise middleware services.

If you are new to enterprise computing, these concepts will be clarified
shortly. EJB is a complicated subject and thus deserves a thorough explanation.
In this chapter, we’ll introduce EJB by answering the following questions:

■■ What plumbing do you need to build a robust distributed object
deployment?

■■ What is EJB, and what value does it add?

■■ How does EJB relate to SOA?

■■ Who are the players in an EJB ecosystem?

Let’s kick things off with a brainstorming session.

Overview

C H A P T E R

1

05_576828 ch01.qxd 11/3/04 11:37 AM Page 3

The Motivation for Enterprise JavaBeans

Figure 1.1 shows a typical business application. This application could exist in
any vertical industry and could solve any business problem. Here are some
examples:

■■ A stock trading system

■■ A banking application

■■ A customer call center

■■ A procurement system

■■ An insurance risk analysis application

Notice that this application is a distributed system. We broke up what would
normally be a large, monolithic application and divorced each layer of the
application from the others, so that each layer is completely independent and
distinct.

Take a look at this picture, and ask yourself the following question based
purely on your personal experience and intuition: If we take a monolithic appli-
cation and break it up into a distributed system with multiple clients connecting to
multiple servers and databases over a network, what do we need to worry about now
(as shown in Figure 1.1)?

Take a moment to think of as many issues as you can. Then turn the page
and compare your list to ours. Don’t cheat!

Figure 1.1 Standard multitier-only deployment.

Database

Client Client Client

Server Server

4 Chapter 1

05_576828 ch01.qxd 11/3/04 11:37 AM Page 4

In the past, most companies built their own middleware. For example, a
financial services firm might build some of the middleware services above to
help them put together a stock trading system.

These days, companies that build their own middleware risk setting them-
selves up for failure. High-end middleware is hideously complicated to build
and maintain, requires expert-level knowledge, and is completely orthogonal
to most companies’ core business. Why not buy instead of build?

The application server was born to let you buy these middleware services,
rather than build them yourself. Application servers provide you with com-
mon middleware services, such as resource pooling, networking, and more.
Application servers enable you to focus on your application and not worry
about the middleware you need for a robust server-side deployment. You
write the code specific to your vertical industry and deploy that code into the
runtime environment of an application server. You’ve just solved your busi-
ness problem by dividing and conquering.

Overview 5

THINGS TO CONSIDER WHEN BUILDING LARGE BUSINESS SYSTEMS

By now you should have a decent list of things you’d have to worry about when
building large business systems. Here’s a short list of the big things we came
up with. Don’t worry if you don’t understand all of them yet — you will.

◆ Remote method invocations. We need logic that connects a client and
server via a network connection. This includes dispatching method re-
quests, brokering parameters, and more.

◆ Load balancing. Clients must be directed to the server with the lightest
load. If a server is overloaded, a different server should be chosen.

◆ Transparent fail-over. If a server crashes, or if the network crashes, can
clients be rerouted to other servers without interruption of service? If so,
how fast does fail-over happen? Seconds? Minutes? What is acceptable
for your business problem?

◆ Back-end integration. Code needs to be written to persist business data
into databases as well as integrate with legacy systems that may already
exist.

◆ Transactions. What if two clients access the same row of the database si-
multaneously? Or what if the database crashes? Transactions protect you
from these issues.

◆ Clustering. What if the server contains state when it crashes? Is that state
replicated across all servers, so that clients can use a different server?

◆ Dynamic redeployment. How do you perform software upgrades while
the site is running? Do you need to take a machine down, or can you
keep it running?

(continued)

05_576828 ch01.qxd 11/3/04 11:37 AM Page 5

6 Chapter 1

THINGS TO CONSIDER WHEN BUILDING LARGE
BUSINESS SYSTEMS (continued)

◆ Clean shutdown. If you need to shut down a server, can you do it in a
smooth, clean manner so that you don’t interrupt service to clients who
are currently using the server?

◆ Logging and auditing. If something goes wrong, is there a log that you
can consult to determine the cause of the problem? A log would help you
debug the problem so it doesn’t happen again.

◆ Systems management. In the event of a catastrophic failure, who is mon-
itoring your system? You want monitoring software that paged a system
administrator if a catastrophe occurred.

◆ Threading. Now that you have many clients connecting to a server, that
server is going to need the capability of processing multiple client re-
quests simultaneously. This means the server must be coded to be multi-
threaded.

◆ Message-oriented middleware. Certain types of requests should be
message-based where the clients and servers are very loosely coupled.
You need infrastructure to accommodate messaging.

◆ Object life cycle. The objects that live within the server need to be cre-
ated or destroyed when client traffic increases or decreases, respectively.

◆ Resource pooling. If a client is not currently using a server, that server’s
precious resources can be returned to a pool to be reused when other
clients connect. This includes sockets (such as database connections) as
well as objects that live within the server.

◆ Security. The servers and databases need to be shielded from saboteurs.
Known users must be allowed to perform only operations that they have
rights to perform.

◆ Caching. Let’s assume there is some database data that all clients share
and make use of, such as a common product catalog. Why should your
servers retrieve that same catalog data from the database over and over
again? You could keep that data around in the servers’ memory and
avoid costly network roundtrips and database hits.

◆ And much, much, much more.

Each of these issues is a separate service that needs to be addressed for
serious server-side computing. These services are needed in any business
problem and in any vertical industry. And each of these services requires a lot
of thought and a lot of plumbing to resolve. Together, these services are called
middleware.

05_576828 ch01.qxd 11/3/04 11:37 AM Page 6

Component Architectures

It has been a number of years since the idea of multitier server-side deploy-
ments surfaced. Since then, more than 50 application servers have appeared on
the market. At first, each application server provided component services in a
nonstandard, proprietary way. This occurred because there was no agreed def-
inition of what a component should be or how it should be provided with ser-
vices or how should it interact with the application server. The result? Once
you bet on an application server, your code was locked into that vendor’s solu-
tion. This greatly reduced portability and was an especially tough pill to swal-
low in the Java world, which promotes openness and portability.

What we need is an agreement, or set of interfaces, between application
servers and components. This agreement will enable any component to run
within any application server. This will allow components to be switched in
and out of various application servers without having to change code or
potentially even recompile the components themselves. Such an agreement is
called component architecture and is shown in Figure 1.2.

If you’re trying to explain components to a nontechie, try these analogies:

■■ Any CD player can play any compact disc because of the CD standard.
Think of an application server as a CD player and components as
compact discs.

■■ In the United States, any TV set can tune into any broadcast because of
the NTSC standard. Think of an application server as a TV set and
components as television broadcasts.

Figure 1.2 A component architecture.

Application Server

agreed-upon
interfaces
specified by
component
architecture

Components

Overview 7

05_576828 ch01.qxd 11/3/04 11:37 AM Page 7

Service-Oriented Architectures
At the core of a service-oriented architecture lies the concept of service. A sim-
plistic definition of service is a group of related components that carry out a
given business process function, for example transferring funds between
banks or booking an itinerary. A service-oriented architecture (SOA) thus is a par-
adigm focusing on development of services rather than piecemeal compo-
nents such that these services provide a higher level of abstraction from a
functional standpoint. Of course, there are more properties to SOA than mere
coarse-granularity. One such characteristic property of SOA is that they are
autonomous in nature. These independent entities can interact with others in
spite of differences in the way they have been implemented or the platform
they have been deployed on. The notion of putting together (integrating) such
autonomous and loosely coupled services to address the changing business
needs has a huge value proposition and it is well on its way to realization with
the emergence of various choreography, orchestration and collaboration tech-
nologies such as WS-BPEL, EbXML BPSS, and WS Choreography.

SOA and Web Services

The terms Web Services and SOA are often used interchangeably and wrongly
so. SOA is a paradigm. There are many possible ways of building software so
that it implements salient features of SOA, mainly coarse granularity and loose
coupling. One such way is Web services. Web Services are a group of XML
technologies, which can be used for implementing SOA. Core Web service
technologies—mainly SOAP and WSDL—form the basis of most of these Web
service implementations today.

Simple Object Access Protocol (SOAP) is an XML-based application-level
protocol intended for exchanging information in a distributed network. SOAP
supports both the models of distributed computing: RPC as well as document-
style messaging. RPC style SOAP allows remote invocation of operations.
Parameters and return in/out values of these operations are serialized in XML.
Whereas, in document-style SOAP because an operation’s input and output
are XML, serialization of parameters and return value to XML is not needed.
Although most of the Web service applications use SOAP over HTTP today,
the standard does not preclude using SOAP over other IP protocols, such as
SMTP. SOAP 1.2 is a W3C recommendation at the time of this writing.

Web Service Description Language (WSDL) is an XML-based metadata stan-
dard that is used to describe the service interface—in terms of the operations it
supports, the parameters that the operations accept, and their return values in
case of SOAP RPC, the XML schema that the input and output messages to the
operations in case of document-style SOAP—as well as service binding infor-
mation—in terms of the communication protocols, ports, service URL, and so

8 Chapter 1

05_576828 ch01.qxd 11/3/04 11:37 AM Page 8

on. At the time of this writing, WSDL 2.0 is well on its way to becoming a W3C
standard.

Thus, Web Services present a powerful solution for distributed but loosely
coupled, coarse-grained SOA wherein services are described using WSDL and
accessed via SOAP. In fact, one of the main reasons for using Web Services to
realize SOA is the ubiquitous support for XML, SOAP, and WSDL technologies
on disparate platforms, ranging from mainframes to mobile devices. This is
the main reason why Web Services provide a true solution for interoperability
between applications deployed on these disparate platforms.

We will spend some more time explaining fundamental concepts in Chapter
5; however, explaining Web Services and related technologies in their entirety
is outside the scope of this book. If you are new to Web Services, there are
many books and online papers that you can refer to get started with Web Ser-
vices conceptually. Given the solid adoption of this stack by the industry, we
suggest that you familiarize yourself properly with Web services.

SOA and Component Architectures

SOA is not a replacement for component architecture; rather it neatly comple-
ments the component architecture. While component architectures enhance
reusability at a finer grain level, SOA can enhance reusability at a coarser
grained level. Hence, from an implementation standpoint, a given service
might very well be developed using well-defined component frameworks
such as EJB. The latest EJB standard, therefore, has in-built support for Web
Services, the most popular stack for building SOA. So EJB is still very much in
demand!

Chapter 5 covers Web Services support in EJB framework in detail.

Divide and Conquer to the Extreme with
Reusable Services

We have been seeing a slow but steady shift in the “build-from-scratch” trend,
for years now. More and more businesses want CIOs to stretch their IT dollars
to the maximum. Naturally, this has led the IT departments to think of reuse;
reuse in terms of systems as well as software. What better candidate than
highly functional and autonomous services to fulfill this promise of reuse?
SOA offers maximum reuse, especially when implemented using ubiquitous
protocols such as those supported by Web services. Architects want to design
their software as a composition of services such that these services can be used
from any platform through well-defined service interfaces.

Overview 9

05_576828 ch01.qxd 11/3/04 11:37 AM Page 9

Why just stop at corporate ITs? Even ISVs are thinking of providing their
software as services. Prime examples of “software as a service” include Sales-
force.com and Siebel. Both these companies have made their enterprise soft-
ware available to customers as hosted services. Many other businesses such as
Amazon.com and Google provide their core business services, E-commerce,
and Web searching, as reusable services to customers and end-users.

Reusable services are a very powerful concept, because:

■■ Businesses can focus on strategic software development. In cases
where software functionality is horizontal and cuts across multiple
business domains, it should be treated as commodity and hence pro-
cured from a specialized ISV in the form of services. For example, each
business requires a corporate treasury management and cash manage-
ment system. For such a commodity business need, it is best to acquire
software from an outside vendor than to build it. This will relieve the IT
staff from having to deal with complex treasury functions involving
millions of regulations; it anyway does not have direct relevance to the
business’s core function.

■■ The business processes can be assembled faster. The autonomous and
loosely coupled nature of services makes it easy to assemble them into
business processes. This strength makes services the chosen paradigm
for encapsulating business logic.

■■ There is a lower total cost of ownership. Businesses that build their
software as services end up with a lower total cost of ownership in the
long term because they are building software such that it can be easily
reusable and assembled into business processes. This is a definite plus
when businesses are required to adapt business processes to address
the changing market demands or when they are required to support
new customers and their IT systems. Businesses that sell software as
services, on the other hand, can benefit their customers by offering flex-
ible software licensing options, such as per-month billing or per-year
billing, thereby enabling their customers to lower total cost of owner-
ship.

Remember that these services can and should be built using components.
Therefore, the component architectures are very much here to stay. Figure 1.3
depicts such a Treasury management service built using EJB components.

With this introduction to SOA and their relevance to EJB, let us further
explore the EJB technology.

10 Chapter 1

05_576828 ch01.qxd 11/3/04 11:37 AM Page 10

Figure 1.3 Reusable services built using EJB.

Introducing Enterprise JavaBeans

EJB is a standard for building server-side components in Java. It defines an
agreement (contract) between components and application servers that
enables any component to run in any application server. EJB components
(called enterprise beans) are deployable, and can be imported and loaded into
an application server, which hosts those components.

The top three propositions of EJB are as follows:

■■ It is agreed upon by the industry. Those who use EJB will benefit from
its widespread use. Because everyone will be on the same page, in the
future it will be easier to hire employees who understand your systems
(since they may have prior EJB experience), learn best practices to
improve your system (by reading books like this one), partner with
businesses (since technology will be compatible), and sell software
(since customers will accept your solution). The concept of “train once,
code anywhere” applies.

■■ Portability is easier. The EJB specification is published and available
freely to all. Since EJB is a standard, you do not need to gamble on a
single, proprietary vendor’s architecture. And although portability will
never be free, it is cheaper than without a standard.

A corporate finance
personnel uses treasury

management system through
company portal

Rather than building a
treasury management

application from
scratch, the business

buys treasury
management system,
built as a service, from

outside.

All company employees use a
central company portal application

to access various services

HTTP

SOAP/HTTP

Company
Portal Application

Corporate IT

RMI/IIOP

Corporate
Treasury Management
Web Service Wrapper

EJBs providing treasury
management logic

Overview 11

05_576828 ch01.qxd 11/3/04 11:37 AM Page 11

■■ Rapid application development. Your application can be constructed
faster because you get middleware infrastructure services such as trans-
actions, pooling, security, and so on from the application server. There’s
also less of a mess to maintain.

Note that while EJB does have these virtues, there are also scenarios in
which EJB is overkill. See Chapters 11 and 16 for best practices and discussion
surrounding the issue of when to (and when not to) use EJB.

Physically, EJB is actually two things in one:

■■ A specification. This is a 640-plus-page Adobe Acrobat PDF file, freely
downloadable from http://java.sun.com/products/ejb/docs.html. This
specification lays out the rules of engagement between components
and application servers. It constricts how you code enterprise beans to
enable “write once, run anywhere” behavior for your EJB application.

■■ A set of Java interfaces. Components and application servers must
conform to these interfaces. Since all components are written to the
same interfaces, they all look the same to the application server. The
application server therefore can manage anyone’s components.

Why Java?
EJB architecture has supported only the Java language thus far. Though this
sounds a bit restrictive, the good news is that Java is one of the best-suited lan-
guages for building components for the following reasons.

■■ Interface/implementation separation. We need a language that sup-
ports clean separation between the interface and implementation
mainly to keep the component upgrades and maintenance to minimum.
Java supports this separation at a syntactic level through the interface
and class keywords.

■■ Safe and secure. The Java architecture is much safer than traditional
programming languages. In Java, if a thread dies, the application stays
up. Pointers are no longer an issue. Memory leaks occur much less
often. Java also has a rich library set, so that Java is not just the syntax
of a language but a whole set of prewritten, debugged libraries that
enable developers to avoid reinventing the wheel in a buggy way. This
safety is extremely important for mission-critical applications. Sure, the
overhead required to achieve this level of safety might make your
application slower, but 90 percent of all business programs are glorified
graphical user interfaces (GUIs) to databases. That database is going to
be your number one bottleneck, not Java.

12 Chapter 1

05_576828 ch01.qxd 11/3/04 11:37 AM Page 12

■■ Cross-platform. Java runs on any platform. Since EJB is an application
of Java, this means EJB should also easily run on any platform. This is
valuable for customers who have invested in a variety of powerful
hardware, such as Win32, UNIX, and mainframes. They do not want to
throw away these investments.

If you don’t want to go the EJB route, you have two other choices:

■■ Lightweight open source Java frameworks such as Spring. In Chapter 11
we discuss when to use EJB versus such non-standard frameworks.

■■ Microsoft .NET–managed components, part of the Microsoft .NET
platform

EJB as a Business Tier Component
The real difference between presentation tier components such as thick clients,
dynamically generated Web pages, or Web Service clients and enterprise beans
is the domain in which they operate. Presentation components are well suited
to handle client-side operations, such as rendering GUIs, executing client-side
validations, constructing appropriate SOAP messages to send them to Web
Service, and so on. They deal directly with the end user or business partner.

Enterprise beans, on the other hand, are not intended for the client side; they
are server-side components. They are meant to perform server-side operations,
such as executing complex algorithms or performing high-volume business
transactions. The server side has different kinds of needs than GUI clients do.
Server-side components need to run in a highly available (24/7), fault-tolerant,
transactional, and multiuser secure environment. The application server pro-
vides this high-end server-side environment for the enterprise beans, and it
provides the runtime containment necessary to manage enterprise beans.

Specifically, EJB is used to help write logic that solves business problems. Typ-
ically, EJB components (enterprise beans) can perform any of the following
tasks:

■■ Perform business logic. Examples include computing the taxes on the
shopping cart, ensuring that the manager has authority to approve the
purchase order, or sending an order confirmation e-mail using the Java-
Mail API.

■■ Access a database. Examples include submitting an order for books,
transferring money between two bank accounts, or calling a stored pro-
cedure to retrieve a trouble ticket in a customer support system. Enter-
prise beans can achieve database access using the Java Database
Connectivity (JDBC) API.

Overview 13

05_576828 ch01.qxd 11/3/04 11:37 AM Page 13

■■ Access another system. Examples include calling a high-performing
CICS legacy system written in COBOL that computes the risk factor for
a new insurance account, calling a legacy VSAM data store, or calling
SAP R/3. Enterprise beans can integrate with an existing application
through the J2EE Connector Architecture (JCA), which we will talk about
in detail in Chapter 17.

Thus, EJB components are not presentation tier components; rather, they sit
behind the presentation tier components (or clients) and do all the hard work.
Examples of the clients that can connect to enterprise beans include the
following:

■■ Thick clients. Thick clients execute on a user’s desktop. They could
connect through the network with EJB components that live on a server.
These EJB components may perform any of the tasks listed previously
(business logic, database logic, or accessing other systems). Thick
clients in Java include applets and applications.

■■ Dynamically generated Web pages. Web sites that are transactional
and personalized in nature need their Web pages generated specifically
for each request. For example, the home page for Amazon.com is com-
pletely different for each user, depending on the user’s profile. Core
technologies such as Java servlets and JavaServer Pages (JSP) are used
to dynamically generate such specific pages. Both servlets and JSPs live
within a Web server and can connect to EJB components, generating
pages differently based upon the values returned from the EJB layer.

■■ Web Service clients. Some business applications require no user inter-
face at all. They exist to interconnect with other business partners’
applications that may provide their own user interface. For example,
consider a scenario where Dell Computer Corporation needs to procure
Intel chips to assemble and distribute desktop computers. Here, Intel
could expose an Order Parts Web Service that enables the Dell Web Ser-
vice client to order chips. In this case, the Intel system does not provide
a graphical user interface per se, but rather provides a Web Service
interface. This scenario is shown in Figure 1.4.

14 Chapter 1

05_576828 ch01.qxd 11/3/04 11:37 AM Page 14

Figure 1.4 EJBs as Web Service clients.

The EJB Ecosystem

To get an EJB deployment up and running successfully, you need more than
just an application server and components. In fact, EJB encourages collabora-
tion of more than six different parties. Each of these parties is an expert in its
own field and is responsible for a key part of a successful EJB deployment.
Because each party is a specialist, the total time required to build an enterprise-
class deployment is significantly reduced. Together, these players form the EJB
Ecosystem.

Let’s discuss who the players are in the EJB Ecosystem. As you read on,
think about your company’s business model to determine which role you fill.
If you’re not sure, ask yourself what the core competency of your business is.
Also think about what roles you might play in upcoming projects.

The EJB Ecosystem is not for everyone. At my company, we’ve heard ghastly
stories of businesses choosing EJB because everyone else is using it, or
because it is new and exciting. Those are the wrong reasons to use EJB and
can result in disappointing results. For best practices and a discussion
surrounding the issue of when and when not to use EJB, see Chapters 11
and 16.

A Dell customer
orders 100 computers
on dell.com

Dell.com Web application finds
out that chips needs to be
procured for fulfilling the order.
It submits the request for the same
to its internal procurement application.

Dell‘s procurement application
communicates with Intel‘s order
parts Web service.

HTTP

RMI/IIOP

Dell.com

EJB Procurement
Application

EJB acts as
Web service
client

Intel Order Parts
Application

EJB as Web
service

Web service
Wrapper

RMI/IIOP

SOAP/HTTP

Overview 15

05_576828 ch01.qxd 11/3/04 11:37 AM Page 15

The Bean Provider
The bean provider supplies business components, or enterprise beans. Enter-
prise beans are not complete applications, but rather are deployable compo-
nents that can be assembled into complete solutions. The bean provider could
be an internal department providing components to other departments.

The Application Assembler
The application assembler is the overall application architect. This party is
responsible for understanding how various components fit together and writ-
ing the applications that combine components. An application assembler may
even author a few components along the way. His or her job is to build an
application from those components that can be deployed in a number of set-
tings. The application assembler is the consumer of the beans supplied by the
bean provider.

The application assembler could perform any or all of the following tasks:

■■ From knowledge of the business problem, decide which combination of
existing components and new enterprise beans are needed to provide
an effective solution; in essence, plan the application assembly.

■■ Supply a user interface (perhaps Swing, servlet or JSP, application or
applet) or a Web Service.

■■ Write new enterprise beans to solve some problems specific to your
business problem.

16 Chapter 1

JAVABEANS VERSUS ENTERPRISE JAVABEANS

You may have heard of another standard called JavaBeans. JavaBeans are
completely different from Enterprise JavaBeans.

In a nutshell, JavaBeans are Java classes that have get/set methods on them.
They are reusable Java components with properties, events, and methods
(similar to Microsoft ActiveX controls) that can be easily wired together to
create (often visual) Java applications.

The JavaBeans framework is lightweight compared to Enterprise JavaBeans.
You can use JavaBeans to assemble larger components or to build entire
applications. JavaBeans, however, are development components and are not
deployable components. You typically do not deploy a JavaBean; rather,
JavaBeans help you construct larger software that is deployable. And because
they cannot be deployed, JavaBeans do not need to live in a runtime
environment and hence, in a container. Since JavaBeans are just Java classes,
they do not need an application server to instantiate them, to destroy them,
and to provide other services to them. An EJB application can use JavaBeans,
especially when marshalling data from EJB layer to another, say to components
belonging to a presentation tier or to a non-J2EE application written in Java.

05_576828 ch01.qxd 11/3/04 11:37 AM Page 16

■■ Write the code that calls on components supplied by bean providers.

■■ Write integration code that maps data between components supplied
by different bean providers. After all, components won’t magically
work together to solve a business problem, especially if different parties
write the components.

An example of an application assembler is a systems integrator, a consulting
firm, or an in-house programmer.

The EJB Deployer
After the application assembler builds the application, the application must be
deployed (and go live) in a running operational environment. Some challenges
faced here include the following:

■■ Securing the deployment with a hardware or software firewall and
other protective measures.

■■ Integrating with enterprise security and policy repositories, which
oftentimes is an LDAP server such as Sun Java System Directory Server
(formerly Netscape Directory Server), Novell Directory Server, or
Microsoft Active Directory.

■■ Choosing hardware that provides the required level of quality of ser-
vice.

■■ Providing redundant hardware and other resources for reliability and
fault tolerance.

■■ Performance-tuning the system.

Frequently the application assembler (who is usually a developer or sys-
tems analyst) is not familiar with these issues. This is where the EJB deployer
comes into play. EJB deployers are aware of specific operational requirements
and perform the tasks above. They understand how to deploy beans within
servers and how to customize the beans for a specific environment. The EJB
deployer has the freedom to adapt the beans, as well as the server, to the envi-
ronment in which the beans are to be deployed.

An EJB deployer can be a staff person, an outside consultant, or a vendor.

The System Administrator
Once the deployment goes live, the system administrator steps in to oversee
the stability of the operational solution. The system administrator is responsi-
ble for the upkeep and monitoring of the deployed system and may make use
of runtime monitoring and management tools that the EJB server provides.

Overview 17

05_576828 ch01.qxd 11/3/04 11:37 AM Page 17

For example, a sophisticated EJB server might page a system administrator
if a serious error occurs that requires immediate attention. Some EJB servers
achieve this by developing hooks into professional monitoring products, such
as Tivoli and Computer Associates. Others like JBoss are providing their own
systems management by supporting the Java Management Extension (JMX)
technology.

The Container and Server Provider
The container provider supplies an EJB container (the application server). This
is the runtime environment in which beans live. The container supplies mid-
dleware services to the beans and manages them. There are about 20 Sun
Microsystems–certified J2EE application servers. Although a complete list can
be obtained from http://java.sun.com/j2ee/licensees.html, some of the popu-
lar J2EE application servers include BEA WebLogic, Sun Java System Applica-
tion Server (formerly, Sun ONE Application Server), IBM WebSphere, Oracle
Application Server, and of course JBoss open source application server.

The server provider is the same as the container provider. Sun has not yet
differentiated these (and may never do so). We will use the terms EJB container
and EJB server interchangeably in this book.

The Tool Vendors
To facilitate the component development process, there should be a standard-
ized way to build, manage, and maintain components. In the EJB Ecosystem,
there are several integrated development environments (IDEs) that assist you in
rapidly building and debugging components. Some of the popular closed

18 Chapter 1

QUALITIES OF SERVICE IN EJB

The monitoring of EJB deployments is not specified in the EJB specification. It is
an optional service that advanced EJB users can provide. This means that each
EJB server could provide the service differently.

At first blush you might think this hampers application portability. However,
in reality, this service should be provided transparently behind the scenes, and
should not affect your application code. It is a quality of service that lies
beneath the application level and exists at the systems level. Changing
application servers should not affect your EJB code.

Other transparent qualities of service not specified in the EJB specification
include load balancing, transparent fail-over, caching, clustering, and
connection pooling algorithms.

05_576828 ch01.qxd 11/3/04 11:37 AM Page 18

source and open source EJB development IDEs include Borland JBuilder, Ora-
cle JDeveloper, BEA WebLogic Workshop, IBM WebSphere Studio Application
Developer, Sun Microsystems Java Studio (formerly Forte for Java), NetBeans,
and last but not least, Eclipse.

Most of these tools enable you to model components using unified model-
ing language (UML), which is the diagram style used in this book. You can also
generate EJB code from these UML models. Some of the examples of special-
ized closed source products in this space include Borland Together and IBM
Rational line of products. Also there are a bunch of open source code utilities
and tools, which we discuss in Chapter 11, that can be used for UML modeling
and code generation.

There are other tools as well, which you will need to develop your EJB appli-
cations rapidly and successfully. The categories mainly include testing tools
(JUnit), build tools (Ant/XDoclet), and profilers (Borland OptimizeIt or Quest
Software JProbe).

Summary of Roles
Figure 1.5 summarizes the interaction of the different parties in EJB.

You may be wondering why so many different participants are needed to
provide an EJB deployment. The answer is that EJB enables companies or indi-
viduals to become experts in certain roles, and division of labor leads to best-
of-breed deployments.

The EJB specification makes each role clear and distinct, enabling experts in
different areas to participate in a deployment without loss of interoperability.
Note that some of these roles could be combined as well. For example, the EJB
server and EJB container today come from the same vendor. Or at a small
startup company, the bean provider, application assembler, and deployer
could all be the same person, who is trying to build a business solution using
EJB from scratch. What roles do you see yourself playing?

For some of the parties EJB merely suggests possible duties, such as the sys-
tem administrator overseeing the well being of a deployed system. For other
parties, such as the bean provider and container provider, EJB defines a set of
strict interfaces and guidelines that must be followed or the entire ecosystem
will break down. By clearly defining the roles of each party, EJB lays a founda-
tion for a distributed, scalable component architecture where multiple ven-
dors’ products can interoperate.

Overview 19

05_576828 ch01.qxd 11/3/04 11:37 AM Page 19

Fi
gu

re
 1

.5
Th

e
pa

rt
ie

s
of

 E
JB

.

B
ea

n
 P

ro
vi

d
er

E
JB

 C
o

n
ta

in
er

/S
er

ve
r

 P
ro

vi
d

er

D
ep

lo
ye

r
S

ys
te

m
 A

d
m

in
is

tr
at

o
r

(M
ai

n
ta

in
s

D
ep

lo
ym

en
t)

A
p

p
lic

at
io

n
A

ss
em

b
le

r
C

on
st

ru
ct

E
nt

er
pr

is
e

B
ea

ns

B
ui

ld
 A

pp
lic

at
io

n
D

ep
lo

y
S

ys
te

m

S
up

pl
y

E
JB

 C
on

ta
in

er
/S

er
ve

r

To
o

l P
ro

vi
d

er

S
up

pl
y

To
ol

s

05_576828 ch01.qxd 11/3/04 11:37 AM Page 20

The Java 2 Platform, Enterprise Edition (J2EE)

EJB is only a portion of a larger offering from the Java Community Process
(a.k.a. JCP—a Java industry standards body) called the Java 2 Platform, Enter-
prise Edition (J2EE). The mission of J2EE is to provide a platform-indepen-
dent, portable, multiuser, secure, and standard enterprise-class platform for
server-side deployments written in the Java language.

J2EE is a specification, not a product. J2EE specifies the rules of engagement
that people must agree on when writing enterprise software. Vendors then
implement the J2EE specifications with their J2EE-compliant products.

Because J2EE is a specification (meant to address the needs of many compa-
nies), it is inherently not tied to one vendor; it also supports cross-platform
development. This encourages vendors to compete, yielding best-of-breed
products. It also has its downside, which is that incompatibilities between ven-
dor products will arise—some problems due to ambiguities with specifica-
tions, other problems due to the human nature of competition.

J2EE is one of three different Java platforms. Each platform is a conceptual
superset of the next smaller platform.

■■ The Java 2 Platform, Micro Edition (J2ME) is a development platform
for applications running on mobile Java-enabled devices, such as
Phones, Palm Pilots, Pagers, set-top TV boxes, and so on. This is a
restricted form of the Java language due to the inherent performance
and capacity limitations of small-form-factor wireless devices.

■■ The Java 2 Platform, Standard Edition (J2SE) defines a standard for
core libraries that can be used by applets, applications, J2EE applica-
tions, mobile applications, and such. These core libraries span a much
wider spectrum including input/output, graphical user interface facili-
ties, networking, and so on. This platform contains what most people
use in standard Java programming.

■■ The Java 2 Platform, Enterprise Edition (J2EE) is an umbrella standard
for Java’s enterprise computing facilities. It basically bundles together
technologies for a complete enterprise-class server-side development
and deployment platform in Java.

J2EE is significant because it creates a unified platform for server-side Java
development. The J2EE stack consists of the following:

■■ Specifications. Each enterprise API within J2EE has its own specifica-
tion, which is a PDF file downloadable from www.jcp.org. Each time
there is a new version of J2EE, the J2EE Expert Group at JCP locks
down the versions of each Enterprise API specification and bundles
them together as the de facto versions to use when developing with
J2EE. This increases code portability across vendors’ products, because

Overview 21

05_576828 ch01.qxd 11/3/04 11:37 AM Page 21

each vendor supports exactly the same API revision. This is analogous
to a company such as Microsoft releasing a new version of Windows
every few years: Every time a new version of Windows comes out,
Microsoft locks down the versions of the technologies bundled with
Windows and releases them together.

■■ Test suite. Sun provides a test suite (a.k.a. Test Compatibility Kit or
TCK) for J2EE server vendors to test their implementations against. If a
server passes the tests, Sun issues a J2EE compliance brand, alerting
customers that the vendor’s product is indeed J2EE-compliant. There
are numerous J2EE-certified vendors, and you can read reviews of their
products for free on TheServerSide.com.

■■ Reference implementation. To enable developers to write code against
J2EE Sun provides its own free reference implementation for each ver-
sion of J2EE. Sun is positioning it as a low-end reference platform,
because it is not intended for commercial use. You can download the
reference implementation for J2EE 1.4, the latest version of J2EE plat-
form that includes EJB 2.1, the technology of focus in this book, from
http://java.sun.com/j2ee/download.html.

The J2EE Technologies
J2EE is a robust suite of middleware services that make life very easy for
server-side application developers. J2EE builds on the existing technologies in
the J2SE. J2SE includes support for core Java language semantics as well as
various libraries (.awt, .net, .io, and so on). Because J2EE builds on J2SE, a
J2EE-compliant product must not only implement all of J2EE, but must also
implement all of J2SE. This means that building a J2EE product is an
absolutely huge undertaking. This barrier to entry has resulted in significant
industry consolidation in the Enterprise Java space, with a few players emerg-
ing from the pack as leaders.

In this book, we will discuss EJB 2.1, an integral part of J2EE 1.4. Some of the
major J2EE technologies are shown working together in Figure 1.6.

To understand more about the real value of J2EE, here are some of the
important technologies and APIs that a J2EE 1.4-compliant implementation
will support for you.

■■ Enterprise JavaBeans (EJB). EJB defines how server-side components
are written and provides a standard contract between components and
the application servers that manage them. EJB is the cornerstone for
J2EE and uses several other J2EE technologies.

22 Chapter 1

05_576828 ch01.qxd 11/3/04 11:37 AM Page 22

Figure 1.6 A J2EE deployment.

■■ Java API for XML RPC (JAX-RPC). JAX-RPC is the main technology
that provides support for developing Web Services on the J2EE plat-
form. It defines two Web Service endpoint models—one based on
servlet technology and another based on EJB. It also specifies a lot of
runtime requirements regarding the way Web Services should be sup-
ported in a J2EE runtime. Another specification called Web Services for
J2EE defines deployment requirements for Web Services and uses the
JAX-RPC programming model. Chapter 5 discusses support of Web
Services provided by both these specifications for EJB applications.

■■ Java Remote Method Invocation (RMI) and RMI-IIOP. RMI is the Java
language’s native way to communicate between distributed objects,
such as two different objects running on different machines. RMI-IIOP

Firewall

EJBs

Existing System
Legacy System

ERP System

IIOP

Client Tier

J2EE Server

Back-End
Systems

Business
Partner

or Other System

Servlets

Business Partner
or Other System

Applets,
Applications,

CORBA Clients

IIOPWeb services technologies
(SOAP, UDDI, WSDL, ebXML) HTTP

Databases

Proprietary Protocol
Web Services Technologies
(SOAP, UDDI, WSDL, ebXML)

Connectors

SQL

JSPs

Web Browser Wireless Device

HTTP

JMS

Overview 23

05_576828 ch01.qxd 11/3/04 11:37 AM Page 23

is an extension of RMI that can be used for CORBA integration. RMI-
IIOP is the official API that we use in J2EE (not RMI). We cover RMI-
IIOP in Appendix A.

■■ Java Naming and Directory Interface (JNDI). JNDI is used to access
naming and directory systems. You use JNDI from your application
code for a variety of purposes, such as connecting to EJB components or
other resources across the network, or accessing user data stored in a
naming service such as Microsoft Exchange or Lotus Notes. JNDI is
covered in Appendix A.

■■ Java Database Connectivity (JDBC). JDBC is an API for accessing rela-
tional databases. The value of JDBC is that you can access any relational
database using the same API. JDBC is used in Chapter 7.

■■ Java Transaction API (JTA) and Java Transaction Service (JTS). The
JTA and JTS specifications allow for components to be bolstered with
reliable transaction support. JTA and JTS are explained in Chapter 12.

■■ Java Messaging Service (JMS). JMS allows for your J2EE deployment
to communicate using messaging. You can use messaging to communi-
cate within your J2EE system as well as outside your J2EE system. For
example, you can connect to existing message-oriented middleware
(MOM) systems such as IBM MQSeries or Microsoft Message Queue
(MSMQ). Messaging is an alternative paradigm to RMI-IIOP, and has
its advantages and disadvantages. We explain JMS in Chapter 9.

■■ Java servlets. Servlets are networked components that you can use to
extend the functionality of a Web server. Servlets are request/response
oriented in that they take requests from some client host (such as a Web
browser) and issue a response back to that host. This makes servlets
ideal for performing Web tasks, such as rendering an HTML interface.
Servlets differ from EJB components in that the breadth of server-side
component features that EJB offers, such as declarative transactions, is
not readily available to servlets. Servlets are much better suited to han-
dling simple request/response needs, and they do not require sophisti-
cated management by an application server. We illustrate using servlets
with EJB in Chapter 22.

■■ JavaServer Pages (JSP). JSP technology is very similar to servlets. In
fact, JSP scripts are compiled into servlets. The largest difference
between JSP scripts and servlets is that JSP scripts are not pure Java
code; they are much more centered on look-and-feel issues. You would
use JSP when you want the look and feel of your deployment to be
physically separate and easily maintainable from the rest of your
deployment. JSP technology is perfect for this, and it can be easily writ-
ten and maintained by non–Java-savvy staff members (JSP technology

24 Chapter 1

05_576828 ch01.qxd 11/3/04 11:37 AM Page 24

does not require a Java compiler). We illustrate using JSP with EJB in
Chapter 22.

■■ Java IDL. Java IDL is the Sun Microsystems Java-based implementation
of CORBA. Java IDL allows for integration with other languages. Java
IDL also allows for distributed objects to leverage the full range of
CORBA services. J2EE is thus fully compatible with CORBA, complet-
ing the Java 2 Platform, Enterprise Edition. We discuss CORBA interop-
erability in Appendix B.

■■ JavaMail. The JavaMail service enables you to send e-mail messages in
a platform-independent, protocol-independent manner from your Java
programs. For example, in a server-side J2EE deployment, you can use
JavaMail to confirm a purchase made on your Internet e-commerce site
by sending an e-mail to the customer. Note that JavaMail depends on
the JavaBeans Activation Framework (JAF), which makes JAF part of J2EE
as well. We do not cover JavaMail in this book.

■■ J2EE Connector Architecture (JCA). Connectors enable you to access
existing enterprise information systems from a J2EE application. This
could include any existing system, such as a mainframe system running
high-end transactions (such as those deployed with IBM CICS, or BEA
TUXEDO), Enterprise Resource Planning (ERP) systems, or your own
proprietary systems. Connectors are useful because they automatically
manage the details of middleware integration to existing systems, such
as handling transactions and security concerns, life-cycle management,
thread management, and so on. Another value of this architecture is
that you can write a connector to access an existing system once, and
then deploy it into any J2EE-compliant server. This is important
because you only need to learn how to access an existing system once.
Furthermore, the connector needs to be developed only once and can be
reused in any J2EE server. This is extremely useful for independent soft-
ware vendors (ISVs) such as SAP, Siebel, Peoplesoft and others who
want their software to be accessible from within J2EE application
servers. Rather than write a custom connector for each application
server, these ISVs can write a standard J2EE connector. We discuss
legacy integration in more details in Chapter 17.

■■ The Java API for XML Parsing (JAXP). There are many applications of
XML in a J2EE deployment. For example, you might need to parse XML
if you are performing B2B interactions (such as through Web Services),
if you are accessing legacy systems and mapping data to and from
XML, or if you are persisting XML documents to a database. JAXP is the
de facto API for parsing XML documents in a J2EE application and is an
implementation-neutral interface to XML parsing technologies such as
DOM and SAX. You typically use the JAXP API from within servlets,
JSP, or EJB components.

Overview 25

05_576828 ch01.qxd 11/3/04 11:37 AM Page 25

■■ The Java Authentication and Authorization Service (JAAS). JAAS is a
standard API for performing security-related operations in J2EE. Con-
ceptually, JAAS also enables you to plug in an authentication mecha-
nism into a J2EE application server. See Chapter 13 for more details on
security pertaining to EJB applications.

Summary

We’ve achieved a great deal in this chapter. First, we brainstormed a list of
issues involved in a large, multitier deployment. We then understood that
server-side component architecture enables us to write complex business
applications without understanding tricky middleware services. We then dove
into the EJB standard and fleshed out its value proposition. We investigated
the different players involved in an EJB deployment and wrapped up by
exploring J2EE.

The good news is that we’re just getting started, and many more interesting
and advanced topics lie ahead. The next chapter delves further into EJB fun-
damentals such as request interception, various types of EJB, and so on, which is
the mental leap you need to make to understand EJB. Let’s go!

26 Chapter 1

05_576828 ch01.qxd 11/3/04 11:37 AM Page 26

27

Chapter 1 introduced the motivation behind EJB. In this chapter, we’ll dive
into EJB in detail. After reading this chapter, you will understand the different
types of enterprise beans. You’ll also understand what an enterprise bean com-
ponent is composed of, including the enterprise bean class, the remote inter-
face, the local interface, the EJB object, the local object, the home interface, the
home object, the deployment descriptor, and the Ejb-jar file.

EJB technology is based on two other technologies: Java RMI-IIOP and JNDI.
Understanding these technologies is mandatory before continuing.

We have provided tutorials on each of these technologies in the appendixes
of this book. If you don’t yet know RMI-IIOP or JNDI, go ahead and read
Appendix A now.

Enterprise Beans

An enterprise bean is a server-side software component that can be deployed in
a distributed multitier environment. An enterprise bean can compose one or
more Java objects because a component may be more than just a simple object.
Regardless of an enterprise bean’s composition, the clients of the bean deal

EJB Fundamentals

C H A P T E R

2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 27

with a single exposed component interface. This interface, as well as the enter-
prise bean itself, must conform to the EJB specification. The specification
requires that your beans expose a few required methods; these required meth-
ods allow the EJB container to manage beans uniformly, regardless of which
container your bean is running in.

Note that the client of an enterprise bean could be anything—a servlet, an
applet, or even another enterprise bean. In the case of an enterprise bean, a
client request to a bean can result in a whole chain of beans being called. This
is a very powerful idea because you can subdivide a complex bean task, allow-
ing one bean to call on a variety of prewritten beans to handle the subtasks.
This hierarchical concept is quite extensible.

As a real-world example, imagine you go to a music store to purchase a
compact disc. The cashier takes your credit card and runs it through a scanner.
The scanner has a small Java Virtual Machine (JVM) running within it, which
acts as a client of enterprise beans running on a central server. The central
server enterprise beans perform the following tasks:

1. Contact American Express, a Web service that itself has an EJB-compliant
application server containing a number of beans. The beans are responsi-
ble for conducting the credit card transaction on behalf of that client.

2. Call a product catalog bean, which updates inventory and subtracts the
quantity the customer purchased.

3. Call an order entry bean, which enters the record for the customer and
returns that record locator to the scanner to give to the customer on a
receipt.

As you can see, this is a powerful, flexible model, which can be extended as
needed.

Types of Beans
EJB 2.1 defines three different kinds of enterprise beans:

■■ Session beans. Session beans model business processes. They are like
verbs because they perform actions. The action could be anything, such
as adding numbers, accessing a database, calling a legacy system, or
calling other enterprise beans. Examples include a pricing engine, a
workflow engine, a catalog engine, a credit card authorizer, or a stock-
trading engine.

■■ Entity beans. Entity beans model business data. They are like nouns
because they are data objects—that is, Java objects that cache database
information. Examples include a product, an order, an employee, a
credit card, or a stock. Session beans typically harness entity beans to

28 Chapter 2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 28

achieve business goals, such as a stock-trading engine (session bean)
that deals with stocks (entity beans). For more examples, see Table 2.1.

■■ Message-driven beans. Message-driven beans are similar to session
beans in that they perform actions. The difference is that you can call
message-driven beans only implicitly by sending messages to those
beans (see Chapter 9 for a full description). Examples of message-
driven beans include beans that receive stock trade messages, credit
card authorization messages, or workflow messages. These message-
driven beans might call other enterprise beans as well.

You may be wondering why the EJB paradigm offers these various kinds of
beans. Why couldn’t Sun come up with a simpler model? The n-tier vision
advanced by Microsoft, for example, does not include the equivalent of entity
beans—components that represent data in permanent storage.

The answer is that Sun is not the only company involved in constructing the
EJB standard. Many companies have been involved, each with customers that
have different kinds of distributed systems. To accommodate the needs of dif-
ferent enterprise applications, Sun allowed users the flexibility of each kind of
bean.

Admittedly this increases the ramp-up time for learning EJB. It also adds an
element of danger because some developers may misuse the intentions of each
bean type. But it pays off in the long run with increased functionality. By
including session beans, Sun provides a mechanism to model business
processes in a distributed multitier environment. By including entity beans in
the EJB specification, Sun has taken the first steps toward persistent, distrib-
uted objects usable by those business processes. And with message-driven
beans, you can use messaging to access your EJB system.

Figure 2.1 illustrates some of the many possibilities of clients interacting
with an EJB component system.

Table 2.1 Session Beans Calling Entity Beans

ENTITY BEAN SESSION BEAN

Bank teller Bank account

Credit card authorizer Credit card

DNA sequencer DNA strand

Order entry system Order, Line item

Catalog engine Product

Auction broker Bid, Item

Purchase order Approval router Purchase order

EJB Fundamentals 29

06_576828 ch02.qxd 11/3/04 11:38 AM Page 29

Figure 2.1 Clients interacting with an EJB component system.

Distributed Objects: The Foundation for EJB

Now that you’ve seen the different types of beans, let’s dive into the technol-
ogy behind them. EJB components are based on distributed objects. A distrib-
uted object is an object that is callable from a remote system. It can be called
from an in-process client, an out-of-process client, or a client located elsewhere
on the network.

Figure 2.2 shows how a client can call a distributed object. The following is
an explanation of the diagram:

1. The client calls a stub, which is a client-side proxy object. This stub is
responsible for masking network communications from the client. The
stub knows how to call over the network using sockets, massaging
parameters as necessary into their network representation.

HTML Client

Messaging
Client

Application Server

Business
Partner System

EJB Session Bean

EJB Entity Bean

Java Application
Java Applet

RMI-IIOP

SOAP, UDDI,
WSDL, ebXML

Web Server

Servlet JSP

CORBA/IIOP

Presentation
Tier

Business
Tier

C++
Client

Messaging

EJB Message-
Driven Bean

EJB Session
BeanEJB Session Bean

EJB Session Bean

RMI-IIOP

Firewall

HTTP

RMI-IIOP

30 Chapter 2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 30

2. The stub calls over the network to a skeleton, which is a server-side
proxy object. The skeleton masks network communication from the dis-
tributed object. The skeleton understands how to receive calls on a
socket. It also knows how to massage parameters from their network
representations to their Java representations.

3. The skeleton delegates the call to the appropriate implementation
object. This object does its work, and then returns control to the skele-
ton, which returns to the stub, which then returns control to the client.

A key point here is that both the stub and the server-side implementation
object implement the same interface (called the remote interface). This means
the stub clones the distributed object’s method signatures. A client who calls a
method on the stub thinks he is calling the distributed object directly; in reality,
the client is calling an empty stub that knows how to go over the network. This
is called distribution transparency. In fact, the distributed object is an abstraction
that is created by the cooperation between the stub, skeleton, and implemen-
tation objects. No single entity in this scenario is the distributed object.

You can achieve distributed objects using many technologies, including
CORBA (OMG), DCOM (Microsoft), and Java RMI-IIOP (Sun).

Figure 2.2 Distributed objects.

Stub

Client
Distributed

Object

Skeleton

Remote Interface

Network

Remote Interface

EJB Fundamentals 31

06_576828 ch02.qxd 11/3/04 11:38 AM Page 31

Distributed Objects and Middleware

Distributed objects are great because they enable you to break up an applica-
tion across a network. However, as a distributed object application gets larger,
you’ll need help from middleware services, such as transactions and security.
There are two ways to get middleware: explicitly and implicitly. Let’s investi-
gate both approaches.

Explicit Middleware
In traditional distributed object programming (such as traditional CORBA),
you can harness middleware by purchasing that middleware off the shelf and
writing code that calls that middleware’s API. For example, you could gain
transactions by writing to a transaction API. We call this explicit middleware
because you need to write to an API to use that middleware (see Figure 2.3).

The following example shows a bank account distributed object that knows
how to transfer funds from one account to another. It is filled with pseudo-
code that illustrates explicit middleware.

transfer(Account account1, Account account2, long amount) {

// 1: Call middleware API to perform a security check

// 2: Call middleware API to start a transaction

// 3: Call middleware API to load rows from the database

// 4: Subtract the balance from one account, add to the other

// 5: Call middleware API to store rows in the database

// 6: Call middleware API to end the transaction

}

32 Chapter 2

DISTRIBUTION TRANSPARENCY

Distribution transparency is the holy grail in distributed systems technology
and very hard to achieve. Perfect distribution transparency would mean that a
client never sees any differences between local and remote interactions. In the
presence of the more complex failure modes of remote operations and network
latency, this is not possible. Most of the time, the term distribution
transparency is used rather loosely to mean that the syntax of the code making
invocations is the same for both remote and local invocations. Even this is not
always the case when you consider the different exceptions found in remote
interfaces that in turn require different exception handling, and the subtle
differences between the pass-by-reference and pass-by-value semantics that
local and remote invocations sometimes exhibit.

For these reasons, most middleware systems settle for a less ambitious form
of transparency, viz. location transparency. We will come back to location
transparency in a moment.

06_576828 ch02.qxd 11/3/04 11:38 AM Page 32

Figure 2.3 Explicit middleware (gained through APIs).

As you can see, we are gaining middleware, but our business logic is inter-
twined with the logic to call these middleware APIs, which is not without its
downsides. This approach is:

■■ Difficult to write. The code is bloated. We simply want to perform a
transfer, but it requires a large amount of code.

■■ Difficult to maintain. If you want to change the way you do middle-
ware, you need to rewrite your code.

■■ Difficult to support. If you are an Independent Software Vendor (ISV)
selling an application, or an internal department providing code to
another department, you are unlikely to provide source code to your
customers. This is because the source code is your intellectual property,
and also because upgrading your customers to the next version of your
software is difficult if those customers modify source code. Thus, your
customers cannot change their middleware (such as changing how
security works).

Implicit Middleware
The crucial difference between systems of the past (transaction processing
monitors such as TUXEDO or CICS, or traditional distributed object technolo-
gies such as CORBA, DCOM, or RMI) and the newer, component-based

Stub

Client Distributed
Object

Skeleton

Remote Interface

Network

Remote Interface

Transaction
Service

Security Service

Database Driver

Transaction API

Security API

Database API

EJB Fundamentals 33

06_576828 ch02.qxd 11/3/04 11:38 AM Page 33

technologies (EJB, CORBA Component Model, and Microsoft.NET) is that in
this new world, you can harness complex middleware in your enterprise
applications without writing to middleware APIs (see Figure 2.4).

In outline, follow these steps to harness the power of middleware:

1. Write your distributed object to contain only business logic. Do not write
to complex middleware APIs. For example, this is the code that would
run inside the distributed object:

transfer(Account account1, Account account2, long amount) {

// 1: Subtract the balance from one account, add to the other

}

2. Declare the middleware services that your distributed object needs in a
separate descriptor file, such as a plain text file. For example, you might
declare that you need transactions, persistence, and a security check.

Figure 2.4 Implicit middleware (gained through declarations).

Stub

Client

Request
Interceptor

Skeleton

Remote Interface

Network

Remote Interface Transaction
Service

Security Service

Database Driver

Transaction API

Security API

Database API

Distributed
Object

Remote Interface

The request
interceptor knows
what to do because
you describe your
needs in a special
descriptor file.

34 Chapter 2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 34

3. Run a command-line tool provided for you by the middleware vendor.
This tool takes your descriptor file as input and generates an object that
we’ll call the request interceptor.

4. The request interceptor intercepts requests from the client, performs the
middleware that your distributed object needs (such as transactions,
security, and persistence), and then delegates the call to the distributed
object.

The values of implicit middleware (also called declarative middleware) are:

■■ Easy to write. You don’t actually write any code to middleware APIs;
rather, you declare what you need in a simple text file. The request
interceptor provides the middleware logic for you transparently. You
focus away from the middleware and concentrate on your application’s
business code. This is truly divide and conquer!

■■ Easy to maintain. The separation of business logic and middleware
logic is clean and maintainable. It is less code, which makes things sim-
pler. Furthermore, changing middleware does not require changing
application code.

■■ Easy to support. Customers can change the middleware they need by
tweaking the descriptor file. For example, they can change the way a
security check is performed without modifying source code. This
avoids upgrade headaches and intellectual property issues.

What Constitutes an Enterprise Bean?

Now that you understand request interception, you are ready to dive in and
see exactly what constitutes an enterprise bean. As you will see, an enterprise
bean component is not a single monolithic file—a number of files work
together to make up an enterprise bean.

The Enterprise Bean Class
The first part of your bean is the implementation itself, which contains the guts
of your logic, called the enterprise bean class. This is simply a Java class that con-
forms to a well-defined interface and obeys certain rules. The rules are neces-
sary for your beans to run in any EJB container.

An enterprise bean class contains implementation details of your compo-
nent. Although there are no hard-and-fast rules in EJB, session bean, entity
bean, and message-driven bean implementations are all very different from
each other.

EJB Fundamentals 35

06_576828 ch02.qxd 11/3/04 11:38 AM Page 35

■■ For session beans, an enterprise bean class typically contains business
process–related logic, such as logic to compute prices, transfer funds
between bank accounts, or perform order entry.

■■ For entity beans, an enterprise bean class typically contains data-
related logic, such as logic to change the name of a customer, reduce the
balance of a bank account, or modify a purchase order.

■■ For message-driven beans, an enterprise bean class typically contains
message-oriented logic, such as logic to receive a stock trade message
and call a session bean that knows how to perform stock trading.

The EJB specification defines a few standard interfaces that your bean class
can implement. These interfaces force your bean class to expose certain meth-
ods that all beans must provide, as defined by the EJB component model. The
EJB container calls these required methods to manage your bean and alert
your bean to significant events.

The most basic interface that all session, entity, and message-driven bean
classes must implement is the javax.ejb.EnterpriseBean interface, shown in
Source 2.1.

public interface javax.ejb.EnterpriseBean extends java.io.Serializable

{

}

Source 2.1 The javax.ejb.EnterpriseBean interface.

This interface serves as a marker interface; implementing this interface indi-
cates that your class is indeed an enterprise bean class. The interesting aspect
of javax.ejb.EnterpriseBean is that it extends java.io.Serializable. This means that
all enterprise beans can be converted to a bit-blob and share all the properties
of serializable objects (described in Appendix A). This will become important
later.

Session beans, entity beans, and message-driven beans each have more spe-
cific interfaces that extend the javax.ejb.EnterpriseBean interface. All session
beans must implement javax.ejb.SessionBean; all entity beans must implement
javax.ejb.EntityBean; and all message-driven beans must implement
javax.ejb.MessageDrivenBean. We’ll discuss the details of these interfaces a bit
later. For now, know that your enterprise bean class never needs to implement
the javax.ejb.EnterpriseBean interface directly; rather, your bean class imple-
ments the interface corresponding to its bean type.

36 Chapter 2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 36

The EJB Object
Enterprise beans are not full-fledged remote objects. When a client wants to
use an instance of an enterprise bean class, the client never invokes the method
directly on an actual bean instance. Rather, the invocation is intercepted by the
EJB container and then delegated to the bean instance. This is the concept of
request interception that we touched on earlier. By intercepting requests, the
EJB container can automatically perform implicit middleware. As a compo-
nent developer, this means your life is simplified greatly because you can
rapidly develop components without writing, debugging, or maintaining
code that calls middleware APIs. Some of the services that you get at the point
of interception include:

■■ Implicit distributed transaction management. Transactions enable you
to perform robust, deterministic operations in a distributed environ-
ment by setting attributes on your enterprise beans. We’ll get into the
details of transactions and how you can use them effectively in Chapter
12. For now, know that the EJB container provides a transaction service—
a low-level implementation of transaction management and coordina-
tion. The transaction service must be exposed through the Java
Transaction API (JTA). The JTA is a high-level interface that you can use
to control transactions, which we also cover in Chapter 12.

■■ Implicit security. Security is a major consideration for multitier deploy-
ments. The Java 2 Platform, Standard Edition yields a robust security
service that can authorize and authenticate users, securing deployments
from unwanted visitors. EJB adds to this the notion of transparent secu-
rity, allowing components to reap the benefits of a secure deployment
without necessarily coding to a security API.

■■ Implicit resource management and component life cycle. The EJB con-
tainer implicitly manages resources for your enterprise beans, such as
threads, sockets, and database connections. The life cycle of the enter-
prise beans themselves is also managed, allowing the EJB container to
reuse the enterprise bean instances as necessary.

■■ Implicit persistence. Persistence is a natural requirement of any
deployment that requires permanent storage. EJB offers assistance here
by automatically saving persistent object data to an underlying storage
and retrieving that data at a later time.

■■ Implicit remote accessibility. Your enterprise bean class cannot be
called across the network directly because an enterprise bean class is
not network enabled. Your EJB container handles networking for you
by wrapping your bean in a network-enabled object. The network-
enabled object receives calls from clients and delegates these calls to

EJB Fundamentals 37

06_576828 ch02.qxd 11/3/04 11:38 AM Page 37

instances of your bean class. This saves you from having to worry
about networking issues (the container provides networking as a ser-
vice to you). Thus EJB products automatically convert your standalone,
networkless components into distributed, network-aware entities.

■■ Implicit support. EJB containers automatically handle concurrent
requests from clients. EJB containers provide built-in thread support,
instantiating multiple copies of your component as necessary by instan-
tiating lots of instances of your enterprise bean and pushing one thread
through each instance. If multiple clients simultaneously invoke meth-
ods on a bean, the invocations are serialized, or performed lock step. The
container will allow only one client to call a bean at a time. The other
clients are routed to other bean instances of the same class or are forced
to wait. (Behind the scenes, the container might use Java thread syn-
chronization to aid with this. The actual algorithm used is container-
specific.) The value of threading is obvious—who enjoys writing
multithreaded code?

■■ Implicit component location transparency. Clients of components are
decoupled from the specific whereabouts of the component being used.

■■ Implicit monitoring. The EJB container can track which methods are
invoked, display a real-time usage graph on a system administrator’s
user interface, gather data for intelligent load balancing, and more. An
EJB container is not required to perform these tasks; however, high-end
EJB containers perform these tasks at the point of interception.

Thus, the EJB container acts as a layer of indirection between the client code
and the bean. This layer of indirection manifests itself as a single network-
aware object called the EJB object. The EJB object is the request interceptor we
alluded to earlier. As the old saying goes, a layer of indirection solves every
problem in computer science.

The EJB object is a surrogate object that knows about networking, transac-
tions, security, and more. It is an intelligent object that knows how to perform
intermediate logic that the EJB container requires before a method call is ser-
viced by a bean class instance. An EJB object is the request interceptor, or the
glue, between the client and the bean. EJB objects replicate and expose every
business method that the bean itself exposes. EJB objects delegate all client
requests to beans. Figure 2.5 depicts EJB objects.

You should think of EJB objects as physical parts of the container; all EJB
objects have container-specific code inside of them. (Each container handles
middleware differently and provides different qualities of service.) Because
each bean’s EJB object is different, your container vendor generates the class file
for your EJB objects automatically.

38 Chapter 2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 38

Figure 2.5 EJB objects.

Each EJB container ships with a suite of glue-code tools. These tools are meant
to integrate beans into the EJB container’s environment. The tools generate
helper Java code—stubs, skeletons, data access classes, and other classes that
this specific container requires. Bean providers do not have to think about the
specifics of how each EJB container works because the container’s tools gener-
ate its own proprietary Java code automatically.

The container’s glue-code tools are responsible for transforming an enterprise
bean into a fully managed, distributed server-side component. This involves
logic to handle resource management, life cycle, state management, transac-
tions, security, persistence, remote accessibility, and many other services. The
generated code handles these services in the container’s proprietary way.

The Remote Interface

As mentioned previously, bean clients invoke methods on EJB objects, rather
than the beans themselves. Therefore, EJB objects must clone every business
method that your bean classes expose. But how do the tools that autogenerate
EJB objects know which methods to clone? The answer is in a special interface
that a bean provider writes. This interface duplicates all the business logic
methods that the corresponding bean class exposes. This interface is called the
remote interface.

Remote interfaces must comply with special rules that the EJB specification
defines. For example, all remote interfaces must derive from a common inter-
face supplied by Sun Microsystems. This interface is called javax.ejb.EJBObject,
and it is shown in Source 2.2.

EJB Container/Server

Enterprise
Bean

Client Code, such as
Servlets or Applets

1: Call a Method

EJB Object

Remote
Interface

4: Method Returns

5: Return Result

3: Call a Bean

Transaction Service,
Security Service,

Persistence Sevice, etc

2: Call Middleware APIs

EJB Fundamentals 39

06_576828 ch02.qxd 11/3/04 11:38 AM Page 39

javax.ejb.EJBObject lists a number of interesting methods. For now, don’t
worry about fully understanding the meanings—just know that these are
required methods that all EJB objects must implement. And remember that you
don’t implement the methods—the EJB container does when it autogenerates
the EJB objects for you.

public interface javax.ejb.EJBObject

extends java.rmi.Remote

{

public javax.ejb.EJBHome getEJBHome()

throws java.rmi.RemoteException;

public java.lang.Object getPrimaryKey()

throws java.rmi.RemoteException;

public void remove()

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public javax.ejb.Handle getHandle()

Source 2.2 A preview of the javax.ejb.EJBObject interface.

40 Chapter 2

THE EJB CONTAINER: YOUR SILENT PARTNER

EJB containers are responsible for managing your beans. Containers can
interact with your beans by calling your beans’ required management methods
as necessary. These management methods are your beans’ callback methods
that the container, and only the container, invokes. The management methods
allow the container to alert your beans when middleware events take place,
such as when an entity bean is about to be persisted to storage.

The most important responsibility of an EJB container is to provide an
environment in which enterprise beans can run. EJB containers house the
enterprise beans and make them available for clients to invoke remotely. In
essence, EJB containers act as invisible middlemen between the client and the
beans. They are responsible for connecting clients to beans, performing
transaction coordination, providing persistence, managing a bean’s life cycle,
and other tasks.

The key to understanding EJB containers is to realize that they are abstract
entities. Neither the beans nor the clients that call beans ever explicitly code to
the API of an EJB container. Rather, the container implicitly manages the
overhead of a distributed component architecture. The container is analogous
to a behind-the-scenes stage manager in a theater, providing the lighting and
backdrop necessary for a successful stage performance by the actors on stage.
Neither the actors nor the audience interact directly with the stage manager.
The same is true for EJB containers. Clients that call the beans never code
directly to an EJB container API.

06_576828 ch02.qxd 11/3/04 11:38 AM Page 40

throws java.rmi.RemoteException;

public boolean isIdentical(javax.ejb.EJBObject)

throws java.rmi.RemoteException;

}

Source 2.2 (continued)

The client code that wants to work with your beans calls the methods in
javax.ejb.EJBObject. This client code could be standalone applications, applets,
servlets, or anything at all—even other enterprise beans.

In addition to the methods listed in Source 2.2, your remote interface dupli-
cates your beans’ business methods. When a bean’s client invokes any of these
business methods, the EJB object delegates the method to its corresponding
implementation, which resides in the bean itself.

Java RMI-IIOP and EJB Objects

You may have noticed that javax.ejb.EJBObject extends java.rmi.Remote. The
java.rmi.Remote interface is part of Java Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP). Any object that implements
java.rmi.Remote is a remote object and is callable from a different JVM. This is
how remote method invocations are performed in Java. (We fully describe this
in Appendix A.)

Because the EJB object provided by the container implements your remote
interface, it also indirectly implements java.rmi.Remote. Your EJB objects are
fully networked RMI-IIOP objects, able to be called from other JVMs or physi-
cal machines located elsewhere on the network. Thus, EJB remote interfaces
are really just RMI-IIOP remote interfaces—except that EJB remote interfaces
must also be built to conform to the EJB specification.

EJB remote interfaces must conform to the RMI-IIOP remote interface rules.
For example, any method that is part of a remote object callable across virtual
machines must throw a special remote exception. A remote exception is a
java.rmi.RemoteException, or (technically) a subclass of it. A remote exception
indicates that something unexpected happened on the network while you
were invoking across virtual machines, such as a network, process, or machine
failure. Every method shown in Source 2.2 for javax.ejb.EJBObject throws a
java.rmi.RemoteException.

Remote interfaces must conform to the RMI-IIOP parameter-passing con-
ventions as well. Not everything can be passed over the network in a cross-VM
method call. The parameters you pass in methods must be valid types for
RMI-IIOP. This includes primitives, serializable objects, and RMI-IIOP remote
objects. The full details of what you can pass are in Appendix A.

EJB Fundamentals 41

06_576828 ch02.qxd 11/3/04 11:38 AM Page 41

The Home Object
As we’ve discussed, client code deals with EJB objects and never with beans
directly. The next logical question is, how do clients acquire references to EJB
objects?

The client cannot instantiate an EJB object directly because the EJB object can
exist on a different machine than the one the client is on. Similarly, EJB pro-
motes location transparency, so clients should never be aware of exactly where
an EJB object resides.

42 Chapter 2

THE INSTANCE-POOLING CONCEPT

A multitier architecture’s overall scalability is enhanced when an application
server intelligently manages needed resources across a variety of deployed
components. The resources could be threads, socket connections, database
connections, and more. For example, database connections could be pooled by
application servers and reused across heterogeneous components. In the EJB
realm, the container is responsible for providing all resource management
services behind the scenes.

In addition to resource management, the EJB container is responsible for
controlling the life cycle of the deployed enterprise bean components. As bean
client requests arrive, the EJB container dynamically instantiates, destroys, and
reuses beans as appropriate. For example, if a client requests a certain type of
bean that does not yet exist in memory, the EJB container may instantiate a
new in-memory instance on behalf of the client. On the other hand, if a bean
already exists in memory, it may not be appropriate to instantiate a new bean,
especially if the system is low on memory. It might make more sense to
reassign a bean from one client to another instead. It might also make sense to
destroy some beans that are not being used anymore. This is called instance
pooling.

The benefit of bean instance pooling is that the pool of beans can be much
smaller than the actual number of clients connecting. This is due to client think
time, such as network lag or human decision time on the client side. The classic
example of this is an HTML (Web) client interacting with a human being. Web
users often click a button that executes some business logic in a component,
but then read text before initiating another action. While the user is waiting
and reading, the application server could reuse that component to service other
clients. While the client is thinking, the container can use the bean instances to
service other clients, saving previous system resources.

The take-away point here is that the EJB container is responsible for
coordinating the entire effort of resource management as well as managing the
deployed beans’ life cycle. Note that the exact scheme used is EJB container-
specific.

06_576828 ch02.qxd 11/3/04 11:38 AM Page 42

To acquire a reference to an EJB object, your client code asks for an EJB object
from an EJB object factory. This factory is responsible for instantiating (and
destroying) EJB objects. The EJB specification calls such a factory a home object.
The chief responsibilities of home objects are the following:

■■ Create EJB objects

■■ Find existing EJB objects (for entity beans, which we’ll learn about in
Chapter 6)

■■ Remove EJB objects

Just like EJB objects, home objects are proprietary and specific to each EJB
container. They contain interesting container-specific logic, such as load-bal-
ancing logic, logic to track information on a graphical administrative console,
and more. And just like EJB objects, home objects are physically part of the
container and are autogenerated by the container vendor’s tools.

The Home Interface

We’ve mentioned that home objects are factories for EJB objects. But how does
a home object know how you’d like your EJB object to be initialized? For
example, one EJB object might expose an initialization method that takes an

EJB Fundamentals 43

LOCATION TRANSPARENCY

EJB inherits a significant benefit from RMI-IIOP. In RMI-IIOP, the physical
location of the remote object you’re invoking is masked from you. This feature
spills over to EJB. Your client code is unaware of whether the EJB object it is
using is located on a machine next door or a machine across the Internet. It
also means the EJB object could be located on the same JVM as the client. This
is called location transparency.

Why is location transparency beneficial? For one thing, you aren’t writing
your bean’s client code to take advantage of a particular deployment
configuration because you’re not hard-coding machine locations. This is an
essential part of reusable components that can be deployed in a wide variety of
multitier situations.

Location transparency also enables container vendors to provide additional
value-adds, such as the ability to take down a machine on the network
temporarily to perform system maintenance, install new software, or upgrade
components on that machine. During maintenance, location transparency
allows another machine on the network to serve up components for a
component’s client because that client is not dependent on the hard locations
of any components. If a machine that has components on it crashes due to
hardware or software error, you may be able to reroute client invocations to
other machines without the client even knowing about the crash, allowing for
an enhanced level of fault tolerance.

06_576828 ch02.qxd 11/3/04 11:38 AM Page 43

integer as a parameter, and another EJB object might take a string instead. The
container needs to know this information to generate home objects. You pro-
vide this information to the container by specifying a home interface. Home
interfaces simply define methods for creating, destroying, and finding EJB
objects. The container’s home object implements your home interface (see Fig-
ure 2.6).

As usual, EJB defines some required methods that all home interfaces must
support. These required methods are defined in the javax.ejb.EJBHome inter-
face—an interface that your home interfaces must extend. Source 2.3 shows
javax.ejb.EJBHome. You will learn about these methods later.

public interface javax.ejb.EJBHome extends java.rmi.Remote

{

public EJBMetaData getEJBMetaData()

throws java.rmi.RemoteException;

public javax.ejb.HomeHandle getHomeHandle()

throws java.rmi.RemoteException;

public void remove(javax.ejb.Handle handle)

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public void remove(Object primaryKey)

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

}

Source 2.3 A preview of the javax.ejb.EJBHome interface.

Notice that the parent javax.ejb.EJBHome derives from java.rmi.Remote. This
means your home interfaces do as well, implying that home objects are also
fully networked Java RMI remote objects, which can be called across virtual
machines. The types of parameters passed in the home interface’s methods
must be valid types for Java RMI-IIOP.

The Local Interfaces
One problem with the home interface is that creating beans through that inter-
face is very slow. The same is true for calling beans through the remote inter-
face. Just to give you an idea of what happens when you call an EJB object, the
following steps may occur:

44 Chapter 2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 44

Figure 2.6 Home interfaces and objects.

1. The client calls a local stub.

2. The stub marshals parameters into a form suitable for the network.

3. The stub sends the parameters over a network connection to the skeleton.

4. The skeleton de-marshals parameters into a form suitable for Java.

5. The skeleton calls the EJB object.

6. The EJB object performs needed middleware, such as connection pool-
ing, transactions, security, and life cycle services.

7. Once the EJB object calls the enterprise bean instance, and the bean
does its work, each of the preceding steps must be repeated for the
return trip home.

Ouch! That’s a lot of overhead. Figure 2.4 shows this process.
Since version 2.0 of EJB, you can call enterprise beans in a fast, efficient way

through their local objects rather than EJB objects. Local objects implement a
local interface rather than a remote interface. The local objects are speed demons
that enable you to make high-performance enterprise beans. The process
works as follows:

1. The client calls a local object.

2. The local object performs needed middleware, such as connection pool-
ing, transactions, security, and life cycle services.

3. Once the enterprise bean instance does its work, it returns control to the
local object, which then returns control to the client.

EJB Container/Server

2: Create EJB Object

1: Create a New EJB Object

Home
Interface

Remote
Interface

3: Return EJB Object Reference

Client Code, Such
as Servlets or

Applets

Home Object

EJB Object

Enterprise
Beans

EJB Fundamentals 45

06_576828 ch02.qxd 11/3/04 11:38 AM Page 45

As you can see, we avoid the steps of the stub, skeleton, network, and mar-
shaling/demarshaling of parameters. This empowers us to write smaller
beans that perform more fine-grained tasks, without fear of a performance hit
at each and every cross-bean method call.

You can create beans in a fast way as well. Rather than using the home inter-
face and home object, you can call a special local home interface, which is imple-
mented by the container as the local home object.

These local interfaces are entirely optional; you can use them as a replace-
ment or as a complement to the remote interfaces. For simplicity, in the
remainder of this book, we will use the word EJB object to mean the request
interceptor, the remote interface to mean the interface to the request intercep-
tor, the home object to mean the factory, and the home interface to mean the
factory interface. Unless it’s pointed out explicitly, all information that applies
to these remote interfaces and remote objects also apply to their local counter-
parts. Also note that the EJB specification has defined the term component inter-
face to mean either the remote interface or local interface. We will occasionally
use this term in this book.

46 Chapter 2

EJB OBJECTS AND BEAN INSTANCES

One question we frequently are asked in our EJB training courses is “How many
home objects are there for each bean?” The answer to this question is vendor-
specific. Most containers will have a 1:N relationship between home objects
and bean instances. This means that all clients use the same home object
instance to create EJB objects. The home object will probably be written to be
thread-safe so that it can service many client requests concurrently. It is
perfectly fine for the container to do this because the container itself is
multithreaded (only your beans are single-threaded).

Another question we typically get is “How many EJB object instances are
there for each bean instance?” Some containers can have a 1:N relationship,
where each EJB object is multithreaded (just like home objects). Other
containers might have an M:N relationship, where M represents the number of
EJB objects instantiated (and corresponds exactly to the number of clients
currently connected), and N represents the number of bean instances in the
pool. In this case, each EJB object is single-threaded.

None of this really matters to you as a bean provider because you should
think of the container as a black box. However, it’s sometimes fun to know
what’s going on behind the scenes in case low-level debugging is required.

06_576828 ch02.qxd 11/3/04 11:38 AM Page 46

When you write a local interface, you extend javax.ejb.EJBLocalObject, and
when you write a local home interface, you extend javax.ejb.EJBLocalHome.
Those interfaces are previewed in the following code, and are fully explained
in Appendix E.

public interface javax.ejb.EJBLocalObject {

public javax.ejb.EJBLocalHome getEJBLocalHome()

throws javax.ejb.EJBException;

public Object getPrimaryKey()

throws javax.ejb.EJBException;

public boolean isIdentical(javax.ejb.EJBLocalObject)

throws javax.ejb.EJBException;

public void remove()

throws javax.ejb.RemoveException, javax.ejb.EJBException;

}

public interface javax.ejb.EJBLocalHome {

public void remove(java.lang.Object)

throws javax.ejb.RemoveException, javax.ejb.EJBException;

}

Local interfaces have two important side effects:

■■ They only work when you’re calling beans in the same process—for
example, if you have a bank teller session bean that calls a bank
account entity bean in the same application server. But there lies the
rub. You cannot call a bean remotely if your code relies on the local
interface. If you decide to switch between a local or remote call, you
must change your code from using the local interface to using the
remote interface. This is an inherent drawback to local interfaces.

■■ They marshal parameters by reference rather than by value. While this
may speed up your application because parameters are not copied, it
also changes the semantics of your application. Be sure that you’re
aware of this when coding your clients and beans.

For a while, the primary author of this book (Ed Roman) has been pushing
for Sun to adopt some kind of flag that enables you to switch between local
and remote access to beans without changing code. The idea is that this flag
would determine whether the container-generated interceptor object would
behave as a local object or remote object. We think this is the best approach
because (in reality) many developers will misjudge whether to use remote
or local interfaces when designing their object models, and will have to
rewrite parts of their code later in their projects.

EJB Fundamentals 47

06_576828 ch02.qxd 11/3/04 11:38 AM Page 47

The response so far from Sun is that this approach would not work because
the semantics of the application change when switching between local
interfaces and remote interfaces, due to the differences in pass-by-value
versus pass-by-reference. It would be error-prone to allow developers to
“flip a switch” in this respect.

Personally, we don’t agree with Sun. We think developers are smart enough
to avoid these mistakes, and the potential benefits outweigh the drawbacks.
Many EJB server vendors disagree as well. They actually support this
local/remote flag idea through proprietary container tools or vendor-specific
files that are separate from your bean. Thus, if you want to, you may be able
to still take advantage of these flags without sacrificing portability.

Deployment Descriptors
To inform the container about your middleware needs, you as a bean provider
must declare your components’ middleware service requirements in a deploy-
ment descriptor file. For example, you can use a deployment descriptor to
declare how the container should perform lifecycle management, persistence,
transaction control, and security services. The container inspects the deploy-
ment descriptor to fulfill the requirements that you lay out. The deployment
descriptor is the key to implicit middleware.

For example, you can use a deployment descriptor to specify the following
requirements of your bean:

■■ Bean management and lifecycle requirements. These deployment
descriptor settings indicate how the container should manage your
beans. For example, you specify the name of the bean’s class, whether
the bean is a session, entity, or message-driven bean, and the home
interface that generates the beans.

■■ Persistence requirements (entity beans only). Authors of entity beans
use the deployment descriptors to inform the container about whether
the bean handles its persistence on its own or delegates the persistence
to the EJB container in which it’s deployed.

■■ Transaction requirements. You can also specify transaction settings for
beans in deployment descriptors. These settings specify the bean
requirements for running in a transaction, such as a transaction must
start whenever anyone calls this bean, and the transaction must end
after my bean completes the method call.

■■ Security requirements. Deployment descriptors contain access control
entries, which the beans and container use to enforce access to certain
operations. For example, you can specify who is allowed to use which

48 Chapter 2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 48

beans, and even who is allowed to use each method on a particular
bean. You can also specify what security roles the beans themselves
should run in, which is useful if the beans need to perform secure oper-
ations. For example only bank executives can call the method to create
new bank accounts.

In EJB, a deployment descriptor is an XML file. You can write these XML
files by hand, or (if you’re lucky) your Integrated Development Environment
(IDE) or EJB container will supply tools to generate the XML deployment
descriptor. In the latter case, you simply might need to step through a wizard
in a Java IDE to generate a deployment descriptor.

As a bean provider, you are responsible for creating a deployment descrip-
tor. Once your bean is used, other parties can modify its deployment descrip-
tor settings. For example, an application assembler who is piecing together an
application from beans can tune your deployment descriptor. Similarly, a
deployer who is installing your beans in a container in preparation for a
deployment to go live can tune your deployment descriptor settings as well.
This is all possible because deployment descriptors declare how your beans
should use middleware, rather than you writing code that uses middleware.
Declaring rather than programming enables people without Java knowledge
and without source code access to tweak your components at a later time. This
paradigm becomes an absolute necessity when purchasing EJB components
from a third party because third-party source code is typically not available.
By having a separate, customizable deployment descriptor, you can easily
fine-tune components to a specific deployment environment without chang-
ing source code.

Vendor-Specific Files
Since all EJB server vendors are different, they each have some proprietary
value-added features. The EJB specification does not touch these features, such
as how to configure load-balancing, clustering, monitoring, and so on. There-
fore, each EJB server vendor may require that you include additional files spe-
cific to that vendor, such as XML files, text files, or binary files.

Ejb-jar File
Once you’ve generated your bean classes, your home interfaces, your remote
interfaces, and your deployment descriptor, it’s time to package them into an
Ejb-jar file. An Ejb-jar file is a compressed file that contains everything we have
described, and it follows the .ZIP compression format. Jar files are convenient,
compact modules for shipping your Java software. Figure 2.7 shows the Ejb-jar
file creation process.

EJB Fundamentals 49

06_576828 ch02.qxd 11/3/04 11:38 AM Page 49

Figure 2.7 Creating an Ejb-jar file.

There are already a number of tools available to autogenerate Ejb-jar files,
such as Java IDEs. You can also generate these files yourself—we’ll show you
how in Chapter 3.

Once you’ve made your Ejb-jar file, your enterprise bean is complete, and it
is a deployable unit within an application server. When they are deployed
(perhaps after being purchased), the tools that EJB container vendors supply
are responsible for decompressing, reading, and extracting the information
contained within the Ejb-jar file. From there, the deployer has to perform ven-
dor-specific tasks, such as generating EJB objects, generating home objects,
importing your bean into the container, and tuning the bean. Support for Ejb-
jar files is a standard, required feature for all EJB tools.

Note that you can have more than one bean in an Ejb-jar file, allowing you
to ship an entire product set of beans in a single jar file.

Summary of Terms
For your convenience, we now list the definitions of each term we’ve
described so far. As you read future chapters, refer to these definitions when-
ever you need clarification. You may want to bookmark this page.

The enterprise bean instance is a Java object instance of an enterprise bean
class. It contains business method implementations of the methods
defined in the remote or local interface. The enterprise bean instance is

Enterprise Bean
Classes

Home Interfaces

Remote Interfaces

Deployment
Descriptor

Jar File Creator EJB Jar File

Local Interfaces

Vendor-specific
files

50 Chapter 2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 50

networkless in that it contains no networked logic.

The remote interface is a Java interface that enumerates the business meth-
ods exposed by the enterprise bean class. In EJB, client code always goes
through the remote or local interface and never interacts with the enter-
prise bean instance directly. The remote interface is network-aware in
that the interface obeys the rules for Java RMI-IIOP.

The local interface is the high-performing version of the remote interface.
Use the local interface when you are calling enterprise beans that live in
the same process. Your calls will not undergo stubs, skeletons, network
calls, or the marshaling/demarshaling of parameters.

The EJB object is the container-generated implementation of the remote
interface. The EJB object is a network-aware intermediary between the
client and the bean instance, handling necessary middleware issues. All
client invocations go through the EJB object. The EJB object delegates
calls to enterprise bean instances and implements the remote interface.

The local object is the high-performing version of the EJB object. The local
object implements the local interface.

The home interface is a Java interface that serves as a factory for EJB
objects. Client code that wants to work with EJB objects must use the
home interface to retrieve them. The home interface is network-aware
because clients use it across the network.

The local home interface is the high-performing version of the home inter-
face.

The home object is the container-generated implementation of the home
interface. The home object is also network-aware, and it obeys the RMI-
IIOP rules.

The local home object is the high-performing version of the home object.
The local home object implements the local home interface.

The deployment descriptor is an XML file that specifies the middleware
requirements of your bean. You use the deployment descriptor to inform
the container about the implicit middleware you want, such as how to
manage your bean, your bean’s life cycle needs, your transactional
needs, your persistence needs, and your security needs.

The vendor-specific files enable you to take advantage of vendor-specific
features. These files are not portable between application servers.

The Ejb-jar file is the finished, complete ZIP file that contains the above
files. It is the unit of deployment and is given to the application server.
The application server unpacks the Ejb-jar file and loads the bean.

EJB Fundamentals 51

06_576828 ch02.qxd 11/3/04 11:38 AM Page 51

Summary

In this chapter, we’ve taken a whirlwind tour of EJB. We started by looking at
what a bean is, and then discussed the different kinds of beans, including ses-
sion, entity, and message-driven beans.

We then took a bean apart into its constituent pieces, and examined each
part: the enterprise bean class, remote interface, local interface, EJB object, local
object, home interface, home object, deployment descriptor, and Ejb-jar file.

Now that you understand the high-level concepts, let’s learn how to write and
use each type of EJB component, starting with a simple Hello World example.

52 Chapter 2

06_576828 ch02.qxd 11/3/04 11:38 AM Page 52

53

In this chapter, we’ll get down-and-dirty and write a real working EJB compo-
nent. Our stateless session bean will be responsible for the mighty task of
returning the string “Hello, World!” to the client. We’ll see how to write each
of the files that make up this bean and how to access it from clients.

This chapter is great for you if you want to discover how to get up and run-
ning with EJB quickly. While this may not be the most functional demonstra-
tion of the power of EJB, it illustrates the basics of EJB programming and is a
useful template for building more complex beans. This will give you the nec-
essary foundation to understand later chapters on entity beans, session beans,
and message-driven beans. We encourage you to compile and execute the
example code as we go along.

Writing Your First Bean

C H A P T E R

3

07_576828 ch03.qxd 11/3/04 11:38 AM Page 53

How to Develop an EJB Component

When building an EJB component, the following is a typical order of operations:

1. Write the .java files that compose your bean: the component interfaces,
home interfaces, enterprise bean class file, and any helper classes you
might need.

2. Write the deployment descriptor, or have it generated by your IDE or
tools like XDoclet.

3. Compile the .java files from Step 1 into .class files.

4. Using the jar utility, create an Ejb-jar file containing the deployment
descriptor and .class files.

5. Deploy the Ejb-jar file into your container in a vendor-specific manner,
perhaps by running a vendor-specific tool or perhaps by copying your
Ejb-jar file into a folder where your container looks to load Ejb-jar files.

6. Configure your EJB server so that it is properly configured to host your
Ejb-jar file. You might tune things such as database connections, thread
pools, and so on. This step is vendor-specific and might be done
through a Web-based console or by editing a configuration file.

7. Start your EJB container and confirm that it has loaded your Ejb-jar file.

8. Optionally, write a standalone test client .java file and let vendor tools
generate stub classes for remote access, if required. Compile that test
client into a .class file. Run the test client from the command line and
have it exercise your bean’s APIs.

We will apply the preceding process to our Hello World example. The com-
plete build scripts are available with the book’s accompanying source code,
which can be downloaded from our Web site.

Figure 3.1 shows the class diagram for our Hello World example and its base
classes. In the following sections, we will first look at the client interfaces, both
remote and local, then at the home interfaces, again remote and local, and
finally at the bean class itself.

54 Chapter 3

07_576828 ch03.qxd 11/3/04 11:38 AM Page 54

Figure 3.1 Our Hello world object model.

The Remote Interface

First, let’s code up the remote interface. The remote interface supports every
business method that our beans expose. The code is shown in Source 3.1.

Things to notice about our remote interface include the following:

■■ We extend javax.ejb.EJBObject. This means that the container-generated
EJB object, which implements the remote interface, will contain every
method that the javax.ejb.EJBObject interface defines. This includes a
method to compare two EJB objects, a method to remove an EJB object,
and so on.

■■ We have one business method—hello()—which returns the String
“Hello, World!” to the client. We need to implement this method in our
enterprise bean class. Because the remote interface is an RMI-IIOP
remote interface (it extends java.rmi.Remote), it must throw a remote
exception. This is the only difference between the remote interface’s
hello() signature and our bean’s hello() signature. The exception indi-
cates a networking or other critical problem.

Hello World Bean
Implementation

Class

<<interface>>
Hello World

Remote Interface

Hello World
EJB Object

<<interface>>
Hello World

Home Interface

Hello World
Home Object

Supplied by Bean provider (we will write)

Generated for us by container vendor's tools

<<interface>>
java.rmi.Remote

<<interface>>
java.io.Serializable

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.SessionBean

<<interface>>
javax.ejb.EJBHome

<<interface>>
javax.ejb.EJBObject

Comes with EJB distribution

Comes with Java 2 platform

<<interface>>
Hello World

Local Home Interface

Hello World
Local Home Object

<<interface>>
javax.ejb.EJBLocalHome

<<interface>>
Hello World

Local Interface

Hello World
EJB Local Object

<<interface>>
javax.ejb.EJBLocalObject

Writing Your First Bean 55

07_576828 ch03.qxd 11/3/04 11:38 AM Page 55

package examples;

/**

* This is the HelloBean remote interface.

*

* This interface is what clients operate on when

* they interact with EJB objects. The container

* vendor will implement this interface; the

* implemented object is the EJB object, which

* delegates invocations to the actual bean.

*/

public interface Hello extends javax.ejb.EJBObject

{

/**

* The one method - hello - returns a greeting to the client.

*/

public String hello() throws java.rmi.RemoteException;

}

Source 3.1 Hello.java.

The Local Interface

Local clients will use our local interface, rather than the remote interface, to
call our beans’ methods. It is shown in Source 3.2.

package examples;

/**

* This is the HelloBean local interface.

*

* This interface is what local clients operate

* on when they interact with EJB local objects.

* The container vendor will implement this

* interface; the implemented object is the

* EJB local object, which delegates invocations

* to the actual bean.

*/

public interface HelloLocal extends javax.ejb.EJBLocalObject

{

/**

Source 3.2 HelloLocal.java.

56 Chapter 3

07_576828 ch03.qxd 11/3/04 11:38 AM Page 56

* The one method - hello - returns a greeting to the client.

*/

public String hello();

}

Source 3.2 (continued)

As you can see, there are trivial differences between the local interface and
the remote interface. We extend a different interface, and we don’t throw
remote exceptions.

The Home Interface

Next, let’s put together the home interface. The home interface has methods to
create and destroy EJB objects. The implementation of the home interface is the
home object, which is generated by the container tools.

The code for our home interface is shown in Source 3.3.

/**

* This is the home interface for HelloBean. This interface

* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves

* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

* corresponds to the ejbCreate() method in HelloBean.

*/

public interface HelloHome extends javax.ejb.EJBHome

{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.

*/

Hello create() throws java.rmi.RemoteException,

javax.ejb.CreateException;

}

Source 3.3 HelloHome.java.

Notice the following about our home interface:

■■ The single create() is a factory method that clients use to get a reference
to an EJB object. The create() method is also used to initialize a bean.

Writing Your First Bean 57

07_576828 ch03.qxd 11/3/04 11:38 AM Page 57

■■ The create() method throws two exceptions: java.rmi.RemoteException
and javax.ejb.CreateException. Remote exceptions are necessary side
effects of RMI-IIOP because the home object is a networked RMI-IIOP
remote object. CreateException is also required in all create() methods. We
explain this further in the Exceptions and EJB sidebar.

■■ Our home interface extends javax.ejb.EJBHome. This is required for all
home interfaces. EJBHome defines a way to destroy an EJB object, so we
don’t need to write that method signature.

58 Chapter 3

EXCEPTIONS AND EJB

Every networked object in EJB conforms to the RMI-IIOP standard and must
throw a remote exception. Thus, every method in an EJB object and home
object (such as our hello() method) must throw a remote exception. When such
an exception is thrown, it indicates a special error condition—a network failure,
machine failure, or other catastrophic failure.

But how can your beans throw exceptions that indicate regular, run-of-the-
mill problems, such as bad parameters passed to a business method? EJB
comes with some built-in exceptions to handle this, and it also allows you to
define your own exception types.

More formally, EJB defines the following exception types:

◆ A system-level exception is a serious error that involves some critical
failure, such as a database malfunction.

◆ An application-level exception is a more routine exception, such as an
indication of bad parameters to a method or a warning of an insufficient
bank account balance to make a withdrawal. For example, in our “Hello,
World!” home interface, we throw the standard exception javax.ejb.Cre-
ateException from the home interface’s create() method. This is an ex-
ample of a required application-level exception, indicating that some
ordinary problem occurred during bean initialization.

Why must we separate the concepts of system-level and application-level
exceptions? The chief reason is that system-level exceptions are handled quite
differently from application-level exceptions.

For example, system-level exceptions are not necessarily thrown back to the
client. Remember that EJB objects—the container-generated wrappers for
beans—are middlemen between a bean’s client and the bean itself. EJB objects
have the ability to intercept any exceptions that beans may throw. This allows
EJB objects to pick and choose which exceptions the client should see. In some
cases, if a bean fails, it may be possible to salvage the client’s invocation and
redirect it to another bean. This is known as transparent fail-over, a quality of
service that some EJB container/server vendors provide. This is an easy service
to provide for stateless beans because there is no lost state when a bean
crashes. Some high-end EJB products even provide transparent fail-over for

07_576828 ch03.qxd 11/3/04 11:38 AM Page 58

The Local Home Interface

Our local home interface, the higher-performing home interface used by local
clients, is in Source 3.4.

package examples;

/**

* This is the local home interface for HelloBean.

Source 3.4 HelloLocalHome.java. (continues)

Writing Your First Bean 59

stateful beans by routinely checkpointing the stateful bean’s conversational
state (see Chapter 19 for more). In case of a critical, unrecoverable problem,
your EJB container may support professional monitoring systems, alerting a
system administrator if a catastrophic error occurs.

By way of comparison, application-level exceptions should always be thrown
back to the client. Application-level exceptions indicate a routine problem, and
the exception itself is valuable data that the client needs. For example, we
could notify a client of insufficient funds in a bank account by throwing an
application-level exception. The client would always want to know about this
because it is an application-level problem, not a system-level problem.

Besides correctly routing system-level and application-level exceptions, the
EJB object is responsible for catching all unchecked exceptions (flavors of
java.lang.RuntimeException) that your bean may throw, such as a NullPointer
exception. These are typically not caught by the code. Exceptions that are
unchecked in the bean could leave the bean in an abnormal state because the
bean is not expecting to handle such an exception. In this scenario, the EJB
container intercepts the exception and performs some action, such as throwing
the exception back to the client as a remote exception. It also probably stops
using that bean because the bean is in an undefined state.

The following two rules of thumb should help you with exceptions.

◆ Application-level exceptions are always thrown back to the client. This
includes any exception the bean defines. It also includes the exception
javax.ejb.CreateException for creating beans (and javax.ejb.FindExcep-
tion for entity beans, which we’ll discuss in Chapters 5 through 8).

◆ When system-level exceptions occur, the EJB container can do anything it
wants: page a system administrator with an alert, send an e-mail to a
third party, or throw the exception back to the client. Your bean can
throw a system-level exception as either an RMI-IIOP remote exception
or unchecked RuntimeException. If the exception is thrown to the client,
it is always thrown as a remote exception or a subclass of it.

Exceptions also have an impact on transactions. You’ll learn more about this
effect in Chapter 12.

07_576828 ch03.qxd 11/3/04 11:38 AM Page 59

* This interface is implemented by the EJB Server’s

* tools - the implemented object is called the

* local home object, and serves as a factory for

* EJB local objects.

*/

public interface HelloLocalHome extends javax.ejb.EJBLocalHome

{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.

*/

HelloLocal create() throws javax.ejb.CreateException;

}

Source 3.4 (continued)

The differences between the remote interface and the local interface are as
follows:

■■ The local home interface extends EJBLocalHome rather than EJBHome.
The EJBLocalHome interface does not extend java.rmi.Remote. This means
that the generated implementation will not be a remote object.

■■ The local home interface does not throw RemoteExceptions.

60 Chapter 3

WHAT HAPPENS DURING CREATE() AND REMOVE()

As we’ve discussed, the container, rather than a client, creates and destroys
your beans. But if the container is responsible for a bean life cycle, then why
does the home interface and local home interface specify create() and
remove() methods? What you must remember is that these methods are for
creating and destroying EJB objects. This may not correspond to the actual
creation and destruction of beans. The client shouldn’t care whether the actual
bean is created or destroyed—all the client code cares about is that the client
has an EJB object to invoke. The fact that beans are pooled and reused behind
the EJB object is irrelevant.

So when debugging your EJB applications, don’t be alarmed if your bean isn’t
being created or destroyed when you call create() or remove() on the home
object or local home object. Depending on your container’s policy, your beans
may be pooled and reused, with the container creating and destroying at will.

07_576828 ch03.qxd 11/3/04 11:38 AM Page 60

The Bean Class

Now let’s look at the bean class itself. The code is shown in Source 3.5.

package examples;

/**

* Demonstration stateless session bean.

*/

public class HelloBean implements javax.ejb.SessionBean {

private SessionContext ctx;

//

// EJB-required methods

//

public void ejbCreate() {

System.out.println(“ejbCreate()”);

}

public void ejbRemove() {

System.out.println(“ejbRemove()”);

}

public void ejbActivate() {

System.out.println(“ejbActivate()”);

}

public void ejbPassivate() {

System.out.println(“ejbPassivate()”);

}

public void setSessionContext(javax.ejb.SessionContext ctx) {

this.ctx = ctx;

}

//

// Business methods

//

public String hello() {

System.out.println(“hello()”);

return “Hello, World!”;

}

}

Source 3.5 HelloBean.java.

Writing Your First Bean 61

07_576828 ch03.qxd 11/3/04 11:38 AM Page 61

This is just about the most basic bean class possible. Notice the following:

■■ Our bean implements the javax.ejb.SessionBean interface, which makes it
a session bean. This interface defines a few required methods that you
must fill in. The container uses these management methods to interact
with the bean, calling them periodically to alert the bean to important
events. For example, the container will alert the bean when it is being
initialized and when it is being destroyed. These callbacks are not
intended for client use, so you will never call them directly—only your
EJB container will. We’ll learn about the specifics of these management
methods in the pages to come.

■■ The bean has an ejbCreate() method that matches the home object’s cre-
ate() method, and takes no parameters.

■■ We have one business method, hello(). It returns Hello, World! to the
client.

■■ The ejbActivate() and ejbPassivate() methods do not apply to stateless
session beans, and so we leave these methods empty. You’ll learn what
these methods mean and what to use them for in the next chapters.

■■ When we destroy the bean, there’s nothing to clean up, so we have a
very simple ejbRemove() method.

We also have a method called setSessionContext(). This method is explained
in the following sidebar.

62 Chapter 3

EJB CONTEXTS: YOUR GATEWAY TO THE CONTAINER

Since your enterprise beans live in a managed container, the container is free
to call your EJB components’ methods at its leisure. But what if your bean
needs to query the container for information about its current status? For
example, inside your bean, you may want to access the security credentials of
the user currently calling your bean’s method.

The container houses all of this information in one object, called an EJB
context object. An EJB context object is your gateway to the container. EJB
contexts are physical parts containers and can be accessed from within your
beans. Thus, a context represents a way for beans to perform callbacks to the
container. These callbacks help beans both ascertain their current status and
modify their current status. This is shown in Figure 3.2.

07_576828 ch03.qxd 11/3/04 11:38 AM Page 62

Writing Your First Bean 63

The motivation behind a context is to encapsulate the bean’s domain in one
compact object. Note that a bean’s status may change over the bean’s life cycle,
and thus this context object can dynamically change over time as well. At
runtime, the container is responsible for changing the context to reflect any
status changes, such as the bean becoming involved in a new transaction.

Here is what the javax.ejb.EJBContext interface looks like (thrown
exceptions omitted):

public interface javax.ejb.EJBContext

{

/*

* Call these from within your bean to access

* your own home object or local home object.

*

* You can use them to create, destroy, or

* find EJB objects and EJB local objects

* of your own bean class type.

*/

public javax.ejb.EJBHome getEJBHome();

public javax.ejb.EJBLocalHome getEJBLocalHome();

/*

* These are transaction methods - see Chapter 10

*/

public boolean getRollbackOnly();

public void setRollbackOnly();

public javax.transaction.UserTransaction getUserTransaction();

/*

* These are security methods - see Chapter 13

*/

public boolean isCallerInRole(java.lang.String);

public java.security.Principal getCallerPrincipal();

}

An EJB context contains callbacks useful for session beans, entity beans, and
message-driven beans. In comparison, a session context, entity context, and
message-driven context are specific EJB contexts used only for session beans,
entity beans, and message-driven beans.

The container associates your bean with a context by calling
setSessionContext, setEntityContext, or setMessageDrivenContext, depending
on your bean type. When you define each of these methods, you should store
the context away in a member variable so the context can be queried later, as
shown in Source 3.5.

07_576828 ch03.qxd 11/3/04 11:38 AM Page 63

Figure 3.2 EJB contexts.

The Deployment Descriptor

Next, we need to generate a deployment descriptor, which describes our bean’s
middleware requirements to the container. Deployment descriptors are one of
the key features of EJB because they enable you to declaratively specify attrib-
utes on your beans, rather than program this functionality into the bean itself.

Physically, a deployment descriptor is an XML document. Your EJB con-
tainer, IDE environment, or other tool (such as a UML editor that can generate
EJB code) should supply tools to help you generate such a deployment
descriptor.

Our deployment descriptor is shown in Source 3.6.
Many different settings make up a deployment descriptor. For a full deploy-

ment descriptor reference, see Appendix C. For now, here is an explanation of
our session bean descriptor:

<ejb-name> The nickname for this particular bean. Can be used later in
the deployment descriptor to refer back to this bean to set additional set-
tings.

<home> The fully qualified name of the home interface.

<remote> The fully qualified name of the remote interface.

<local-home> The fully qualified name of the local home interface.

<local> The fully qualified name of the local interface.

<ejb-class> The fully qualified name of the enterprise bean class.

EJB Container/Server

Enterprise
Bean

EJB Object
3: Business Method

2: Store Context
in Private Variable

EJB Context
Object

4: Query the Container for
Environment Information

1: Give Context to Bean

64 Chapter 3

07_576828 ch03.qxd 11/3/04 11:38 AM Page 64

<session-type> Whether the session bean is a stateful or stateless session
bean.

<transaction-type> Ignore for now—see Chapter 12 for more details on
transactions.

<!DOCTYPE ejb-jar PUBLIC “-//Sun Microsystems, Inc.//DTD Enterprise Æ

JavaBeans 2.0//EN” “ http://java.sun.com/dtd/ejb-jar_2_0.dtd”>

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>Hello</ejb-name>

<home>examples.HelloHome</home>

<remote>examples.Hello</remote>

<local-home>examples.HelloLocalHome</local-home>

<local>examples.HelloLocal</local>

<ejb-class>examples.HelloBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

Source 3.6 ejb-jar.xml.

The Vendor-Specific Files

Next in our stateless session bean are vendor-specific files. These files exist
because the EJB specification can’t cover everything; vendors differentiate
their products in areas such as instance pooling algorithms, clustering algo-
rithms, and so on. The vendor-specific files are not portable and can use any
file format, including XML, flat file, or binary. In fact, it may not even exist as
files—the settings could be stored in some database with a GUI on top of it.

The source code that accompanies this book shows an example of a vendor-
specific file.

The Ejb-jar File

Now that we’ve written all the necessary files for our component, we need to
package all the files together in an Ejb-jar file. If you’re using a development
environment supporting EJB, the development environment may contain an

Writing Your First Bean 65

07_576828 ch03.qxd 11/3/04 11:38 AM Page 65

automated way to generate the Ejb-jar file for you. We can generate it manu-
ally as follows:

jar cf HelloWorld.jar *

The asterisk indicates the files to include in the jar—the bean class, home
interface, local home interface, remote interface, local interface, deployment
descriptor, and possibly vendor-specific files (depending on your container’s
policy).

The folder structure within the Ejb-jar file looks as follows:

META-INF/

META-INF/MANIFEST.MF

examples/

examples/HelloBean.class

examples/HelloHome.class

examples/Hello.class

examples/HelloLocal.class

examples/HelloLocalHome.class

META-INF/ejb-jar.xml

The files must be in properly named subdirectories of the current directory.
For example, our Hello.class file is located in examples/ Hello.class, below the
current directory. You must store your classes in a directory corresponding to
the package that the class belongs to, or the JVM will be unable to locate your
classes when it searches your jar. The ejb-jar.xml file must be placed in the
META-INF subfolder. The container consults that file first when opening the
Ejb-jar file to figure out what beans are inside the jar.

The MANIFEST.MF file is a listing of the files within the Ejb-jar file. It is
autogenerated by the jar utility. You don’t need to worry about this file.

Deploying the Bean

Finally, we’re ready to deploy our bean in an EJB container. This step varies
from container to container. When you reach this point, consult your con-
tainer’s documentation about how to deploy a bean. This could involve any-
thing from running a command-line tool on your Ejb-jar file to copying your
Ejb-jar file into a well-known folder where your application server detects its
presence. For an example of deploying a bean, see the source code accompa-
nying this book.

When deploying an Ejb-jar file into a container, the following steps are usu-
ally performed:

66 Chapter 3

07_576828 ch03.qxd 11/3/04 11:38 AM Page 66

■■ The Ejb-jar file is verified. The container checks that the enterprise bean
class, the remote interface, and other items are valid. Any commercial
tool should report intelligent errors back to you, such as, “You need to
define an ejbCreate() method in your bean.”

■■ The container tool generates an EJB object and home object for you.

■■ The container tool generates any necessary RMI-IIOP stubs and skele-
tons. (See Appendix A for more information about stubs and skeletons.)

Once you’ve performed these steps, start up your EJB container (if it isn’t
already running). Most products output a server log or have a GUI to view the
beans that are deployed. Make sure that your container is indeed making your
bean available. It should tell you it did so.

The Optional EJB Client JAR File

One common question deployers ask is, “Which classes do I need to deploy
with my client applications that call enterprise beans?” EJB enables you to
specify the exact classes you need with an Ejb-client jar file. An Ejb-client jar file
is an archive of classes that must be deployed for any clients of a particular Ejb-
jar file. You specify the name of the Ejb-client jar file in your XML deployment
descriptor, as shown in Source 3.7.

...

<ejb-jar>

<enterprise-beans>

...

</enterprise-beans>

<!--

This is an optional instruction to the deployer that

he must make the this jar file accessible to

clients of these beans. If this instruction does not

exist, the deployer must make the entire Ejb-jar file

accessible to clients.

-->

<ejb-client-jar>HelloClient.jar</ejb-client-jar>

</ejb-jar>

Source 3.7 Declaring an Ejb-client jar file within a deployment descriptor.

When you build an Ejb-client jar file, you should bundle only the files needed
by the client. This typically includes interfaces, helper classes, and stubs.

Writing Your First Bean 67

07_576828 ch03.qxd 11/3/04 11:38 AM Page 67

You might find Ejb-client jar files useful for saving hard disk space, so you
can avoid copying the entire Ejb-jar file onto the client machine. This might be
useful if you’re in an applet environment.

However, Ejb-client jar files are completely optional and most deployments
will not make use of them. This is because hard disk space is usually not a
problem, especially if the client of your application server is a Web server.
Laziness will usually prevail.

Understanding How to Call Beans

We now take a look at the other half of the world—the client side. We are now
customers of the beans’ business logic, and we are trying to solve some real-
world problem by using one or more beans together. There are two different
kinds of clients.

■■ Java RMI-IIOP–based clients. These clients use the Java Naming and
Directory Interface (JNDI) to look up objects over a network, and they
use the Java Transaction API (JTA) to control transactions.

■■ CORBA clients. Clients can also be written to the CORBA standard.
This would primarily be useful if you want to call your EJB components
using another language, such as C++. CORBA clients use the CORBA
Naming Service (COS Naming) to look up objects over the network, and
they use CORBA’s Object Transaction Service (OTS) to control transac-
tions.

Whether you’re using CORBA or RMI-IIOP, your client code typically
breaks down like this:

1. Look up a home object.

2. Use the home object to create an EJB object.

3. Call business methods on the EJB object.

4. Remove the EJB object.

You’re about to see how to call EJB components from RMI-IIOP clients. This
is the paradigm we’ll use throughout this book. If you’re interested in CORBA
clients, see Appendix B.

Looking up a Home Object
One of the goals of EJB is that your application code should be “write once, run
anywhere.” If you deploy a bean onto one machine and then switch it for a dif-
ferent machine, your code should not change because it is location transparent.

EJB achieves location transparency by leveraging naming and directory ser-
vices. Naming and directory services are products that store and look up

68 Chapter 3

07_576828 ch03.qxd 11/3/04 11:38 AM Page 68

resources across a network. Some examples of directory service products are
Directory Server (iPlanet), Active Directory (Microsoft), and Lotus Notes
Domino Server (IBM).

Corporations traditionally have used naming and directory services to store
user names, passwords, machine locations, printer locations, and so on. EJB
servers exploit naming services to store location information for resources that
your application code uses in an enterprise deployment. These resources
could be EJB home objects, enterprise bean environment properties, database
drivers, message service drivers, and other resources. By using naming ser-
vices, you can write application code that does not depend on specific machine
names or locations. This is all part of the EJB location transparency, and it
keeps your code portable. If you decide later that resources should be located
elsewhere, your code does not need to be rebuilt because the naming service
can simply be updated to reflect the new resource locations. This greatly
enhances maintenance of a multitier deployment that may evolve over time.
This becomes absolutely necessary when purchasing prewritten software
(such as enterprise beans), because your purchased components’ source code
will likely not be made available to you to change.

While naming and directory servers have typically run standalone, they can
also run in the same process as the application server. Many containers are
written in Java, and so their naming and directory services are just bunches
of Java classes that run inside of the container.

Unless you’re using CORBA, the de facto API used to access naming and
directory services is JNDI, which we explain in Appendix A. JNDI adds value
to your enterprise deployments by providing a standard interface for locating
users, machines, networks, objects, and services. For example, you can use the
JNDI to locate a printer on your corporate intranet. You can also use it to locate
a Java object or to connect with a database. In EJB, JNDI is used to look up
home objects. JNDI is also useful for locating resources across an enterprise
deployment, including environment properties, database resources, and more;
we’ll show you how to leverage JNDI for these purposes in Chapter 10.

How to Use JNDI to Locate Home Objects

To achieve location transparency, EJB containers mask the specific locations of
home objects from your enterprise beans’ client code. Clients do not hard-code
the machine names that home objects reside on; rather, they use JNDI to look up
home objects. Home objects are physically located somewhere on the net-
work—perhaps in the address space of an EJB container residing on machine
#1, or perhaps on a container residing on machine #2. As a developer who
writes client code to use beans, you don’t care.

Writing Your First Bean 69

07_576828 ch03.qxd 11/3/04 11:38 AM Page 69

For clients to locate a home object, you must provide a JNDI nickname for
your bean’s home object. Clients will use this nickname to identify the home
object they want. For example, our Hello World example might have a nick-
name HelloHome. You specify this nickname using the proprietary vendor-spe-
cific files that are bundled with your bean.

When you deploy your bean into the container, the container automatically
binds the nickname HelloHome to the home object. Then any client on any
machine across a multitier deployment can use that nickname to find home
objects, without regard to physical machine locations. Clients use the JNDI
API to do this. JNDI goes over the network to some naming service, or JNDI
tree, to look for the home object, perhaps contacting one or more naming ser-
vices in the process. Eventually the home object is found, and a reference to it
is returned to the client (see Figure 3.3).

Figure 3.3 Acquiring a reference to a home object.

EJB Container/Server

4: Create EJB Object

3: Create a New
EJB Object

Home
Interface

Remote
Interface

Client

Home Object

EJB Object

Naming Service
Such as LDAP

1: Retrieve
Home Object
Reference

2: Return
Home Object
Reference

JNDI

6: Invoke Business Method

5: Return
EJB Object
Reference

Enterprise
Bean

7: Delegate Request to Bean

70 Chapter 3

07_576828 ch03.qxd 11/3/04 11:38 AM Page 70

The complete client source code is shown in Source 3.8.

package examples;

import javax.naming.Context;

import javax.naming.InitialContext;

import java.util.Properties;

/**

* This class is an example of client code that invokes

* methods on a simple stateless session bean.

*/

public class HelloClient {

public static void main(String[] args) throws Exception {

/*

* Setup properties for JNDI initialization.

*

* These properties will be read-in from

* the command-line.

*/

Properties props = System.getProperties();

/*

* Obtain the JNDI initial context.

*

* The initial context is a starting point for

* connecting to a JNDI tree. We choose our JNDI

* driver, the network location of the server, etc.

* by passing in the environment properties.

*/

Context ctx = new InitialContext(props);

/*

* Get a reference to the home object - the

* factory for Hello EJB Objects

*/

Object obj = ctx.lookup(“HelloHome”);

/*

* Home objects are RMI-IIOP objects, and so

* they must be cast into RMI-IIOP objects

* using a special RMI-IIOP cast.

*

* See Appendix A for more details on this.

*/

HelloHome home = (HelloHome)

javax.rmi.PortableRemoteObject.narrow(

Source 3.8 HelloClient.java. (continued)

Writing Your First Bean 71

07_576828 ch03.qxd 11/3/04 11:38 AM Page 71

obj, HelloHome.class);

/*

* Use the factory to create the Hello EJB Object

*/

Hello hello = home.create();

/*

* Call the hello() method on the EJB object. The

* EJB object will delegate the call to the bean,

* receive the result, and return it to us.

*

* We then print the result to the screen.

*/

System.out.println(hello.hello());

/*

* Done with EJB Object, so remove it.

* The container will destroy the EJB object.

*/

hello.remove();

}

}

Source 3.8 (continued)

The client code is self-explanatory.

Running the System

To try the deployment, you first must bring up the application server. This step
varies depending on your vendor. Again, since we want to keep this book ven-
dor-neutral, please see the book’s accompanying source code for an example.

Next, run the client application. When running the client, you need to sup-
ply the client with JNDI environment information. As we explain in Appendix
A, JNDI requires a minimum of two properties to retrieve an initial context:

■■ The name of the initial context factory. Examples are com.sun.jndi
.ldap.LdapCtxFactory for an LDAP JNDI context, and com.sun.jndi
.cosnaming.CNCtxFactory for a CORBA Naming Service context.

■■ The provider URL, indicating the location of the JNDI tree to use.
Examples are ldap://louvre:389/o5Airius.com and corbaloc::raccoon:
3700/NameService.

72 Chapter 3

07_576828 ch03.qxd 11/3/04 11:38 AM Page 72

The actual parameters you need should be part of your EJB container’s doc-
umentation. See the book’s accompanying source code for examples of this.

For your EJB client code to work, you must take care to distribute the correct
class files on the right machines. If remote client code uses home interfaces
and remote interfaces, then you must deploy those class files and the
necessary client stub classes in your client environment. And because
clients never directly access your bean implementation, you should not
deploy your bean classes in your client environment.

The Server-Side Output
When we run the client, our container shows the following debug log. (Debug
logs are great for seeing what your enterprise beans are doing.)

setSessionContext()

ejbCreate()

hello()

ejbRemove()

As you can see, the container associated our bean with a session context,
called create(), delegated a business method to the bean, and then called
remove(). Note that some containers may give slightly different output than
others—it’s all implementation-specific and part of EJB product differentia-
tion. Keep this in mind when debugging your beans.

The Client-Side Output
After running the client, you should see the following output:

Hello, World!

Implementing Component Interfaces

We wrap up this chapter with a quick design strategy. As you probably
noticed, our enterprise bean class does not implement its own component
interface (either remote interface or local interface). But why not? Doesn’t the
component interface seem like a natural fit for the interface to your bean? After
all, the component interface defines every business method of the bean.
Implementing your component interface would be a nifty way to perform
compile-time checking to make sure your bean’s method signature matches
your component interface’s signature.

Writing Your First Bean 73

07_576828 ch03.qxd 11/3/04 11:38 AM Page 73

There are two good reasons not to implement your bean’s component
interface:

■■ Reason 1. Component interfaces extend interfaces defined by Sun, such
as javax.ejb.EJBObject or javax.ejb.EJBLocalObject. These superinterfaces
define additional methods intended for client use, and you’d therefore
have to provide no-op implementations of those methods in your bean.
Those methods have no place in your bean class.

■■ Reason 2. Let’s assume your enterprise bean wants to call a method on
a different enterprise bean, and you want to pass a reference to your
bean as a parameter to the other bean’s method (similar to passing the
this parameter in Java). How can you do this in EJB?

Remember that all clients call methods on EJB objects, not beans. Thus, if
your bean calls another bean, you must pass a reference to your bean’s EJB
object, rather than a reference to your bean. The other bean should operate on
your EJB object, and not your bean, because the other bean is a client, just like
any other client, and all clients must go through EJB objects.

The danger here is if your enterprise bean class implements your EJB
object’s remote interface. You could accidentally pass a reference to the bean
itself, rather than pass a reference to the bean’s EJB object. Because your bean
implements the same interface as the EJB object, the compiler would let you
pass the bean itself as a this parameter, which is an error.

A Solution
There is an alternative way to preserve compile-time checks of your method
signatures. The approach is to contain your bean’s business method signatures
within a common superinterface that your remote interface extends and your
bean implements. You can think of this superinterface as a business interface
that defines your business methods and is independent of EJB. The following
example illustrates this concept:

// Business interface

public interface HelloBusinessMethods {

public String hello() throws java.rmi.RemoteException;

}

// EJB remote interface

public interface HelloRemote extends javax.ejb.EJBObject,

HelloBusinessMethods {

}

// EJB local interface

public interface HelloLocal extends javax.ejb.EJBLocalObject,

HelloBusinessMethods {

}

74 Chapter 3

07_576828 ch03.qxd 11/3/04 11:38 AM Page 74

// Bean implementation

public class HelloBean implements SessionBean, HelloBusinessMethods {

public String hello() {

return “Hello, World!”;

}

<...define other required callbacks...>

}

The only problem with this approach is that the local interface throws remote
exceptions. If you can live with that, then this design strategy works.

Summary

In this chapter, you learned how to write the component interfaces, home
interface, enterprise bean class, deployment descriptor, and Ejb-jar file. You
also saw how to call beans using JNDI and RMI-IIOP. Congratulations are in
order: It took a while, but you’ve successfully completed your first Enterprise
JavaBeans deployment!

Writing Your First Bean 75

07_576828 ch03.qxd 11/3/04 11:38 AM Page 75

07_576828 ch03.qxd 11/3/04 11:38 AM Page 76

PA R T

The Triad of Beans

In Part Two of this book, we’ll focus on the development details for imple-
menting an EJB application. We’ll discuss the three types of enterprise
beans: session beans (Chapter 4), entity beans (Chapter 6), and message-
driven beans (Chapter 9). We’ll also explore their subtypes: stateless session
beans, stateful session beans, session beans as Web Services (Chapter 5),
bean-managed persistent entity beans (Chapter 7), and container-managed
persistent entity beans (Chapter 8). Not only will we cover each of these con-
ceptually, but we’ll also write an example for each bean type. We’ll end Part
Two with a discussion of container-provided services (Chapter 10), such as
security, the environment, and calling beans from other beans.

Part Two is essential for those of you who are ready to delve into EJB pro-
gramming fundamentals. It is essential groundwork to prepare yourself for
the more advanced topics, such as transactions and EJB design strategies,
which are coming in Part Three.

Two

08_576828 pt02.qxd 11/3/04 11:39 AM Page 77

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

08_576828 pt02.qxd 11/3/04 11:39 AM Page 78

79

A session bean represents work being performed for client code that is calling it.
Session beans are business process objects that implement business logic, busi-
ness rules, algorithms, and workflow. For example, a session bean can perform
price quoting, order entry, video compression, banking transactions, stock
trades, database operations, complex calculations, and more. They are
reusable components that contain logic for business processes.

Let’s examine the characteristics of session beans in detail and then code up
a stateful session bean.

Session Bean Lifetime

A key difference between session beans and other bean types is the scope of
their lives. A session bean instance is a relatively short-lived object. It has
roughly the lifetime equivalent of a session or of the client code that is calling
the session bean. Session bean instances are not shared between multiple
clients.

For example, if the client code contacted a session bean to perform order
entry logic, the EJB container is responsible for creating an instance of that ses-
sion bean component. When the client later disconnects, the application server
may destroy the session bean instance.

Introduction to Session Beans

C H A P T E R

4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 79

A client’s session duration could be as long as a browser window is open,
perhaps connecting to an e-commerce site with deployed session beans. It
could also be as long as your Java applet is running, as long as a standalone
application is open, or as long as another bean is using your bean.

The length of the client’s session generally determines how long a session
bean is in use—that is where the term session bean originated. The EJB con-
tainer is empowered to destroy session beans if clients time out. If your client
code is using your beans for 10 minutes, your session beans might live for min-
utes or hours, but probably not weeks, months, or years. Typically session
beans do not survive application server crashes, nor do they survive machine
crashes. They are in-memory objects that live and die with their surrounding
environments.

In contrast, entity beans can live for months or even years because entity
beans are persistent objects. Entity beans are part of a durable, permanent stor-
age, such as a database. Entity beans can be constructed in memory from data-
base data, and they can survive for long periods of time.

Session beans are nonpersistent. This means that session beans are not saved
to permanent storage, whereas entity beans are. Note that session beans can
perform database operations, but the session bean itself is not a persistent
object.

Session Bean Subtypes

All enterprise beans hold conversations with clients at some level. A conversa-
tion is an interaction between a client and a bean, and it is composed of a num-
ber of method calls between the client and the bean. A conversation spans a
business process for the client, such as configuring a frame-relay switch, pur-
chasing goods over the Internet, or entering information about a new customer.

The two subtypes of session beans are stateful session beans and stateless ses-
sion beans. Each is used to model different types of these conversations.

Stateful Session Beans
Some business processes are naturally drawn-out conversations over several
requests. An example is an e-commerce Web store. As a user peruses an online
e-commerce Web site, the user can add products to the online shopping cart.
Each time the user adds a product, we perform another request. The conse-
quence of such a business process is that the components must track the user’s
state (such as a shopping cart state) from request to request.

80 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 80

Another example of a drawn-out business process is a banking application.
You may have code representing a bank teller who deals with a particular
client for a long period of time. That teller may perform a number of banking
transactions on behalf of the client, such as checking the account balance,
depositing funds, and making a withdrawal.

A stateful session bean is a bean that is designed to service business processes
that span multiple method requests or transactions. To accomplish this, state-
ful session beans retain state on behalf of an individual client. If a stateful ses-
sion bean’s state is changed during a method invocation, that same state will
be available to that same client upon the following invocation.

Stateless Session Beans
Some business processes naturally lend themselves to a single request conver-
sation. A single request business process is one that does not require state to be
maintained across method invocations.

A stateless session bean is a bean that holds conversations that span a single
method call. They are stateless because they do not hold multimethod conver-
sations with their clients. After each method call, the container may choose to
destroy a stateless session bean, or recreate it, clearing itself out of all informa-
tion pertaining to past invocations. It also may choose to keep your instance
around, perhaps reusing it for all clients who want to use the same session
bean class. The exact algorithm is container specific. The takeaway point is
this: Expect your bean to forget everything after each method call, and thus
retain no conversational state from method to method. If your bean happens to
hang around longer, then great—but that’s your container’s decision, and you
shouldn’t rely on it.

For a stateless session bean to be useful to a client, the client must pass all
client data that the bean needs as parameters to business logic methods. Alter-
natively, the bean can retrieve the data it needs from an external source, such
as a database.

Stateless really means no conversational state. Stateless session beans can
contain state that is not specific to any one client, such as a database
connection factory that all clients would use. You can keep this around in a
private variable. So long as you’re willing to lose the data in your private
variable at any time, you’ll be fine.

An example of a stateless session bean is a high-performance engine that
solves complex mathematical operations on a given input, such as compression
of audio or video data. The client could pass in a buffer of uncompressed data,
as well as a compression factor. The bean returns a compressed buffer and is

Introduction to Session Beans 81

09_576828 ch04.qxd 11/3/04 11:39 AM Page 81

then available to service a different client. The business process spanned one
method request. The bean does not retain any state from previous requests.

Another example of a stateless session bean is a credit card verification com-
ponent. The verifier bean takes a credit card number, expiration date, card-
holder’s name, and dollar amount as input. The verifier then returns a yes or
no answer, depending on whether the card holder’s credit is valid. Once the
bean completes this task, it is available to service a different client and retains
no past knowledge from the original client.

Because stateless session beans hold no conversational state, all instances of
the same stateless session bean class are equivalent and indistinguishable to a
client. It does not matter who has called a stateless session bean in the past,
since a stateless session bean retains no state knowledge about its history. This
means that any stateless session bean can service any client request because
they are all exactly the same. In fact, stateless session beans can be pooled,
reused, and swapped from one client to another client on each method call! We
show this in Figure 4.1.

Since EJB 2.1, stateless session beans can also provide Web Services inter-
faces to clients. We will examine this important new option in details in Chap-
ter 5.

Figure 4.1 Stateless session bean pooling.

Remote
Interface

Client

Invoke()

Bean

Bean Bean

Bean
Invoke()

Stateless Bean Pool

EJB Object

82 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 82

Special Characteristics of Stateful Session Beans

So far, we’ve seen session beans in general. We also coded up a simple stateless
session bean in Chapter 3. Now let’s look at the trickier flavor, stateful session
beans.

Achieving the Effect of Pooling with Stateful Beans
With stateful session beans, pooling is not as simple as with stateless session
beans. When a client invokes a method on a bean, the client is starting a con-
versation with the bean, and the conversational state stored in the bean must be
available for that same client’s next method request. Therefore, the container
cannot easily pool beans and dynamically assign them to handle arbitrary
client method requests, since each bean is storing state on behalf of a particu-
lar client. But we still need to achieve the effect of pooling for stateful session
beans so that we can conserve resources and enhance the overall scalability of
the system. After all, we only have a finite amount of available resources, such
as memory, database connections, and socket connections. If the conversa-
tional state that the beans are holding is large, the EJB server could easily run
out of resources. This was not a problem with stateless session beans because
the container could pool only a few beans to service thousands of clients.

This problem should sound quite familiar to operating systems gurus.
Whenever you run an application on a computer, you have only a fixed
amount of physical memory in which to run. The operating system still must
provide a way for many applications to run, even if the applications take up
more aggregate memory than is available physically. To provide for this, oper-
ating systems use your hard disk as an extension of physical memory. This
effectively extends your system’s amount of virtual memory. When an applica-
tion goes idle, its memory can be swapped out from physical memory and onto
the hard disk. When the application becomes active again, any needed data is
swapped in from the hard disk and into physical memory. This type of swap-
ping happens often when switching between applications (called context
switching).

EJB containers exploit this very paradigm to conserve stateful session bean
resources. To limit the number of stateful session bean instances in memory,
the container can swap out a stateful bean, saving its conversational state to a
hard disk or other storage. This is called passivation. After passivating a state-
ful bean, the conversational state is safely stored away, allowing resources like
memory to be reclaimed. When the original client invokes a method, the pas-
sivated conversational state is swapped in to a bean. This is called activation.
This bean now resumes the conversation with the original client. Note that the
bean that receives the activated state may not be the original bean instance. But

Introduction to Session Beans 83

09_576828 ch04.qxd 11/3/04 11:39 AM Page 83

that’s all right because the new instance resumes its conversation from the
point where the original instance was passivated.

Thus, EJB does indeed support the effect of pooling stateful session beans.
Only a few instances can be in memory when there are actually many clients.
But this pooling effect does not come for free—the passivation/activation
steps could entail an input/output bottleneck. Contrast this to stateless session
beans, which are easily pooled because there is no state to save.

How does the container decide which beans to activate and which beans to
passivate? The answer is specific to each container. Most containers employ a
Least Recently Used (LRU) passivation strategy, which simply means to passi-
vate the bean that has been called the least recently. This is a good algorithm
because remote clients have the habit of disconnecting from the network, leav-
ing beans stranded without a client, ready to be passivated. If a bean hasn’t
been invoked in a while, the container writes it to disk.

Passivation can occur at any time, as long as a bean is not involved in a
method call. It’s up to the container to decide when passivation makes sense.
There is one exception to this rule: Any bean involved in a transaction (see
Chapter 12) cannot be passivated until the transaction completes.

To activate beans, most containers commonly use a just-in-time algorithm.
Just in time means that beans should be activated on demand, as client
requests come in. If a client request comes in, but that client’s conversation has
been passivated, the container activates the bean on demand, reading the pas-
sivated state back into memory.

In general, passivation and activation are not useful for stateless session
beans. Stateless beans do not have any state to passivate/activate, so the con-
tainer can simply destroy stateless beans arbitrarily.

The Rules Governing Conversational State
More rigorously, the conversational state of a bean follows the rules laid out by
Java object serialization. At passivation time the container uses object serializa-
tion (or an equivalent protocol) to convert the bean’s conversational state to a
bit-blob and write the state out to disk. This safely tucks the state away. The
bean instance (which still exists) can be reassigned to a different client, and can
hold a brand-new conversation with that new client.

Activation reverses the process: A serialized blob that had been written to
storage is read back into memory and converted to in-memory bean data.
What makes this whole process work is that the javax.ejb.EnterpriseBean inter-
face extends java.io.Serializable, and every enterprise bean class indirectly
implements this interface.

For every Java object that is part of a bean’s conversational state, the previ-
ous algorithm is reapplied recursively on those objects. Thus, object serializa-
tion constructs an entire graph of data referred to by the main bean. Note that

84 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 84

while your beans must follow the rules for object serialization, the EJB con-
tainer itself does not necessarily need to use the default serialization protocol;
it could use a custom protocol to allow for flexibility and differentiation
between container vendors.

More concretely, every member variable in a bean is considered to be part of
the bean’s conversational state if one of the following is true:

■■ The member variable is a nontransient primitive type.

■■ The member variable is a nontransient Java object (extends
java.lang.Object).

Your bean might also hold references to container-implemented objects. The
container must preserve each of the following upon passivation/activation:

■■ EJB object references

■■ Home object references

■■ EJB context references (see Chapter 10)

■■ JNDI naming contexts

For example, let’s say you have the following stateful session bean code:

public class MySessionBean implements javax.ejb.SessionBean

{

// State variables

private Long myLong;

private MySessionBeanRemoteInterface ejbObject;

private MySessionBeanHomeInterface homeObject;

private javax.ejb.SessionContext mySessionContext;

private javax.naming.Context envContext;

// EJB-required methods (fill in as necessary)

public void setSessionContext(SessionContext ctx) { }

public void ejbCreate() { }

public void ejbPassivate() { }

public void ejbActivate() { }

public void ejbRemove() { }

// Business methods

...

}

The container must retain the values of the preceding member variables
across passivation and activation operations.

Activation and Passivation Callbacks
Let’s now look at what actually happens to your bean during passivation and
activation. When an EJB container passivates a bean, the container writes the
bean’s conversational state to secondary storage, such as a file or database. The

Introduction to Session Beans 85

09_576828 ch04.qxd 11/3/04 11:39 AM Page 85

container informs the bean that it’s about to perform passivation by calling the
bean’s required ejbPassivate() callback method. ejbPassivate() is a warning to the
bean that its held conversational state is about to be swapped out.

It’s important that the container inform the bean using ejbPassivate() so that
the bean can relinquish held resources. These held resources include database
connections, open sockets, open files, or other resources that it doesn’t make
sense to save to disk or that can’t be transparently saved using object serial-
ization. The EJB container calls the ejbPassivate() method to give the bean a
chance to release these resources or deal with the resources as the bean sees fit.
Once the container’s ejbPassivate() callback method into your bean is complete,
your bean must be in a state suitable for passivation. For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

public void ejbPassivate() {

<close socket connections, etc...>

}

...

}

The passivation process is shown in Figure 4.2. This is a typical stateful bean
passivation scenario. The client has invoked a method on an EJB object that
does not have a bean tied to it in memory. The container’s pool size of beans
has been reached. Thus, the container needs to passivate a bean before han-
dling this client’s request.

Exactly the opposite process occurs during the activation process. The seri-
alized conversational state is read back into memory, and the container recon-
structs the in-memory state using object serialization or the equivalent. The
container then calls the bean’s required ejbActivate() method. ejbActivate() gives
the bean a chance to restore the open resources it released during ejbPassivate().
For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

public void ejbActivate() {

<open socket connections, etc...>

}

...

}

86 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 86

Figure 4.2 Passivation of a stateful bean.

The activation process is shown in Figure 4.3. This is a typical just-in-time
stateful bean activation scenario. The client has invoked a method on an EJB
object whose stateful bean had been passivated.

You probably don’t need to worry about implementing ejbPassivate() and
ejbActivate() unless you are using open resources, such as socket connections or
database connections, that must be reestablished after activation. In most
cases, you can simply leave these methods empty.

Storage

Remote
Interface

Client

EJB Object Enterprise
Bean

1: Invoke Business Method

5: Store
Passivated
Bean State

2: Pick the Least
Recently Used Bean

3: Call ejbPassivate()

4: Serialize the Bean State

Other
Enterprise

Beans

A typical stateful bean passivation
scenario. The client has invoked a
method on an EJB object that does
not have a bean tied to it in memory.
The container's pool size of beans has
been reached. Thus the container
needs to passivate a bean before
handling this client's request.

Introduction to Session Beans 87

09_576828 ch04.qxd 11/3/04 11:39 AM Page 87

Figure 4.3 Activation of a stateful bean.

Method Implementation Summary
Table 4.1 summarizes how to develop session bean classes.

A Simple Stateful Session Bean
Let’s put our stateful session bean knowledge to use by programming a sim-
ple stateful bean. Our bean will be a counter bean, and it will be responsible for
simply counting up one by one. The current count will be stored within the
bean and will increment as client requests arrive. Thus, our bean will be state-
ful and will hold a multimethod conversation with a particular client.

Storage

Remote
Interface

Client

EJB Object Enterprise Bean

1: Invoke Business Method

2: Retrieve
Passivated
Bean State

3: Reconstruct Bean

4: Call ejbActivate()

5: Invoke Business Method

Other Enterprise
Beans

A typical just-in-time stateful
bean activation scenario. The
client has invoked a method on
an EJB object whose stateful
bean had been passivated.

88 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 88

Ta
b

le
 4

.1
Re

qu
ire

d
M

et
ho

ds
 fo

r
Se

ss
io

n
B

ea
n

C
la

ss
es

TY
P

IC
A

L
IM

P
LE

M
E

N
TA

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
(S

TA
TE

LE
S

S
 S

ES
S

IO
N

 B
EA

N
S

)
(S

TA
TE

FU
LL

 S
ES

S
IO

N
 B

EA
N

S
)

se
tS

es
si

on
C

on
te

xt

As
so

ci
at

es
 y

ou
r

be
an

 w
ith

 a

St
or

e
th

e
co

nt
ex

t a
w

ay
 in

 a

St
or

e
th

e
co

nt
ex

t a
w

ay
 in

 a

(S
es

si
on

C
on

te
xt

 c
tx

)
se

ss
io

n
co

nt
ex

t.
Yo

ur
 b

ea
n

ca
n

m
em

be
r

va
ria

bl
e

so
 th

e
co

nt
ex

t
m

em
be

r
va

ria
bl

e
so

 th
e

co
nt

ex
t

qu
er

y
th

e
co

nt
ex

t a
bo

ut
 it

s
ca

n
be

 q
ue

rie
d

la
te

r.
ca

n
be

 q
ue

rie
d

la
te

r
cu

rr
en

t t
ra

ns
ac

tio
na

l s
ta

te
, i

ts

cu
rr

en
t s

ec
ur

ity
 s

ta
te

, a
nd

 m
or

e.

ej
bC

re
at

e(
)

In
iti

al
iz

es
 y

ou
r

se
ss

io
n.

Pe
rf

or
m

 a
ny

 in
iti

al
iz

at
io

n
yo

ur

Pe
rf

or
m

 a
ny

 in
iti

al
iz

at
io

n
yo

ur

be
an

 n
ee

ds
, s

uc
h

as
 s

et
tin

g
be

an
 n

ee
ds

, s
uc

h
as

 s
et

tin
g

m
em

be
r

va
ria

bl
es

 to
 th

e
m

em
be

r
va

ria
bl

es
 to

 th
e

ar
gu

m
en

t v
al

ue
s

pa
ss

ed
 in

.
ar

gu
m

en
t v

al
ue

s
pa

ss
ed

 in
.

N
ot

e:
 Y

ou
 c

an
 d

ef
in

e
se

ve
ra

l
N

ot
e:

 Y
ou

 c
an

 d
ef

in
e

on
ly

 a
 s

in
gl

e
ej

bC
re

at
e(

)
m

et
ho

ds
, a

nd
 e

ac
h

em
pt

y
ej

bC
re

at
e(

)
m

et
ho

d
w

ith

ca
n

ta
ke

 d
iff

er
en

t a
rg

um
en

ts
.

no
 p

ar
am

et
er

s.
 If

 it
 h

ad

Yo
u

m
us

t p
ro

vi
de

 a
t l

ea
st

 o
ne

pa

ra
m

et
er

s,
 a

nd
 th

e
be

an

ej
bC

re
at

e(
)

m
et

ho
d

in
 y

ou
r

in
iti

al
iz

ed
 it

se
lf

to
 th

os
e

se
ss

io
n

be
an

.
pa

ra
m

et
er

s,
 th

e
be

an
 w

ou
ld

 n
ev

er
re

m
em

be
r

w
ha

t i
t i

ni
tia

liz
ed

 it
se

lf
to

up
on

 s
ub

se
qu

en
t c

al
ls

, s
in

ce
 it

 is
st

at
el

es
s!

ej
bP

as
si

va
te

()
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
Re

le
as

e
an

y
re

so
ur

ce
s

yo
ur

 b
ea

n
U

nu
se

d
be

ca
us

e
th

er
e

is
 n

o
yo

ur
 b

ea
n

pa
ss

iv
at

ed
 (

sw
ap

pe
d

m
ay

 b
e

ho
ld

in
g.

co

nv
er

sa
tio

na
l s

ta
te

; l
ea

ve

ou
t t

o
di

sk
 b

ec
au

se
 th

er
e

ar
e

em
pt

y.
to

o
m

an
y

in
st

an
tia

te
d

be
an

s)
.

ej
bA

ct
iv

at
e(

)
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
Ac

qu
ire

 a
ny

 r
es

ou
rc

es
 y

ou
r

be
an

U

nu
se

d
be

ca
us

e
th

er
e

is
 n

o
yo

ur
 b

ea
n

is
 a

ct
iv

at
ed

ne

ed
s,

 s
uc

h
as

 th
os

e
re

le
as

ed

co
nv

er
sa

tio
na

l s
ta

te
; l

ea
ve

(s

w
ap

pe
d

in
 fr

om
 d

is
k

be
ca

us
e

du
rin

g
ej

bP
as

si
va

te
()

.
em

pt
y.

a
cl

ie
nt

 n
ee

ds
 y

ou
r

be
an

).

ej
bR

em
ov

e(
)

C
al

le
d

by
 th

e
co

nt
ai

ne
r

Pr
ep

ar
e

yo
ur

 b
ea

n
fo

r
Pr

ep
ar

e
yo

ur
 b

ea
n

fo
r

im
m

ed
ia

te
ly

 b
ef

or
e

yo
ur

 b
ea

n
de

st
ru

ct
io

n
Fr

ee
 a

ll
re

so
ur

ce
s

de
st

ru
ct

io
n.

 F
re

e
al

l r
es

ou
rc

es

is
 r

em
ov

ed
 fr

om
 m

em
or

y.
yo

u
m

ay
 h

av
e

al
lo

ca
te

d.
yo

u
m

ay
 h

av
e

al
lo

ca
te

d.

09_576828 ch04.qxd 11/3/04 11:39 AM Page 89

The Count Bean’s Remote Interface

First let’s define our bean’s remote interface. The code is shown in Source 4.1.

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

/**

* These are CountBean’s business logic methods.

*

* This interface is what clients operate on when they

* interact with EJB objects. The container vendor will

* implement this interface; the implemented object is

* the EJB object, which delegates invocations to the

* actual bean.

*/

public interface Count extends EJBObject {

/**

* Increments the int stored as conversational state

*/

public int count() throws RemoteException;

}

Source 4.1 Count.java.

Our remote interface defines a single business method, count(), which we
will implement in the enterprise bean class.

The Count Bean

Our bean implementation has one business method, count(), which is respon-
sible for incrementing an integer member variable, called val. The conversa-
tional state is the val member variable. Source 4.2 shows the code for our
counter bean.

package examples;

import javax.ejb.*;

/**

* Demonstration Stateful Session Bean. This Bean is initialized

* to some integer value, and has a business method which

Source 4.2 CountBean.java.

90 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 90

* increments the value.

*

* This example shows the basics of how to write a stateful

* session bean, and how passivation/activation works.

*/

public class CountBean implements SessionBean {

// The current counter is our conversational state.

public int val;

//

// Business methods

//

/**

* Counts up

*/

public int count() {

System.out.println(“count()”);

return ++val;

}

//

// EJB-required methods

//

public void ejbCreate(int val) throws CreateException {

this.val = val;

System.out.println(“ejbCreate()”);

}

public void ejbRemove() {

System.out.println(“ejbRemove()”);

}

public void ejbActivate() {

System.out.println(“ejbActivate()”);

}

public void ejbPassivate() {

System.out.println(“ejbPassivate()”);

}

public void setSessionContext(SessionContext ctx) {

}

}

Source 4.2 (continued)

Introduction to Session Beans 91

09_576828 ch04.qxd 11/3/04 11:39 AM Page 91

Note the following about our bean:

■■ The bean implements javax.ejb.SessionBean (described fully in Appendix
E). This means the bean must define all methods in the SessionBean
interface. By looking at the bean, you can see we’ve defined them but
kept them fairly trivial.

■■ Our ejbCreate() initialization method takes a parameter, val. This
method customizes our bean to the client’s needs. Our ejbCreate()
method is responsible for beginning a conversation with the client. It
uses val as the starting state of the counter.

■■ The val member variable obeys the rules for conversational state
because it is serializable. Thus, it lasts across method calls and is auto-
matically preserved during passivation/activation.

Notice, too, that our code has a setSessionContext() method. This associates
our bean with a session context, which is a specific EJB context used only for ses-
sion beans. Our bean can call back to the container through this object. The ses-
sion context interface looks like this:

public interface javax.ejb.SessionContext

extends javax.ejb.EJBContext

{

public javax.ejb.EJBLocalObject getEJBLocalObject();

public javax.ejb.EJBObject getEJBObject();

}

Notice that the SessionContext interface extends the EJBContext interface,
giving session beans access to all the methods defined in EJBContext (see
Chapter 3 or Appendix E).

Specific to session beans, the getEJBObject() and getEJBLocalObject() methods
are useful if your bean needs to call another bean and if you want to pass a ref-
erence to your own bean. In Java, an object can obtain a reference to itself with
the this keyword. In EJB, however, a bean cannot use the this keyword and pass
it to other beans because all clients invoke methods on beans indirectly
through a bean’s EJB object. Thus, a bean can refer to itself by using a reference
to its EJB object, rather than the this keyword.

The Count Bean’s Home Interface

To complete our stateful bean code, we must define a home interface. The
home interface details how to create and destroy our Count EJB object. The
code for our home interface is in Source 4.3.

92 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 92

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

/**

* This is the home interface for CountBean. This interface

* is implemented by the EJB Server’s glue-code tools - the

* implemented object is called the Home Object, and serves

* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

* corresponds to the ejbCreate() method in the CountBean file.

*/

public interface CountHome extends EJBHome {

/*

* This method creates the EJB Object.

*

* @param val Value to initialize counter to

*

* @return The newly created EJB Object.

*/

Count create(int val) throws RemoteException, CreateException;

}

Source 4.3 CountHome.java.

Because we implement javax.ejb.EJBHome, our home interface gets the
remove() destroy method for free.

The Count Bean’s Deployment Descriptor

Now that we have all our Java files for our bean, we need to define the deploy-
ment descriptor to identify the bean’s settings to the container. The deploy-
ment descriptor settings we use are listed in Source 4.4.

<!DOCTYPE ejb-jar PUBLIC

“-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN”

“http://java.sun.com/dtd/ejb-jar_2_0.dtd”>

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>Count</ejb-name>

<home>examples.CountHome</home>

Source 4.4 ejb-jar.xml. (continued)

Introduction to Session Beans 93

09_576828 ch04.qxd 11/3/04 11:39 AM Page 93

<remote>examples.Count</remote>

<ejb-class>examples.CountBean</ejb-class>

<session-type>Stateful</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

Source 4.4 (continued)

Note that our bean’s stateful nature is defined declaratively in the deploy-
ment descriptor. We never introduce the notion of a bean being stateful in the
bean code itself. This enables us to easily switch from the stateful to the state-
less paradigm and back.

The Count Bean’s Proprietary Descriptor and Ejb-jar File

To complete our component, we need to write any proprietary files that our
application server may require and package those files and our bean together
into an Ejb-jar file. These steps are similar to our Hello, World! example.

One special setting we will try to make (which is vendor specific) is to force
the container to limit the number of bean instances that it will keep active to
two beans. Note that this may or may not be possible with your particular
application server. We will then create three beans and observe how the con-
tainer passivates instances to service requests.

To save space, in future examples we’ll consider that the proprietary
descriptors, the Ejb-jar file, and the deployment itself are implied steps. If
you’re really curious about how this is achieved, take a look at the source code
accompanying the book.

The Count Bean’s Client Code

Now that our bean is deployed, we can write some Java code to test our beans.
Our client code performs the following steps:

1. We acquire a JNDI initial context.

2. We locate the home object using JNDI.

3. We use the home object to create three different Count EJB objects.
Thus, we are creating three different conversations and are simulating
three different clients.

4. We limited the number of active bean instances to two beans, so during
the previous step some of the three beans must have been passivated. We
print out a message during the ejbPassivate() callback to illustrate this.

94 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 94

5. We call count() on each EJB object. This forces the container to activate
the instances, restoring the conversations to memory once again. We
print out a message during the ejbActivate() callback to illustrate this.

6. Finally, all the EJB objects are removed.

The code appears in Source 4.5.

package examples;

import javax.ejb.*;

import javax.naming.*;

import java.util.Properties;

/**

* This class is a simple example of client code.

*

* We create 3 EJB Objects in this example, but we only allow

* the container to have 2 in memory. This illustrates how

* beans are passivated to storage.

*/

public class CountClient {

public static void main(String[] args) {

try {

/*

* Get System properties for JNDI initialization

*/

Properties props = System.getProperties();

/*

* Get a reference to the Home Object - the

* factory for EJB Objects

*/

Context ctx = new InitialContext(props);

CountHome home = (CountHome)

javax.rmi.PortableRemoteObject.narrow(

ctx.lookup(“CountHome”), CountHome.class);

/*

* An array to hold 3 Count EJB Objects

*/

Count count[] = new Count[3];

int countVal = 0;

/*

* Create and count() on each member of array

Source 4.5 CountClient.java. (continued)

Introduction to Session Beans 95

09_576828 ch04.qxd 11/3/04 11:39 AM Page 95

*/

System.out.println(“Instantiating beans...”);

for (int i=0; i < 3; i++) {

/*

* Create an EJB Object and initialize

* it to the current count value.

*/

count[i] = home.create(countVal);

/*

* Add 1 and print

*/

countVal = count[i].count();

System.out.println(countVal);

/*

* Sleep for 1/2 second

*/

Thread.sleep(500);

}

/*

* Let’s call count() on each EJB Object to

* make sure the beans were passivated and

* activated properly.

*/

System.out.println(“Calling count() on beans...”);

for (int i=0; i < 3; i++) {

/*

* Add 1 and print

*/

countVal = count[i].count();

System.out.println(countVal);

/*

* Sleep for 1/2 second

*/

Thread.sleep(500);

}

/*

* Done with EJB Objects, so remove them

*/

for (int i=0; i < 3; i++) {

count[i].remove();

}

Source 4.5 (continued)

96 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 96

} catch (Exception e) {

e.printStackTrace();

}

}

}

Source 4.5 (continued)

Running the Client

To run the client, you need to know the parameters your JNDI service provider
uses. This should also be part of your container’s documentation. See the
book’s accompanying source code for scripts.

Client-Side Output

After running the client, we see the following output:

Instantiating beans...

1

2

3

Calling count() on beans...

2

3

4

We first created three beans and then called count() on each. As expected, the
beans incremented their values by one each during the second pass, so output
is as expected. But were our beans really passivated and activated? Let’s check
the server log.

Server-Side Output

If the container log yields the following results:

ejbCreate()

count()

ejbCreate()

count()

ejbCreate()

ejbPassivate()

count()

ejbPassivate()

ejbActivate()

count()

ejbPassivate()

ejbActivate()

Introduction to Session Beans 97

09_576828 ch04.qxd 11/3/04 11:39 AM Page 97

count()

ejbPassivate()

ejbActivate()

count()

ejbPassivate()

ejbActivate()

ejbRemove()

ejbActivate()

ejbRemove()

ejbRemove()

Then, as you can see from the passivation/activation messages in the log,
the container is indeed passivating and activating beans to conserve system
resources. Because the client-side output is correct, each of our beans’ conver-
sational state was retained properly. However, not all containers enable you to
control their internal bean caching at the granularity of a single bean instance.
If your actual application server product does not trigger passivation with the
small number of beans in this example, you may have to increase the number
of session bean instances to see the effects of activation and passivation.

Life Cycle Diagrams for Session Beans
Now that we’ve written a complete stateless session bean (in Chapter 3) and a
complete stateful session bean (in this chapter), let’s see what’s happening
behind the scenes.

Figure 4.4 shows the life cycle of a stateless session bean inside the container.
Note that in this diagram, the client is not calling methods on the bean, since
the client never accesses a bean directly. (The client always goes through the
container.) In the diagram, the container (that is, the home object and EJB
objects) is calling methods on our bean.

Let’s walk through this diagram.

1. At first, the bean instance does not exist. Perhaps the application
server has just started up.

2. The container decides it wants to instantiate a new bean. When does
the container decide it wants to instantiate a new bean? It depends on
the container’s policy for pooling beans. The container may decide to
instantiate 10 beans all at once when the application server first starts
because you told the container to do so using the vendor-specific files
that you ship with your bean. Each of those beans are equivalent
(because they are stateless) and they can be reused for many different
clients.

98 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 98

Figure 4.4 The life cycle of a stateless session bean.

3. The container instantiates your bean. The container calls Class.newIn-
stance(“HelloBean.class”) on your session bean class, which is the
dynamic equivalent of calling new HelloBean(). The container does this
so that the container is not hard-coded to any specific bean name; the
container is generic and works with any bean. This action calls your
bean’s default constructor, which can do any necessary initialization.

4. The container calls setSessionContext(). This associates you with a
context object, which enables you to make callbacks to the container
(see Chapter 9 for some examples of these callbacks).

5. The container calls ejbCreate(). This initializes your bean. Note that
because stateless session beans’ ejbCreate() methods take no parameters,
clients never supply any critical information that bean instances need to
start up. EJB containers can exploit this and pre-create instances of your
stateless session beans. In general when a client creates or destroys a
bean using the home object, that action might not necessarily corre-
spond with literally creating or destroying in-memory bean objects,
because the EJB container controls their life cycles to allow for pooling
between heterogeneous clients.

Bean Instance Does Not
Exist

Pool of Equivalent
Method-Ready Instances

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate()

1: ejbRemove()

Business Method

Container decided it
needs more instances
in the pool to service
clients.

Any client calls a
business method on
any EJB object.

Container decided it
doesn't need so
many instances
anymore.

Introduction to Session Beans 99

09_576828 ch04.qxd 11/3/04 11:39 AM Page 99

6. The container can call business methods on your bean. The container
can call as many business methods as it wants to call. Each business
method could originate from a completely different client because all
bean instances are treated exactly the same. All stateless session beans
think they are in the same state after a method call; they are effectively
unaware that previous method calls happened. Therefore the container
can dynamically reassign beans to client requests at the per-method level.
A different stateless session bean can service each method call from a
client. Of course, the actual implementation of reassigning beans to
clients is container-specific.

7. Finally, the container calls ejbRemove(). When the container is about to
remove your session bean instance, it calls your bean’s ejbRemove() call-
back method. ejbRemove() is a clean-up method, alerting your bean that
it is about to be destroyed and allowing it to end its life gracefully.
ejbRemove() is a required method of all beans, and it takes no parame-
ters. Therefore there is only one ejbRemove() method per bean. This is in
stark contrast to ejbCreate(), which has many forms. This makes perfect
sense: Why should a destructive method be personalized for each
client? (This is an analogous concept to destructors in C11.) Your imple-
mentation of ejbRemove() should prepare your bean for destruction. This
means you need to free all resources you may have allocated.

Figure 4.5 shows the life cycle of a stateful session bean. Remember that in
the diagram, the container (not the client) is calling methods on our bean
instance.

The life cycle for stateful session beans is similar to that of stateless session
beans. The big differences are as follows:

■■ There is no pool of equivalent instances because each instance contains
state.

■■ There are transitions for passivating and activating conversational state.

100 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 100

Figure 4.5 Life cycle of a stateful session bean.

Bean Instance Does
Not Exist

Ready

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate(...)

ejbRemove()

ejbPassivate()

ejbActivate()

Passive

Client Times Out

Business Method

Client called
create(...) on the
home interface.

Client called a
business method
on the EJB object.

Container's limit of
instantiated beans is
reached, so it must
swap your bean out.

Client called a method
on a passivated bean,
so container must
swap your bean back
in.

Client called remove() on
the EJB object or client
times out.

Introduction to Session Beans 101

DON’T RELY ON EJBREMOVE()

Your container can call ejbRemove() at any time, even if the container decides
that the bean’s life has expired (perhaps due to a very long timeout). Note that
the container may never call your bean’s ejbRemove() method, for example if
the container crashes or if a critical exception occurs. You must be prepared for
this contingency. For example, if your bean performs shopping cart operations,
it might store temporary shopping cart data in a database. Your application
should provide a utility that runs periodically to remove any abandoned
shopping carts from the database because otherwise the database resources
associated with the abandoned shopping carts will never be freed.

09_576828 ch04.qxd 11/3/04 11:39 AM Page 101

Summary

In this chapter, you learned the theoretical concepts behind session beans. You
learned about achieving instance pooling and caching with session beans, acti-
vation, and passivation. You wrote a stateful session bean that counted up and
touched on session beans’ life cycle.

102 Chapter 4

09_576828 ch04.qxd 11/3/04 11:39 AM Page 102

103

One of the most important enhancements of EJB 2.1 over its predecessors is the
support it offers for Web Services. Web Services are a way to build and inte-
grate large-scale systems within and between companies by sending XML
messages to well-defined, modular interfaces.

In this chapter, we will discuss central Web Services concepts and then
explain how EJB supports the writing of Web Service implementations and
Web Services clients. We will show how EJB enables you to build Web Services
from stateless session beans and take a closer look at the Java API for XML-
based RPC (JAX-RPC) that enables you to access Web Services from Java clients.

Web Services Concepts

Let’s take a quick look again at some fundamental concepts. As mentioned in
Chapter 1, Web Services are a way of building a Service-Oriented Architecture
(SOA). SOA is an architectural approach to structuring large-scale, distributed
applications that integrate heterogeneous applications behind service inter-
faces. Figure 5.1 shows the basic model of a lookup in a service-oriented archi-
tecture as supported by Web Services technologies.

Writing Session Bean
Web Services

C H A P T E R

5

10_576828 ch05.qxd 11/3/04 11:39 AM Page 103

Figure 5.1 Service-oriented architecture with Web Services.

A service provider creates an abstract service definition that it publishes in a
service registry. With Web Services, the description is a Web Services Definition
Language (WSDL) file, and the registry follows the Universal Description, Dis-
covery, and Integration (UDDI) standard. A service requestor can find the ser-
vice description, possibly using a set of selection criteria to query the registry.
If a suitable description is found, the requestor can bind to the service. You
can find simple examples of Web Services collected on Web sites such xmeth-
ods.org, for example a service to determine if a given Internet domain name is
taken, or to convert temperature values from Fahrenheit to Celsius. More real-
istic Web Services are built today in larger-scale, in-house architectures that
interconnect existing, heterogeneous applications, for example, a billing appli-
cation and a report generator.

A service interface is similar to an object or bean interface, but the contract
between the interface and its clients is more flexible and the client and the ser-
vice implementation are less closely coupled than in EJB or other distribution
platforms. This looser coupling allows client and service implementations to
run on very different platforms, for example, a Microsoft .NET client could
access a service running in a J2EE application server. Also, services are gener-
ally coarser-grained entities than objects are. From a client perspective, their
life cycles are more static because services don’t just pop up and go away but
stay around longer than your average object, even if services are implemented
using object technology.

Service Registry

Service Requestor Service Provider
SOAP

WSDL + UDDI

WSDL + UDDI

Bind

PublishFind

Service
Description

Service
Description

Service

104 Chapter 5

10_576828 ch05.qxd 11/3/04 11:39 AM Page 104

SOAs emphasize modularity through standardized interfaces, flexibility
through looser coupling, and extensibility through using XML. All of this is
important in the B2B scenarios, which are the primary targets of Web Services.
Web Services are not just another RPC mechanism for your intranet applica-
tions but rather a great help in settings where no single middleware platform
is applicable. As an example, consider the B2B relationships between a car
manufacturer and its suppliers. Each of these companies has its own IT infra-
structure and set of applications, such as payroll, inventory, order processing,
and so on. Also, each supplier builds parts for more than just a single car man-
ufacturer, and each manufacturer buys parts from different suppliers. In a sit-
uation like this, it is highly unlikely that any of the involved parties will be
able to switch to a specific middleware for the sake of the business relationship
with just a single partner. For any given supplier, building a middleware X
adapter (for example CORBA) to its order processing application to interoper-
ate with customer A, and then building another adapter Y (say, MQSeries) to
interoperate with customer B, and so on is going to be too much effort and too
expensive.

This is what standardization efforts in the past (such as EDI) tried but failed
to tackle on a larger scale. Web Services can thus be seen as a new attempt at
building universally agreed upon standards that hide the differences behind
standardized interfaces. This time, the standards are going to be based on
XML and on established Internet protocols. So why do we talk about integra-
tion and interoperability so much in the context of Web Services? Aren’t EJBs
interoperable already, thanks to the standardization of the RMI/IIOP protocol
and the container and bean APIs? EJBs are interoperable in the sense of vendor
and platform independence: there are J2EE/EJB products from many different
vendors that run on different platforms and still talk to each other. These con-
tainers can host your beans no matter which product they were written for, so
you also get portability. But there is language dependency: EJBs are coded in
Java and nothing else, so you cannot create interoperate bean implementations
written in different languages.

On the one hand, this is great because of Java’s portability (write once run
anywhere). On the other hand, portability is not always an issue, and you may
actually need a specific language for your project if you wanted to leverage,
say, a large amount of C++ or COBOL code for business objects that your com-
pany has investments in. With EJB, a common approach is to build wrapper
beans that talk to an adapter in C++, most likely based on CORBA. Another
way of putting this is to say that EJBs prescribe not only the component inter-
faces and client contracts, but also an implementation model. With Web Ser-
vices, there is no single implementation framework; a contract with a Web
Service involves only its interface. Web Services interfaces are defined in the
Web Services Description Language (WSDL). Web Services can be implemented
in any language. Of course, we will be building them with EJB in this book, so
they will be written in Java.

Writing Session Bean Web Services 105

10_576828 ch05.qxd 11/3/04 11:39 AM Page 105

Web Services Standards
The set of de-facto standards that make up Web Services today can be summa-
rized in a simple equation:

Web Services = WSDL + SOAP + UDDI

Let’s take a quick look at WSDL and SOAP. We won’t cover UDDI here
because it is not necessarily required: Note that the actual service usage in Fig-
ure 5.1 does not depend on the existence of UDDI. The requestor may actually
have known the service and its endpoint address without the registry. Also
note that the registry is not simply a naming service but supports queries for
services that obey a given predicate. At this stage in the life of Web Services,
however, it is unclear whether dynamic service lookups in UDDI registry will
ever happen on a larger scale than within enterprises. It did not happen with
similar concepts that were available earlier, such as CORBA Trading Service.

If you have been around in distributed computing for a while some of the
technology in the Web Services arena will appear like a déja vu. Figure 5.1,
for example, looks a lot like the RM-ODP trader and later CORBA Trading
Service. Many aspects that Web Services address are not new per se but
have simply not been solved on a larger scale.

WSDL

To give you a first impression of a service description in WSDL, here is the def-
inition of the HelloWorld component that we used in Chapter 3:

<?xml version=”1.0” encoding=”UTF-8”?>

<definitions name=”HelloWorldWS” targetNamespace=”urn:examples”>

<types/>

<message name=”HelloInterface_hello”/>

<message name=”HelloInterface_helloResponse”>

<part name=”result” type=”xsd:string”/>

</message>

<portType name=”HelloInterface”>

<operation name=”hello”>

<input message=”tns:HelloInterface_hello”/>

<output message=”tns:HelloInterface_helloResponse”/>

</operation>

</portType>

<binding name=”HelloInterfaceBinding” type=”tns:HelloInterface”>

<soap:binding transport=”http://schemas.xmlsoap.org/soap/

http” style=”rpc”/>

<operation name=”hello”>

<soap:operation soapAction=””/>

106 Chapter 5

10_576828 ch05.qxd 11/3/04 11:39 AM Page 106

<input>

<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

use=”encoded” namespace=”urn:examples”/>

</input>

<output>

<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

use=”encoded” namespace=”urn:examples”/>

</output>

</operation>

</binding>

<service name=”HelloWorldWS”>

<port name=”HelloInterfacePort”

binding=”tns:HelloInterfaceBinding”>

<soap:address location=”http://localhost:8080/HelloBean”/>

</port>

</service>

</definitions>

Some good news first before we look at some of the details: Relax, you don’t
have to write this XML document yourself. This interface description was
automatically generated from a Java interface using a generator tool: the
wscompile tool that comes with the J2EE SDK.

A number of things are worth noting about the HelloWorld WSDL:

■■ The number of language concepts used here is larger than in Java. We
have a service that provides one or more ports at an address. Ports repre-
sent the service interfaces and have bindings to protocols.

■■ The service description includes an endpoint address. The WSDL is
thus like a Java interface and an object reference joined together. In
other words, Web Services do not have distinct identities. They are not
objects and must be viewed as modules. There is no client-visible state,
and you cannot compare two references for equality!

■■ Operations are specified in terms of input and output messages
rather than parameters and return values. These have to be repre-
sented as elements (“parts”) of input and output messages. Here, there
is only the part that is actually transferred inside a message: the result
part of type xsd:string in the HelloInterface_helloResponse message.

■■ The binding for the service is a SOAP binding. There can be other
bindings in theory, but in practice SOAP is the only available option
today. Also note that the soap:binding has an attribute style=”rpc”, so
there must be other possible styles. Currently, the only other style for
exchanging SOAP messages is document-style, which means that there
is no specific representation of a called operation in the SOAP mes-
sage’s body.

Writing Session Bean Web Services 107

10_576828 ch05.qxd 11/3/04 11:39 AM Page 107

SOAP

The SOAP protocol defines an XML message format for Web Services and their
clients. Until version 1.1, SOAP was an acronym for Simple Object Access Pro-
tocol, but it was turned into a proper name for version 1.2 of the standard. That
SOAP starts with the three letters SOA is sheer coincidence. As we just men-
tioned, the targets of SOAP messages (both services and clients) are not objects
in the object-oriented sense, so the acronym was a misnomer anyway.

The SOAP message format is very simple. In a message exchange between a
client and the HelloWorld service, the request message would look like this:

POST /HelloBean HTTP/1.1

Content-Type: text/xml; charset=”utf-8”

Content-Length: 398

SOAPAction: “”

Host: falcon:8080

<?xml version=”1.0” encoding=”UTF-8”?>

<env:Envelope xmlns:env=”http://schemas.xmlsoap.org/soap/envelope/”>

<env:Body>

<ans1:hello xmlns:ans1=”urn:examples”/>

</env:Body>

</env:Envelope>

This is an actual message as sent over the wire. As you can see, the message
has two parts, an HTTP POST request header, and an XML document in the
HTTP payload. This XML document is a SOAP envelope, which represents a
request. The envelope contains a body element, which in turn contains the
hello element that represents the operation call.

The reply message is just as simple:

HTTP/1.1 200 OK

SOAPAction: “”

Content-Type: text/xml;charset=utf-8

Transfer-Encoding: chunked

<?xml version=”1.0” encoding=”UTF-8”?>

<env:Envelope xmlns:env=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:ns0=”urn:examples”>

<env:Body>

<ns0:helloResponse>

<result xsi:type=”xsd:string”>Hello, World!</result>

</ns0:helloResponse>

</env:Body>

</env:Envelope>

108 Chapter 5

10_576828 ch05.qxd 11/3/04 11:39 AM Page 108

Again, there is the HTTP header and an XML document that contains a
SOAP envelope. This time, the SOAP body represents the result of the opera-
tion call, which is a single result element of type string.

The two messages reproduced here serve to illustrate another key term that
is often used in the context of Web Services. The SOAP protocol is extremely
lightweight in the sense that it is very simple to use and does not make many
assumptions about the behavior of clients and services. The SOAP protocol is
not lightweight in terms of compactness and high performance. If uncom-
pressed, there is a large transmission overhead when compared to binary rep-
resentations, for example in CORBA’s IIOP protocol. The XML parsing
required to marshal and demarshal messages can also become CPU-intensive
for larger messages. But this is beside the point: Web Services are not designed
to deliver hitherto unknown performance but to enable integration where
high-performance middleware is much less useful than lightweight protocols
that can be implemented easily by simple scripts. (For an interesting discus-
sion of scripting languages as middleware, refer to Steve Vinoski’s article on
Middleware Dark Matter available at www.iona.com/hyplan/vinoski/.)

XML Artifacts and Platform Independence
Web Services help with the integration of heterogeneous, distributed systems
by using standardized XML documents for many different aspects of service
design, deployment, lookup, and usage that leverages a broad array of open
standards and sophisticated tools that are widely available. Many of the tools,
like Apache Axis SOAP, IBM WSDL4J toolkit, and JBoss Application Server,
are also in the open source arena.

In a sense, the XML usage that we just looked at is perhaps the biggest tech-
nological advantage here because many of the practical virtues, like loose cou-
pling and platform independence, follow from XML itself and the way the
different XML technologies are combined. XML documents are also self-
describing in that they contain a description of their structure in their markup
tags. This does not mean that you will be able to understand arbitrary docu-
ments without any prior knowledge. What it does mean is that you can easily
skip parts of a message that you are not concerned with and don’t understand,
and just deal with those parts that do concern you. This may sound trivial at
first, but it has important consequences in that this enables the decoupling of
applications and middleware.

To understand this point, recall that clients of your beans have to use a fixed
component interface. If that interface changes because a parameter is added to
a method signature, you will have to rebuild, reassemble, and redeploy not
only your beans, but your clients will also have to be recompiled. This is not
loose coupling because you cannot develop the different components of your
application individually. If one piece changes, the others have to change, too.

Writing Session Bean Web Services 109

10_576828 ch05.qxd 11/3/04 11:39 AM Page 109

Applications are not as flexibly extensible as we would like. With IIOP-based
request messages, all parties must have complete type information because
they are not able to demarshal messages otherwise. There is no skipping of
unknown parts of a message in IIOP. These restrictions do not exist with inter-
faces written in XML and with XML messages.

XML also enables you to write extensible specifications (after all, that’s the X
in XML): data types in interface definitions can contain extensibility points
from the outset. These extensibility points make use of a wildcard any type
and, optional elements in sequences, and so on. Future versions of a service,
while still servicing the clients written to the original interface, may fill in com-
plex data records in these places for the benefit of more current client applica-
tions. If your end of the application does not rely on it, you don’t need to care.

To summarize this approach more generally, you could say that Web Ser-
vices leave many details open for mutual agreement between the parties that
will be actually involved whereas other middleware systems, such as CORBA,
have sought to define stricter, inherent semantics as part of their models. This
means that to use Web Services successfully in practice, you have to fill in
these details. It also means that there is more room for refinement and thus
wider applicability.

Implementing a Web Service

The J2EE model for Web Services provides a seamless Java perspective on Web
Services, both for the service implementations and its clients. The model is rel-
atively simple to use and allows you to deal with SOAP in the same way you
deal with RMI or RMI/IIOP, which is to entrust all the details to the lower
transport layers and happily ignore them for your business logic. The first
thing to note is that your Web Services, like your beans, are managed for you
completely by the container.

The JSR 921 specification Implementing Enterprise Web Services defines the
programming model for Web Services. This specification uses the term port
component for the server-side view of a Web Service. A port component is a
portable Java implementation of a service interface (a port) and comprises a
Java mapping of the service interface and an implementation bean. Port com-
ponents are deployed into and live in containers. Writing a Web Service using
EJB requires creating one or more port components as stateless session beans.
This involves writing (and generating) some more XML descriptors. A big
advantage of the way the Web Services programming model is defined is that
you can also expose existing session beans as Web Services. This is what we
will do in the remainder of this chapter. To leverage the large investments that
we made in Chapter 3, we will take our HelloWorld session bean and make it
available as a Web Service at no extra cost.

110 Chapter 5

10_576828 ch05.qxd 11/3/04 11:39 AM Page 110

Figure 5.2 EJB container with port components.

The great news is that (almost) no additional coding is required. The only
thing that our session bean is missing is a slightly different form of remote
interface, which we will add. After that, exposing the bean as a Web Service
requires only repackaging and redeploying the application, which now con-
tains a port component. The EJB container will know how to dispatch incom-
ing SOAP messages to our bean implementation and how to map incoming
XML data types to Java. The same will happen on the way back: The container
just knows how to map our Java return values back into XML, how to build a
SOAP response message, and where to send it. Figure 5.2 depicts the addi-
tional ports that the container now supports.

The JAX-RPC Service Endpoint Interface
The simple convention that we mentioned previously is to provide a Java
interface to your bean that lists all the business methods supported by the
bean. This interface is called the Service Endpoint Interface (SEI) and shown in
the following block of code. The remaining HelloBean implementation does
not have to be changed to actually implement this interface. All that is required
is that the HelloBean support business methods with the same name and sig-
nature as those in the remote interface, as shown in the following example:

package examples;

/** This is the Hello service endpoint interface. */

public interface HelloInterface extends java.rmi.Remote

Service
Implementation

Bean

Port Components

Container

SEI

Service
Implementation

Bean
SEI

Writing Session Bean Web Services 111

10_576828 ch05.qxd 11/3/04 11:39 AM Page 111

{

public String hello() throws java.rmi.RemoteException;

}

The service endpoint interface is required by the Java APIs for XML-based
Remote Procedure Calls (JAX-RPC) that works behind the scenes in the container
to invoke the bean. The JAX-RPC specification requires that the service end-
point interface follow these rules:

■■ The interface must extend java.rmi.Remote either directly or indirectly.

■■ All methods must throw java.rmi.RemoteException.

■■ The method parameters and return types must be the Java types sup-
ported by JAX-RPC.

■■ Service endpoint interfaces must not include constants (as public final
static declarations).

The JAX-RPC specification defines a mapping between a set of supported
Java types and WSDL/XML types. The Java types directly supported by JAX-
RPC are the primitive types boolean, byte, double, float, int, long, short, and arrays
of these types. In addition, the following non-primitive types are directly sup-
ported by JAX-RPC:

java.lang.Boolean

java.lang.Byte

java.lang.Double

java.lang.Float

java.lang.Integer

java.lang.Long

java.lang.Short

java.lang.String

java.math.BigDecimal

java.math.BigInteger

java.net.URI

java.util.Calendar

java.util.Date

JAX-RPC also provides hooks for customized type mappers that extend the
standard type mapping provided by JAX-RPC. In our HelloWorld example,
the only data type that is transmitted is java.lang.String, which is mapped to
the XML string type without additional effort.

112 Chapter 5

10_576828 ch05.qxd 11/3/04 11:39 AM Page 112

WSDL and the XML/Java Mapping
You have seen the WSDL description of the HelloWorld Web Service already. If
you are building new Web Services, you can start with a WSDL description of
your service and write WSDL directly and then use a WSDL compiler to gen-
erate the service endpoint interface in Java. Alternatively, almost all Web Ser-
vices platforms and SOAP toolkits provide tools to derive WSDL descriptions
automatically from Java endpoint interfaces. See the source code for this book
for examples of generating WSDL from Java.

Packaging and Deploying a Web Service Session Bean
The packaging of a Web Service implementation as a stateless session bean is
an extension of the packaging for regular stateless session beans, that is, an ejb-
jar archive. This file contains the usual set of Java classes, plus the service end-
point interface class.

The EJB server requires extra information to be able to dispatch incoming
SOAP messages to an implementation of the service endpoint interface. First,
it needs to know the Java class that will handle these calls. Additionally, it
needs the WSDL file with the endpoint address that it should listen on. The
WSDL file is provided in the META-INF directory of the ejb-jar archive.

The other information is provided in an additional descriptor file, the web-
services.xml file, which is also added to the ejb-jar archive’s META-INF direc-
tory. Your specific J2EE product may provide vendor-specific deployment
tools to generate this file. The webservices.xml file for our HelloWorld service
is reproduced here:

<?xml version=”1.0” encoding=”UTF-8”?>

<webservices xmlns=”http://java.sun.com/xml/ns/j2ee” version=”1.1”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd”>

<webservice-description>

<display-name>HelloWorldWS</display-name>

<webservice-description-name>HelloWorldWS</webservice-

description-name>

<wsdl-file>META-INF/wsdl/HelloWorldWS.wsdl</wsdl-file>

<jaxrpc-mapping-file>META-INF/wsdl/mapping.xml</jaxrpc-mapping-file>

<port-component>

<display-name>HelloWS</display-name>

<port-component-name>HelloWS</port-component-name>

<wsdl-port xmlns:wsdl-port_ns__=”urn:examples”>wsdl-port_ns__:

HelloInterfacePort</wsdl-port>

<service-endpoint-interface>examples.HelloInterface</

service-endpoint-interface>

Writing Session Bean Web Services 113

10_576828 ch05.qxd 11/3/04 11:39 AM Page 113

<service-impl-bean>

<ejb-link>HelloBean</ejb-link>

</service-impl-bean>

</port-component>

</webservice-description>

</webservices>

The webservices.xml file tells the container where to look for the WSDL file
in the package in the <wsdl-file> element. Likewise, it specifies the location of
the JAX-RPC mapping file. Finally, the webservices.xml file defines the Web
Service implementation package, the port component. The port component
definition lists the fully qualified Java class name of the service endpoint inter-
face and the name of the implementation bean. The simple name is sufficient
here as the container already knows the bean details from the ejb-jar.xml file.
The port component is linked to the Web Service’s port using the <wsdl-port>
element, which gives the name of the port that this port component imple-
ments.

With this, we’re actually done! The container now has all the information
that it needs to link the abstract concept of a Web Service as defined in WSDL
to the port component that we have just defined by adding a service endpoint
interface to our existing HelloBean.

Implementing a Web Service Client

Web Services clients in J2EE are very similar to regular bean clients. They come
in two flavors:

■■ Standalone JAX-RPC clients without JNDI access for service lookup

■■ J2EE clients (both Web clients and standalone) that can access client-
side JNDI contexts

Standalone clients without JNDI access, such as remote Java clients not run-
ning inside an application server, can be coded using one of two approaches.
The first approach is called static stub and relies on statically generated SOAP
client stubs, much like RMI stubs. The second approach is called dynamic proxy
and retrieves a WSDL description at runtime to generate the dynamic proxy
from it. Both approaches rely on the client’s knowledge of the service endpoint
address URL and not just a symbolic lookup name as with JNDI. These
approaches are functionally equivalent.

Actually, there is a third option that relies on a dynamic invocation interface
(DII) to create call objects at runtime, which allows you to build dynamic
bridges and to live without any prior knowledge of a service’s WSDL. We do
not cover this style of programming here as it is low-level and cumbersome to

114 Chapter 5

10_576828 ch05.qxd 11/3/04 11:39 AM Page 114

use, and beneficial only in limited cases. With the DII approach, your client
code has to create SOAP call objects and explicitly embed parameters before
sending them.

The following example shows the code for a standalone, remote client to our
simple HelloWorld Web Service and uses both approaches:

package examples;

import java.net.URL;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;

import javax.xml.rpc.ServiceFactory;

import javax.xml.rpc.Stub;

import javax.xml.namespace.QName;

/**

* This class is an example of a standalone JAX-RPC client code which

* uses both the static stub and the dynamic proxy approach to get

* a reference to the remote Web Service

*/

public class HelloClient

{

static String host = “localhost”;

static String serviceURL = “HelloBean”;

static String nameSpaceUri = “urn:examples”;

static String serviceName = “HelloWorldWS”;

static String serviceEndpointAddress = “http://” + host + “:

8080/” + serviceURL;

public static void main(String[] args)

throws Exception

{

// the static stub approach: get the port reference

HelloInterface hello = getStaticStub();

// call hello()

System.out.println(“Static stub: “ + hello.hello());

// the dynamic proxy approach:

// a) Specify the location of the WSDL file

URL url = new URL(serviceEndpointAddress + “?WSDL”);

// b) Create an instance of a service factory

ServiceFactory serviceFactory = ServiceFactory.newInstance();

// c) Create a service object to act as a factory for proxies.

Service helloService =

serviceFactory.createService(url,

new QName(nameSpaceUri,

serviceName));

Writing Session Bean Web Services 115

10_576828 ch05.qxd 11/3/04 11:39 AM Page 115

// d) get the port reference

hello = (examples.HelloInterface)

helloService.getPort(examples.HelloInterface

.class);

// Call the hello() method

System.out.println(“Dynamic proxy: “ + hello.hello());

}

/** convenience method to retrieve the port reference though a

static stub */

private static HelloInterface getStaticStub()

{

// the HelloWorldWS_Impl class is generated by the

JAX-RPCstub compiler

Stub stub =

(Stub)(new HelloWorldWS_Impl().getHelloInterfacePort());

// tell the stub where the endpoint is

stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,

serviceEndpointAddress);

return (HelloInterface)stub;

}

}

J2EE client code that is running in a client container, for example a servlet,
can be shielded from the actual service endpoint address by using JNDI
lookups instead. The client container’s local JNDI context provides the bind-
ing from the service endpoint address to a service name according to the
client’s deployment descriptor. The configuration of the client container is
vendor-specific, but after everything is set up properly, the following code can
be used to retrieve the service reference:

InitialContext ctx = new InitialContext();

Service helloService =

(Service)ctx.lookup(“java:comp/env/services/HelloWorldWS”);

HelloInterface hello =

(examples.HelloInterface)helloService.getPort(examples

.HelloInterface.class);

This concludes our simple programming example for Web Services in EJB.
While the example itself is far from realistic or even prototypical for a Web Ser-
vice, it is useful to show how you can turn something into a Web Service after
it has been coded, and how EJB supports generating the necessary XML scaf-
folding without you having to worry about it. You will see another example of
a Web Service in action in Chapter 22.

116 Chapter 5

10_576828 ch05.qxd 11/3/04 11:39 AM Page 116

Summary

In this chapter we provided a basic overview of the concepts and technolo-
gies required to use and build Web Services with EJB. This completes our
introduction to session beans. We have covered a lot of ground, going from
stateless to stateful session beans and back again to stateless beans that imple-
ment Web Services.

In the next chapters, you’ll learn about the more complex (and also quite
interesting) entity bean. Turn the page and read on!

Writing Session Bean Web Services 117

10_576828 ch05.qxd 11/3/04 11:39 AM Page 117

10_576828 ch05.qxd 11/3/04 11:39 AM Page 118

119

One of the key benefits of EJB is that it gives you the power to create entity
beans. Entity beans are persistent objects that you place in permanent storage.
This means you can model your business’s fundamental, underlying data as
entity beans.

In this chapter, we’ll cover the basic concepts of persistence. We’ll give you
a definition of entity beans from a programmer’s perspective. You’ll learn the
features that entity beans offer and entity bean programming concepts.

This chapter is relatively theoretical, and it is meant to give you a solid foun-
dation in entity bean programming concepts. Make sure you’ve read and
understood the previous chapters in this book; our discussion of entity beans
will build on the knowledge you’ve acquired so far. We’ll use these concepts
with hands-on code in later chapters.

Persistence Concepts

Because entity beans are persistent objects, our discussion begins with a quick
look at popular ways to persist objects.

Introduction to Entity Beans

C H A P T E R

6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 119

Object-Relational Mapping
Another popular way to store Java objects is to use a traditional relational
database, such as Oracle, Microsoft SQL Server, or MySQL. Rather than serial-
ize each object, we could decompose each object into its constituent parts and
store each part separately. For example, for a bank account object, the bank
account number could be stored in one relational database field and the bank
account balance in another field. When you save your Java objects, you would
use JDBC to map the object data into a relational database. When you want to
load your objects from the database, you would instantiate an object from that
class, read the data in from the database, and then populate that object
instance’s fields with the relational data read in. This is shown in Figure 6.1.

Figure 6.1 Object-relational mapping.

Relational Database

Bank Account
Table

String accountID
String ownerName
double balance

Bank Account

Database API
Such as JDBC or

SQLJ

120 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 120

This mapping of objects to relational databases is a technology called object-
relational mapping. It is the act of converting and unconverting in-memory
objects to relational data. An object-relational (O/R) mapper may map your
objects to any kind of relational database schema. For example, a simple
object-relational mapping engine might map a Java class to a SQL table defini-
tion. An instance of that class would map to a row in that table, while fields in
that instance would map to individual cells in that row. This is shown in Fig-
ure 6.2. You’ll see more advanced cases of mapping data with relationships to
other data in Chapter 11.

Object-relational mapping is a much more sophisticated mechanism of per-
sisting objects than the simple object serialization offered by the Java language.
By decomposing your Java objects as relational data, you can issue arbitrary
queries for information. For example, you can search through all the database
records that have an account balance entry greater than $1,000 and load only
the objects that fulfill this query. More advanced queries are also possible. You
can also visually inspect the database data because it is not stored as bit-blobs,
which is great for debugging or auditing.

Figure 6.2 An example of object-relational mapping.

String accountID
String ownerName
double balance

Account Class

Relational Database

Ray Combs

accountID ownerName balance

1 1000

Bob Barker2 1500

Monty Haul3 2750

Account Table

accountID = 1
ownerName = Ray Combs
balance = 1000

Account Instance

Introduction to Entity Beans 121

11_576828 ch06.qxd 11/3/04 11:40 AM Page 121

Mapping objects to relational data can be done in two ways. You can either
handcraft this mapping in your code or use an object-relational mapping prod-
uct, such as Oracle TopLink, or open source tools, such as Hibernate, to auto-
mate or facilitate this mapping. These tools have become increasingly popular.
Handcrafted mappings using a database access API such as JDBC are becom-
ing less frequently used because the cost of developing and maintaining an
object-relational mapping layer is significant.

The Sun Java Data Objects (JDO) specification, available as JSR 12 from the
Java Community Process (JCP) Web site at www.jcp.org, defines portable APIs to
a persistence layer that is conceptually neutral to the database technology used
to support it. It can thus be implemented by vendors of relational and object-
oriented databases. According to recent announcements, future versions of the
EJB specification are going to be more closely aligned with container-indepen-
dent persistence mechanisms, such as Hibernate, TopLink, and JDO.

Now that we’ve whetted your appetite with persistence mechanisms, let’s
take a look at how entity bean persistent objects are used in an EJB multitier
environment.

What Is an Entity Bean?

In any sophisticated, object-oriented multitier deployment, we can draw a
clear distinction between two different kinds of components deployed.

■■ Application logic components. These components are method
providers that perform common tasks. Their tasks might include the
following:

■■ Computing the price of an order

■■ Billing a customer’s credit card

■■ Computing the inverse of a matrix

Note that these components represent actions (they’re verbs). They are
well suited to handling business processes.

Session beans model these application logic components very well.
They often contain interesting algorithms and logic to perform applica-
tion tasks. Session beans represent work being performed for a user.
They represent the user session, which includes any workflow logic.

■■ Persistent data components. These are objects (perhaps written in Java)
that know how to render themselves into persistent storage. They use
some persistence mechanism, such as serialization, O/R mapping to a
relational database, or an object database. These kinds of objects repre-
sent data—simple or complex information that you’d like saved. Exam-
ples here include:

122 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 122

■■ Bank account information, such as account number and balance

■■ Human resources data, such as names, departments, and salaries of
employees

■■ Lead tracking information, such as names, addresses, and phone
numbers of prospective customers that you want to keep track of
over time

Note that these components represent people, places, and things
(they’re nouns). They are well suited to handling business data.

The big difference between session beans and entity beans is that entity
beans have an identity and client-visible state, and that their lifetime may be
completely independent of the client application’s lifetime. For entity beans,
having an identity means that different entity beans can be distinguished by
comparing their identities. It also means that clients can refer to individual
entity bean instances by using that identity, pass handles to other applications,
and actually share common entities with other clients. All this is not possible
with session beans.

You might question the need for such persistent data components. Why
should we deal with our business data as objects, rather than deal with raw
database data, such as relational rows? It is handy to treat data as objects
because they can be easily handled and managed and because they are repre-
sented in a compact manner. We can group related data in a unified object. We
associate some simple methods with that data, such as compression or other
data-related activities. We can also use implicit middleware services from an
application server, such as relationships, transactions, network accessibility,
and security. We can also cache that data for performance.

Entity beans are these persistent data components. Entity beans are enter-
prise beans that know how to persist themselves permanently to a durable
storage, such as a database or legacy system. They are physical, storable parts
of an enterprise. Entity beans store data as fields, such as bank account num-
bers and bank account balances. They also have methods associated with
them, such as getBankAccountNumber() and getAccountBalance(). For a full dis-
cussion of when to (and when not to) use entity beans, see Chapter 16.

In some ways, entity beans are analogous to serializable Java objects. Serial-
izable objects can be rendered into a bit-blob and then saved into a persistent
store; entity beans can persist themselves in many ways, including Java serial-
ization, O/R mapping, or even an object database persistence. Nothing in the
EJB 2.x specification dictates any particular persistence mechanism, although
O/R mappings are the most frequently used mechanism in practice.

Entity beans are different from session beans. Session beans model a process
or workflow (actions that are started by the user and that go away when the
user goes away). Entity beans, on the other hand, contain core business data—
product information, bank accounts, orders, lead tracking information,

Introduction to Entity Beans 123

11_576828 ch06.qxd 11/3/04 11:40 AM Page 123

customer information, and more. An entity bean does not perform complex
tasks or workflow logic, such as billing a customer. Rather, an entity bean is the
customer itself. Entity beans represent persistent state objects (things that
don’t go away when the user goes away).

For example, you might want to read a bank account data into an entity
bean instance, thus loading the stored database information into the in-mem-
ory entity bean instance’s fields. You can then play with the Java object and
modify its representation in memory because you’re working with convenient
Java objects, rather than bunches of database records. You can increase the
bank account balance in-memory, thus updating the entity bean’s in-memory
bank account balance field. Then you can save the Java object, pushing the
data back into the underlying store. This would effectively deposit money into
the bank account.

The term entity bean is not always used stringently. Sometimes it refers to
an in-memory Java object instance of an entity bean class, and sometimes it
refers to database data that an in-memory Java object instance represents.
To make the distinction clear, we will use the following two terms:

The entity bean instance is the in-memory view into the database. It is an
instance of your entity bean class.

The entity bean data (or data instance) is the physical set of data, such as a
bank account record, stored in the database.

In summary, you should think of an entity bean instance as the following:

■■ An in-memory Java representation of persistent data that knows how to
read itself from storage and populate its fields with the stored data

■■ An object that can then be modified in-memory to change the values of
data

■■ Persistable, so that it can be saved back into storage again, thus updat-
ing the database data

About the Files That Make Up an Entity Bean
An entity bean contains the standard set of files that all EJB components have,
including the remote and/or local interface, the home and/or local home
interface, the enterprise bean class, and the deployment descriptor.

There are several noteworthy differences between entity bean files and
other types of EJB components.

■■ The entity bean class maps to an entity definition in a database
schema. For example, an entity bean class could map to a relational

124 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 124

table definition. In this case, an entity bean instance of that class would
map to a row in that table. Your entity bean class can expose simple
methods, such as a method to decrease a bank account balance, to
manipulate or access that data. Like a session bean class, EJB also
requires that an entity bean class must fill in some standard callback
methods. The EJB container will call these methods appropriately to
manage the entity bean.

■■ The primary key class makes every entity bean different. For example,
if you have one million bank account entity beans, each bank account
needs to have a unique ID (such as a bank account ID string) that can
never be repeated in any other bank account. A primary key is an object
that may contain any number of attributes. This could be any data nec-
essary to identify uniquely an entity bean data instance. In some
advanced cases, when the entity bean represents a complex relation-
ship, the primary key might be an entire object. EJB gives you the flexi-
bility to define what your unique identifier is by including a primary
key class with your entity bean. The one rule is that your primary key
class must be serializable and follow the rules for Java object serializa-
tion. The rules for object serialization are covered in Appendix A.

Features of Entity Beans

Let’s take a look at the features of entity beans.

Entity Beans Survive Failures
Entity beans are long lasting. They survive critical failures, such as application
servers crashing, or even databases crashing. This is because entity beans are
just representations of data in a permanent, fault-tolerant, underlying storage.
If a machine crashes, the entity bean can be reconstructed in memory. All we
need to do is read the data back in from the permanent database and instanti-
ate an entity bean Java object instance with fields that contain the data read in
from the database.

This is a huge difference between session and entity beans. Entity beans have
a much longer life cycle than a client’s session, perhaps years long, depending
on how long the data sits in the database. In fact, the database records repre-
senting an object could have existed before the company even decided to go
with a Java-based solution, because a database structure can be language inde-
pendent. This makes sense—you definitely would want your bank account to
last for a few years, regardless of technology changes in your bank.

Introduction to Entity Beans 125

11_576828 ch06.qxd 11/3/04 11:40 AM Page 125

Entity Bean Instances Are a View into a Database
When you load entity bean data into an in-memory entity bean instance, you
read in the data stored in a database so that you can manipulate the data
within a Java Virtual Machine. However, you should think of the in-memory object
and the database itself as one and the same. This means if you update the in-mem-
ory entity bean instance, the database should automatically be updated as
well. You should not think of the entity bean as a separate version of the data
in the database. The in-memory entity bean is simply a view or lens into the
database.

Of course, in reality there are multiple physical copies of the same data: the
in-memory entity bean instance and the entity bean data itself stored in the
database. Therefore, there must be a mechanism to transfer information back
and forth between the Java object and the database. This data transfer is
accomplished with two special methods that your entity bean class must
implement, called ejbLoad() and ejbStore().

■■ ejbLoad() reads the data in from the persistent storage into the entity
bean’s in-memory fields.

■■ ejbStore() saves your bean instance’s current fields to the underlying
data storage. It is the complement of ejbLoad().

So who decides when to transfer data back and forth between the in-mem-
ory bean and the database? That is, who calls ejbLoad() and ejbStore()? The
answer is your EJB container. ejbLoad() and ejbStore() are callback methods that
the container invokes. They are management methods required by EJB. The
container worries about the proper time to call ejbLoad() and ejbStore()—this is
one of the value-adds of the container. This is shown in Figure 6.3.

Your beans should be prepared to accept an ejbLoad() or ejbStore() call at
almost any time (but not during a business method). The container automati-
cally figures out when each of your instances needs to be refreshed depending
on the current transactional state (see Chapter 12). This means that you never
explicitly call your own ejbLoad() or ejbStore() methods. This is one of the
advantages of EJB: You don’t have to worry about synchronizing your objects
with the underlying database. The EJB black box handles it for you. That is
why you can think of the entity bean and the database as the same; there
should never be a time when the two are transactionally out of sync.

126 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 126

Figure 6.3 Loading and storing an entity bean.

Several Entity Bean Instances May Represent
the Same Underlying Data
Let’s consider the scenario in which many threads of execution want to access
the same database data simultaneously. In banking, interest might be applied
to a bank account, while at the same time a company directly deposits a check
into that same account. In e-commerce, many different client browsers may be
simultaneously interacting with a catalog of products.

To facilitate many clients accessing the same data, we need to design a high-
performance access system to our entity beans. One possibility is to allow
many clients to share the same entity bean instance; that way, an entity bean
could service many client requests simultaneously. While this is an interesting

EJB Container/Server

Entity Bean Instance

Database

Entity Bean Data

5: Write to
Database

2: Read from
Database

3: Business
Methods

1: ejbLoad()

4: ejbStore()

This ejbLoad()-business method-ejbStore()
cycle may be repeated many times.

Introduction to Entity Beans 127

11_576828 ch06.qxd 11/3/04 11:40 AM Page 127

idea, it is not very appropriate for EJB, for two reasons. First, if we’d like an
entity bean instance to service many concurrent clients, we’d need to make
that instance thread-safe. Writing thread-safe code is difficult and error-prone.
Remember that the EJB value proposition is rapid application development.
Mandating that component vendors produce stable thread-safe code does not
encourage this. Second, having multiple threads of execution makes transac-
tions almost impossible to control by the underlying transaction system. For
these reasons, EJB dictates that only a single thread can ever be running within
a bean instance. With session beans and message-driven beans, as well as
entity beans, all bean instances are single-threaded.

Mandating that each bean can service only one client at a time could result
in performance bottlenecks. Because each instance is single-threaded, clients
need to effectively run in lockstep, each waiting their turn to use a bean. This
could easily grind performance to a halt in any large enterprise deployment.

To boost performance, we could allow containers to instantiate multiple
instances of the same entity bean class. This would allow many clients to inter-
act concurrently with separate instances, each representing the same underly-
ing entity data. Indeed, this is exactly what EJB allows containers to do. Thus,
client requests do not necessarily need to be processed sequentially, but rather
concurrently.

Having multiple bean instances represent the same data now raises a new
problem: data corruption. If many bean instances are representing the same
underlying data through caching (see Chapter 19), we’re dealing with multi-
ple in-memory cached replicas. Some of these replicas could become stale, rep-
resenting data that is not current.

To achieve entity bean instance cache consistency, each entity bean instance
needs to be routinely synchronized with the underlying storage. The container
synchronizes the bean with the underlying storage by calling the bean’s
ejbLoad() and ejbStore() callbacks, as described in the previous section.

The frequency with which beans are synchronized with an underlying stor-
age is dictated by transactions, a topic we cover in Chapter 12. Transactions
enable each client request to be isolated from every other request. They enable
clients to believe they are dealing with a single in-memory bean instance, when
in fact many instances are behind the scenes. Transactions give clients the illu-
sion that they have exclusive access to data when in fact many clients are
touching the same data.

Entity Bean Instances Can Be Pooled
Let’s say you’ve decided to author your own EJB container/server. Your prod-
uct is responsible for instantiating entity beans as necessary, with each bean
representing data in an underlying storage. As clients connect and disconnect,
you could create and destroy beans as necessary to service those clients.

128 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 128

Unfortunately this is not a scalable way to build an application server. Cre-
ation and destruction of objects is expensive, especially if client requests come
frequently. How can we save on this overhead?

One thing to remember is that an entity bean class describes the fields and
rules for your entity bean, but it does not dictate any specific data. For exam-
ple, an entity bean class may specify that all bank accounts have the following
fields:

■■ The name of the bank account owner

■■ An account ID

■■ An available balance

That bean class can then represent any distinct instance of database data,
such as a particular bank account record. The class itself, though, is not specific
to any particular bank account.

To save precious time-instantiating objects, entity bean instances are there-
fore recyclable objects and may be pooled depending on your container’s pol-
icy. The container may pool and reuse entity bean instances to represent
different instances of the same type of data in an underlying storage. For
example, a container could use a bank account entity bean instance to repre-
sent different bank account records. When you’re done using an entity bean
instance, that instance may be assigned to handle a different client’s request
and may represent different data. The container performs this by dynamically
assigning the entity bean instance to different client-specific EJB objects. Not
only does this save the container from unnecessarily instantiating bean
instances, but this scheme also saves on the total amount of resources held by
the system. We show this in Figure 6.4.

Instance pooling is an interesting optimization that containers may provide,
and it is not at all unique to entity beans. However, complications arise when
reassigning entity bean instances to different EJB objects. When your entity
bean is assigned to a particular EJB object, it may be holding resources such as
socket connections. But when it’s in the pool, it may not need that socket. Thus,
to allow the bean to release and acquire resources, your entity bean class must
implement two callback methods:

■■ ejbActivate() is the callback that your container will invoke on your bean
instance when transitioning your bean out of a generic instance pool.
This process is called activation, and it indicates that the container is
associating your bean with a specific EJB object and a specific primary
key. Your bean’s ejbActivate() method should acquire resources, such as
sockets, that your bean needs when assigned to a particular EJB object.

Introduction to Entity Beans 129

11_576828 ch06.qxd 11/3/04 11:40 AM Page 129

Figure 6.4 EJB container pooling of entity beans.

■■ ejbPassivate() is the callback that your container will invoke when transi-
tioning your bean into a generic instance pool. This process is called pas-
sivation, and it indicates that the container is disassociating your bean
from a specific EJB object and a specific primary key. Your bean’s ejbPas-
sivate() method should release resources, such as sockets, that your bean
acquired during ejbActivate().

When an entity bean instance is passivated, it must not only release held
resources but also save its state to the underlying storage; that way, the storage
is updated to the latest entity bean instance state. To save the instance’s fields
to the database, the container invokes the entity bean’s ejbStore() method prior
to passivation. Similarly, when the entity bean instance is activated, it must not
only acquire any resources it needs but also load the most recent data from the
database. To load data into the bean instance, the container invokes the entity
bean’s ejbLoad() method after activation. This is shown in Figure 6.5.

EJB Container/Server

EJB Object 1
(John Smith's Bank

Account)

Client 1
John Smith

Client 2
Mary Jane

Client 3
Bob Hall

Remote
Interface

Remote
Interface

Remote
Interface

Entity Bean
Instances

Bean Pool

EJB Object 2
(Mary Jane's Bank

Account)

EJB Object 3
(Bob Hall's Bank

Account)

The EJB container can
dynamically assign entity
bean instances to
represent different data.

130 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 130

Figure 6.5 Passivation of entity beans entails a state save, and activation entails a state load.

There Are Two Ways to Persist Entity Beans
Since entity beans map to storage, someone needs to write the database access
code.

A bean-managed persistent entity bean is an entity bean that must be persisted
by hand. In other words, you as the component developer must write code to
translate your in-memory fields into an underlying data store, such as a rela-
tional database or an object database. You handle the persistent operations
yourself—including saving, loading, and finding data—within the entity
bean. Therefore, you must write to a persistence API, such as JDBC. For exam-
ple, with a relational database, your entity bean could perform a SQL INSERT
statement via JDBC to stick some data into a relational database. You could
also perform an SQL DELETE statement via JDBC to remove data from the
underlying store.

Passivation entails
a state save.

Activation entails a
state load.

1: ejbStore()

Bean InstanceContainer

2: ejbPassivate()

1: ejbActivate()

2: ejbLoad()

Introduction to Entity Beans 131

11_576828 ch06.qxd 11/3/04 11:40 AM Page 131

EJB offers an alternative to bean-managed persistence: You can have your
EJB container perform your persistence for you. This is called container-man-
aged persistence. In this case, you would usually strip your bean of any persis-
tence logic. Then, you inform the container about how you’d like to be
persisted by using the container’s tools. The container then generates the data
access code for you. For example, if you’re using a relational database, the con-
tainer may automatically perform SQL INSERT statements to create database
data. Similarly, it will automatically perform SQL DELETE statements to
remove database data, and it will handle any other necessary persistent oper-
ations. Even if you are not working with a relational database, you can have
your container persist for you. If your container supports a nonrelational per-
sistent store, such as an object database or a VSAM file, the container will gen-
erate the appropriate logic as necessary. In fact, you can wait until deployment
time before you set up the O/R mapping, which is great because you can write
storage-independent data objects and reuse them in a variety of enterprise
environments.

Container-managed persistence reduces the size of your beans tremen-
dously because you don’t need to write JDBC code—the container handles all
the persistence for you. This is a huge value-add feature of EJB. Of course, it is
still evolving technology. Once we’ve written a few entity beans, we’ll review
the trade-offs of bean-managed versus container-managed persistence (see
Chapter 16).

Creation and Removal of Entity Beans
As we mentioned earlier, entity beans are a view into a database, and you
should think of an entity bean instance and the underlying database as one
and the same (they are routinely synchronized). Because they are one and the
same, the initialization of an entity bean instance should entail initialization of
database data. Thus, when an entity bean is initialized in memory during
ejbCreate(), it makes sense to create some data in an underlying database that
correlates with the in-memory instance. That is exactly what happens with
entity beans. When a bean-managed persistent entity bean’s ejbCreate()

132 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 132

method is called, the ejbCreate() method is responsible for creating database
data. Similarly, when a bean-managed persistent entity bean’s ejbRemove()
method is called, the ejbRemove() method is responsible for removing database
data. If container-managed persistence is used, the container will modify the
database for you, and you can leave these methods empty of data access logic.

Let’s look at this in more detail.

Understanding How Entity Beans Are Created and Destroyed

In EJB, remember that clients do not directly invoke beans—they invoke an
EJB object proxy. The EJB object is generated through the home object. There-
fore, for each ejbCreate() method signature you define in your bean, you must
define a corresponding create() method in the home interface. The client calls
the home object’s create() method, which delegates to your bean’s ejbCreate()
method.

For example, let’s say you have a bank account entity bean class called
AccountBean, with a remote interface Account, home interface AccountHome,
and primary key class AccountPK. Given the following ejbCreate() method in
AccountBean:

public AccountPK ejbCreate(String accountID, String owner) throws...

you must have this create() method in your home interface (notice there is no
“ejb” prefix):

public Account create(String accountID, String owner) throws ...

Notice that there are two different return values here. The bean instance
returns a primary key (AccountPK), while the home object returns an EJB object
(Account). This makes sense—the bean returns a primary key to the container
(that is, to the home object) so that the container can identify the bean. Once
the home object has this primary key, it can generate an EJB object and return
that to the client. We show this process more rigorously with the sequence dia-
gram in Figure 6.6.

Introduction to Entity Beans 133

11_576828 ch06.qxd 11/3/04 11:40 AM Page 133

Figure 6.6 Creating an entity bean and EJB object.

To destroy an entity bean’s data in a database, the client must call remove() on
the EJB object or home object. This method causes the container to issue an
ejbRemove() call on the bean. Figure 6.7 shows the relationship between remove()
and ejbRemove(). Note that remove() can be called on either the home object or
the EJB object. Figure 6.7 happens to assume bean-managed persistence.

EJB Container/Server

Entity Bean
Instance

Home Object

EJB Object

Client Code

1: create()

2: ejbCreate()

Relationship between create()
and ejbCreate().

(Diagram leaves out a few minor
steps and happens to assume
bean-managed persistence.)

Database

Entity Bean Data

3: Create Database Data

5: Create EJB Object

6: Return EJB Object
4: Return Primary Key

134 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 134

Figure 6.7 Destroying an entity bean’s data representation.

Note that ejbRemove() does not mean the in-memory entity bean instance is
actually going to be destroyed; ejbRemove() destroys only database data and
makes the entity bean inaccessible to the client. The bean instance can be recy-
cled by the container to handle a different database data instance, such as a
bank account bean representing different bank accounts.

ejbRemove() is a required method of all entity beans, and it takes no parame-
ters. There is only one form of ejbRemove(). With entity beans, ejbRemove() is not
called if the client times out because the lifetime of an entity bean is longer
than the client’s session.

EJB Container/Server

Entity Bean
Instance

Home Object

EJB Object

Client Code

1: remove()
2: ejbRemove()

Database

Entity Bean Data

3: Remove Database Data

1: remove()
2: ejbRemove()

Relationship between remove()
and ejbRemove().
Note that remove() can be
called on either the home
object or the EJB object.

(Diagram happens to assume
bean-managed persistence.)

Introduction to Entity Beans 135

11_576828 ch06.qxd 11/3/04 11:40 AM Page 135

Entity Beans Can Be Found
Because entity bean data is uniquely identified in an underlying storage, entity
beans can also be found rather than created. Finding an entity bean is analo-
gous to performing a SELECT statement in SQL. With a SELECT statement,
you’re searching for data from a relational database store. When you find an
entity bean, you’re searching a persistent store for some entity bean data. This
differs from session beans because session beans cannot be found: They are not
permanent objects, and they live and die with the client’s session.

You can define many ways to find an entity bean. You list these ways as
methods in your entity bean home interface. These are called finder methods.
Your home interface exposes finder methods in addition to methods for creat-
ing and destroying entity beans. This is the one big difference between an
entity bean’s home interface and other types of beans; the other bean types do
not have finder methods.

You Can Modify Entity Bean Data without Using EJB
Usually you will create, destroy, and find entity bean data by using the entity
bean’s home object. But you can interact with entity beans another way, too: by
directly modifying the underlying database where the bean data is stored. For
example, if your entity bean instances are being mapped to a relational data-
base, you can simply delete the rows of the database corresponding to an
entity bean instance (see Figure 6.8). You can also create new entity bean data
and modify existing data by directly touching the database. This may be nec-
essary if you have an investment in an existing system that touches a database
directly.

These external database updates could raise cache consistency issues if
you’re choosing to cache your entity beans. See Chapter 19 for more details.

136 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 136

Figure 6.8 Modifying an entity bean’s database representation manually.

Entity Contexts

As you learned in Chapter 3, all enterprise beans have a context object that iden-
tifies the environment of the bean. These context objects contain environment
information that the EJB container sets. Your beans can access the context to
retrieve all sorts of information, such as transaction and security information.
For entity beans, the interface is javax.ejb.EntityContext.

We provide a refresher of the javax.ejb.EJBContext methods in Source 6.1.
Appendix E explains the meaning of each method.

Entity contexts add the methods in Source 6.2 on top of the generic EJB context.

Relational Database

Entity Bean

Data

Existing App

Direct Database Modifications

EJB Container/Server

Entity Beans

O/R Mapping

Introduction to Entity Beans 137

11_576828 ch06.qxd 11/3/04 11:40 AM Page 137

public interface javax.ejb.EJBContext {

public javax.ejb.EJBHome getEJBHome();

public javax.ejb.EJBLocalHome getEJBLocalHome();

public java.security.Principal getCallerPrincipal();

public boolean isCallerInRole(java.lang.String);

public void setRollbackOnly();

public boolean getRollbackOnly();

}

Source 6.1 The javax.ejb.EJBContext interface.

public interface javax.ejb.EntityContext

extends javax.ejb.EJBContext {

public javax.ejb.EJBLocalObject getEJBLocalObject();

public javax.ejb.EJBObject getEJBObject();

public java.lang.Object getPrimaryKey();

}

Source 6.2 The javax.ejb.EntityContext interface.

Let’s look at each of these methods in more detail.

getEJBLocalObject() / getEJBObject()
Call the getEJBObject() method to retrieve the current, client-specific EJB object
that is associated with the entity bean. Remember that clients invoke on EJB
objects, not on entity beans directly. Therefore, you can use the returned EJB
object as a way to pass a reference to yourself, simulating the this argument in
Java. getEJBLocalObject() is the same, except it gets the more optimized EJB
local object.

getPrimaryKey()
getPrimaryKey()retrieves the primary key that is currently associated with this
entity bean instance. Primary keys uniquely identify an entity bean. When an
entity bean is persisted in storage, the primary key can be used to uniquely
retrieve the entity bean because no two entity bean database data instances can
ever have the same primary key.

Why would you want to call getPrimaryKey()? You call it whenever you
want to figure out with which database data your instance is associated.
Remember that entity bean instances can be reused and pooled, as shown in
Figure 6.4. When the container wants to switch an entity bean instance from
one data instance to another, the container needs to passivate and activate that

138 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 138

entity bean instance. When this happens, your bean instance may switch to a
different data instance and thus a different primary key. But your entity bean
instance is never told this explicitly when it is activated. Rather, your entity
bean must perform a getPrimaryKey() callback to the entity context to figure
out what data it should be dealing with.

Thus, when you have an entity bean that’s performing any persistent work
(with bean-managed persistence), you should be calling getPrimaryKey()
whenever you need to figure out what data your bean is associated with. This
is very useful, for example, in the following methods:

■■ ejbLoad(). Recall that ejbStore() and ejbLoad() are bean callbacks to syn-
chronize a bean instance with an underlying storage. ejbStore() saves
data to storage, and ejbLoad() reads data from storage. When the con-
tainer calls ejbStore(), your bean knows exactly what data to save
because the bean instance has the data in memory. But when the con-
tainer calls ejbLoad(), how does your bean know what data to load?
After all, bean instances are pooled and can be dynamically assigned to
different data. The answer is to use getPrimaryKey(); it will tell you what
primary key you should be looking for in the underlying storage when
loading database data.

■■ ejbRemove(). Recall that ejbCreate() and ejbRemove() are callbacks for cre-
ating and removing data from an underlying storage, respectively.
When the container calls ejbCreate(), your bean knows exactly what data
to create in the database because your bean has received information in
the parameters of ejbCreate(). But when the container calls ejbRemove(),
how does your bean know what data to remove? Because bean
instances are pooled and dynamically assigned to handle different data
instances, you might be deleting the wrong data. Thus, you must call
getPrimaryKey() to figure out what data, keyed on the primary key, your
bean should remove from the database.

It is important to consider bean pooling when writing your enterprise
beans, and getPrimaryKey() is the key to knowing what data your bean is rep-
resenting.

Summary

In this chapter, we’ve taken the first steps toward developing with entity
beans. We started by discussing various persistence mechanisms, including
object serialization, object/relational mapping, and persistence to pure object
databases. We then looked at what an entity bean is, and we listed the files
included with an entity bean component. After surveying their features, we
took a look at entity contexts.

Introduction to Entity Beans 139

11_576828 ch06.qxd 11/3/04 11:40 AM Page 139

But the best is yet to come. In the coming chapters, you’ll learn hands-on
about entity bean programming. Chapter 7 explains bean-managed persistent
entity beans and guides you through the steps in developing them using
JDBC. Chapter 8 continues with container-managed persistent entity beans. In
Chapter 15 you’ll learn how to program entity beans that require relationships.
By the time you’re through, you’ll be armed to create your own entity beans in
enterprise deployments.

140 Chapter 6

11_576828 ch06.qxd 11/3/04 11:40 AM Page 140

141

In this chapter, we’ll demonstrate how to program bean-managed persistent
entity beans, the first of two flavors of entity beans. When you code these types
of entity beans, you must provide your own data access logic. You are respon-
sible for providing the implementation to map your entity bean instances to
and from storage. To do this, you typically use a database API, such as JDBC,
or an O/R mapping framework, such as TopLink or Hibernate. This contrasts
with container-managed persistent entity beans, which have their data access
handled for them by the EJB container. Bean-managed persistence is typically
used only when the container-managed persistence (CMP) provided by your
application server and database does not deliver satisfactory performance. In
this case, you may need to exercise tight control over each and every data
access for improving the performance of your entity beans. For more details on
performance issues please refer to Chapters 16 and 18.

This chapter explains the basics of bean-managed persistence (BMP) and
shows you how to build a simple bean-managed entity bean using JDBC.

Entity Bean Coding Basics

To write an entity bean class, you write a Java class that implements the
javax.ejb.EntityBean interface. This interface defines a number of required
methods that your entity bean class must implement. Most of these methods

Writing Bean-Managed
Persistent Entity Beans

C H A P T E R

7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 141

are management methods called by your EJB container. The following code
(Source 7.1 and Source 7.2) details javax.ejb.EntityBean, as well as its parent,
javax.ejb.EnterpriseBean (exceptions are omitted).

The javax.ejb.EnterpriseBean interface defines no methods—it is simply a
marker interface. The javax.ejb.EntityBean interface defines callback methods
that your bean must implement. The container will call these methods when-
ever it wishes.

public interface javax.ejb.EnterpriseBean

implements java.io.Serializable {

}

Source 7.1 The javax.ejb.EnterpriseBean interface.

public interface javax.ejb.EntityBean

extends javax.ejb.EnterpriseBean {

public void setEntityContext(javax.ejb.EntityContext);

public void unsetEntityContext();

public void ejbRemove();

public void ejbActivate();

public void ejbPassivate();

public void ejbLoad();

public void ejbStore();

}

Source 7.2 The javax.ejb.EntityBean interface.

142 Chapter 7

JAVA DATABASE CONNECTIVITY

This chapter uses Java Database Connectivity (JDBC). JDBC is a standard Java
extension that enables Java programmers to access relational databases. By
using JDBC, Java programmers can represent database connections, issue SQL
statements, process database results, and more in a relatively portable way.
Clients program to the unified JDBC API, which is implemented by a JDBC Driver,
an adapter that knows how to talk to a particular database in a proprietary way
(see Figure 7.1). JDBC is similar to the Open Database Connectivity (ODBC)
standard, and the two are quite interoperable through JDBC-ODBC bridges. JDBC
contains built-in support for database connection pooling, further enhancing the
database independence of your application code.

12_576828 ch07.qxd 11/3/04 11:40 AM Page 142

All entity bean classes, both bean-managed persistent and container-man-
aged persistent, must implement the javax.ejb.EntityBean interface. This inter-
face defines callback methods that the container invokes on your beans. There
are additional methods you also may define, such as methods to create and
find your entity beans.

Finding Existing Entity Beans: Finder Methods
As shown in Table 7.1, we have methods labeled ejbFind(). These finder meth-
ods are defined on the local and remote home interfaces and implemented by
your bean implementations to find an existing entity bean in storage. Finder
methods do not create new database data—they simply load old entity bean
data.

Figure 7.1 Java Database Connectivity.

Client

JDBC Driver

JDBC API

Relational Database(s)

Writing Bean-Managed Persistent Entity Beans 143

12_576828 ch07.qxd 11/3/04 11:40 AM Page 143

144 Chapter 7

Table 7.1 Descriptions and Implementation Guidelines for Bean-Managed Persistent Entities

TYPICAL
IMPLEMENTATION METHOD EXPLANATION

setEntityContext() Stick the entity context If the container wants to
somewhere, such as in a increase its pool size of bean
member variable. You can instances, it will instantiate a
access the context later new entity bean instance.
to acquire environment Next, the container calls the
information, such as instance’s setEntityContext()
security information, from method. Once this method is
the container. You should called, the bean can access
also request any resources information about its
you will need regardless environment.
of what data the bean
manages. The bean is now in a pool,

does not have any specific
database data inside of it,
and is not bound to any
particular EJB object.

ejbFind<...>(<...>) While your bean instance Search through a data store
is still in the pool, the using a storage API such as
container can use your JDBC or SQL/J. For example,
bean to service a finder you might perform relational
method. Finder methods query such as “SELECT id
locate one or more FROMaccounts WHERE
existing entity bean balance > 0.”
data instances in the
underlying persistent store. When you’ve found some
You must define a least data, return the primary keys
one finder method— for that data back to the
ejbFindByPrimaryKey(). container by creating one or

more primary key Java object
instances. The container will
then create EJB objects for
the client to invoke on and
possibly associate some
entity bean instances with
those EJB objects.

Those entity bean instances
are no longer in the pool—
they now have specific
database data inside of them,
and they are bound to
particular EJB objects.

12_576828 ch07.qxd 11/3/04 11:40 AM Page 144

Writing Bean-Managed Persistent Entity Beans 145

Table 7.1 (continued)

TYPICAL
IMPLEMENTATION METHOD EXPLANATION

ejbHome<...>(<...>) Sometimes you need Perform your global
methods on an entity operations, such as counting
bean that are not specific the rows in a database using
to any given data instance JDBC, and return the result to
(or row). For example, the client.
counting the total number
of accounts in a table.
You can write home
methods to perform these
operations. The home
methods are special
business methods
because they are called
from a bean in the pool,
before the bean is
associated with any
specific data. Clients call
home methods from
the home interface or
local home interface.

ejbCreate(<...>) When a client calls the Make sure the client’s
create() method on a initialization parameters are

Note: You do not need home object, the container valid. Explicitly create the
to write any ejbCreate() calls ejbCreate() on a database representation of
methods if you don’t pooled bean instance. the data through a storage
want EJB clients to be ejbCreate() methods are API like JDBC or SQL/J,
able to create new responsible for creating typically through a SQL
database data. Instead, new database data and INSERT. Then return a primary
you could mandate for initializing your bean. key to the container, so that
that all data is created Each ejbCreate() method the container can identify
through other means, you define gives clients a which data your instance
such as through direct different way to create represents.
database inserts or your entity beans, such as
batch files. methods to create a Your entity bean instance is

checking account and a no longer in the pool—it now
savings account. has specific database data

inside of it. The container will
bind your instance to a
particular EJB objects.

(continued)

12_576828 ch07.qxd 11/3/04 11:40 AM Page 145

Table 7.1 (continued)

TYPICAL
IMPLEMENTATION METHOD EXPLANATION

ejbPostCreate(<...>) Your bean class must The container calls
define one ejbPostCreate() ejbPostCreate() after it has
for each ejbCreate(). associated your bean instance
Each pair must accept the with an EJB object. You can
same parameters. now complete your
The container calls initialization by doing
ejbPostCreate() right anything you need to that
after ejbCreate(). requires that EJB object, such

as passing your bean’s EJB
object reference to other
beans.

You might also use this
method to reset certain
transaction-related
parameters. For example, you
could keep a data status flag
in the bean to indicate
whether a field has been
changed. Because the bean
instance may have been used
before, these fields might
have dirty data.

ejbActivate() When a client calls a Acquire any resources, such
business method on an as socket connections, that
EJB object, but no entity your bean needs to service a
bean instance is bound particular client when it is
to the EJB object, the moved into the ready state.
container needs to take
a bean from the pool and Note that you should not read
transition it into a ready the entity bean data from the
state. This is called database in this method. That
activation. Upon activation, is handled by a separate
the ejbActivate() method is method, ejbLoad(), which is
called by the EJB container. called right after ejbActivate().

ejbLoad() The EJB container calls First, your bean instance must
this method to load figure out what data it should
database data into your load. Call the getPrimaryKey()
bean instance (typically a method on the entity context;
SQL SELECT), based on that will tell your bean what
the current transactional data it should be loading.
state. Next, read database data into

your bean using a storage API
such as JDBC or SQL/J.

146 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 146

Table 7.1 (continued)

TYPICAL
IMPLEMENTATION METHOD EXPLANATION

ejbStore() The EJB container calls Explicitly update the database
this method to update the representation of the data via
database to the new a storage API like JDBC.
values of your in-memory Typically, you’ll write a
fields, thus synchronizing number of your member
the database. The current variable fields out to disk
transactional state dictates through a SQL UPDATE.
when this method is called.
This method is also called
during passivation, directly
before ejbPassivate().

bPassivate() The EJB container calls Release any resources, such
this method when it as socket connections, that
wants to return your you allocated in ejbActivate()
entity bean to the pool. and that bean was holding
This is called passivation during the ready state for a
and is the opposite of particular client.
activation. On passivation,
the ejbPassivate() method You should not save the
is called by the EJB entity bean data into the
container. database in this method. That

is handled by a separate
method, ejbStore(), which is
called right before
ejbPassivate().

ejbRemove() Destroys database data. First, figure out what data you
It is not used to destroy should destroy using the
the Java object; the object getPrimaryKey() method on
can be pooled and reused the EntityContext field. Then
for different data. explicitly delete the database

representation of the data
using a storage API like JDBC,
typically through a SQL
DELETE.

unsetEntityContext() This method disassociates Release any resources you
a bean from its allocated during
environment. The setEntityContext(), and get
container calls this right ready to be garbage collected.
before your entity bean
instance is destroyed
when it wants to reduce
the pool size.

Writing Bean-Managed Persistent Entity Beans 147

12_576828 ch07.qxd 11/3/04 11:40 AM Page 147

You define finder methods only when you use bean-managed persistence.
With container-managed persistence (CMP), these method implementations
are generated for you.

As with ejbCreate(), clients do not invoke your finder methods on the bean
instance itself. A finder method is just like any other method on your entity
bean class—clients never directly call any of your bean’s methods. Rather,
clients invoke finder methods on home objects, implemented by the EJB con-
tainer, that delegate to your bean. Therefore, for each finder method you
define in your bean class, you should define a corresponding finder in the local
home interface. Clients call your local home object’s finder methods, which
delegate to your bean’s finders.

For example, given the following finder method in the local home interface:

public AccountLocal findBigAccounts(int minimum) throws FinderException;

here is the finder implementation in your bean class (notice the ejb prefix):

public AccountPK ejbFindBigAccounts(int minimum)

throws FinderException { ... }

As with ejbCreate(), the home signature and the bean class signature have a
couple of differences:

■■ The entity bean instance returns a primary key to the container,
whereas the home object returns an EJB object to the client.

■■ The bean class signature is the same as the home signature, except for
an extra, mandatory ejb prefix and that the first letter in the word Find
is capitalized.

These signature differences between the home and bean are valid because
the bean does not implement the local home interface. Rather, the local home
object delegates to the bean, so strict signature matching is not needed.

You can have many different finder methods, all of which perform different
operations. Here are some examples of finder methods in an entity bean class:

/**

* Finds the unique bank account indexed by primary key

*/

public AccountPK ejbFindByPrimaryKey(AccountPK key)

throws FinderException { ... }

/**

* Finds all the product entity beans. Returns a Collection

* of primary keys.

148 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 148

*/

public Collection ejbFindAllProducts()

throws FinderException { ... }

/**

* Finds all Bank Accounts that have at least a minimum balance.

* Returns a Collection of primary keys.

*/

public Collection ejbFindBigAccounts(int minimum)

throws FinderException { ... }

/**

* Finds the most recently placed order

*/

public OrderPK ejbFindMostRecentOrder()

throws FinderException { ... }

Another interesting aspect of finders is that they can return collections. Your
database search may turn up more than one result and therefore more than one
entity bean. Here is the local home interface signature:

public Collection findAllProducts() throws FinderException;

And here is the bean implementation signature:

public Collection ejbFindAllProducts()

throws FinderException { ... }

The finder process works as follows:

■■ When the client invokes the home object’s finder, the home object asks a
bean to find all primary keys matching the client’s criteria. The bean
then returns a collection of those primary keys to the container.

■■ When the container receives the collection of keys from the entity bean
instance, it creates a collection of EJB objects, one for each primary key,
and returns those EJB objects in its own collection to the client. The
client can then invoke methods on the EJB objects: Each EJB object rep-
resents its own instance of data within the entity bean’s database stor-
age.

In summary, here are some of the rules about finder methods:

■■ All finder methods must begin with ejbFind. This is simply a syntactic
rule.

■■ You must have at least one finder method, called ejbFindByPrimaryKey.
This method finds one unique entity bean instance in the database

Writing Bean-Managed Persistent Entity Beans 149

12_576828 ch07.qxd 11/3/04 11:40 AM Page 149

based on its unique primary key. Because every entity bean has an asso-
ciated primary key, it makes sense that every entity bean class supports
this method.

■■ You can have many different finder methods, each with different names
and different parameters. This allows you to find using different
semantics, as illustrated by the examples above.

■■ A finder method must return either the primary key for the entity bean
it finds or a collection of primary keys if it finds more than one. Because
you could find more than one data instance in the database, finder
methods can return collections of primary keys.

Bean-Managed Persistence Example:
A Bank Account

Our first example is a simple bank account entity bean. This bank account
bean can be used to represent and manipulate real bank account data in an
underlying relational database. Figure 7.2 details the class diagram for our
bank account.

Figure 7.2 The bank account class diagram.

Bank Account Bean
Implementation

Class

<<interface>>
Bank Account

Remote Interface

Bank Account
EJB Object

<<interface>>
Bank Account
Home Interface

Bank Account
Home Object

Supplied by Bean Provider (We Will Write)

Generated for Us by Container Vendor's Tools

Bank Account
Primary Key Class

<<interface>>
java.rmi.Remote

<<interface>>

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.EntityBean

<<interface>>
javax.ejb.EJBHome

<<interface>>
javax.ejb.EJBObject

Comes with EJB Distribution

Comes with Java 2 Platform

<<interface>>
Bank Account

Local Home Interface

Bank Account
Local Home Object

<<interface>>
javax.ejb.EJBLocalHome

<<interface>>
Bank Account
Local Interface

Bank Account
EJB Local Object

<<interface>>
javax.ejb.EJBLocalObject

java.io.serializable

150 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 150

Notice that we’re developing both local and remote interfaces. When this
bean is used in production, the local interfaces will be used, because this entity
bean will be accessed by other beans that run in-process. However, for testing
purposes, and to help you understand entity beans easily, we don’t want to
introduce other beans. Rather, we will connect to this bean from a standalone
application. Since a standalone application is remote, we thus need to use its
remote interface. This is a common issue with EJB programming—to test
beans on an individual basis in this manner, you need to code its remote inter-
face even though you only plan to use the local interface in production. The
good news is that the code is almost identical for the local interface—see the
book’s accompanying source code (the e-commerce example) for examples of
calling entity beans through their local interfaces. Now let’s take a look at each
of the files that we must create for our entity bean component.

Account.java
Account.java is our entity bean’s remote interface—what remote clients use to
call our bean’s methods. The interface is shown in Source 7.3.

package examples.bmp;

import javax.ejb.*;

import java.rmi.RemoteException;

/**

* This is the remote interface for AccountBean.

*

* Client interact with beans through this interface.

The container will implement

* this interface. The implemented object is called the EJB object,

which delegates

* invocations to the actual bean.

*/

public interface Account

extends EJBObject {

/**

* Deposits amt into account.

*/

public void deposit(double amt)

throws AccountException, RemoteException;

/**

* Withdraws amount from bank account.

* @throw AccountException thrown if amount > available balance

Source 7.3 Account.java. (continued)

Writing Bean-Managed Persistent Entity Beans 151

12_576828 ch07.qxd 11/3/04 11:40 AM Page 151

*/

public void withdraw(double amount)

throws AccountException, RemoteException;

// Getter/setter methods on Entity Bean fields

public double getBalance() throws RemoteException;

public String getOwnerName() throws RemoteException;

public void setOwnerName(String name) throws RemoteException;

public String getAccountID() throws RemoteException;

public void setAccountID(String id) throws RemoteException;

}

Source 7.3 (continued)

Notice that the account remote interface extends javax.ejb.EJBObject, which
all remote interfaces must do. Our interface exposes a number of methods for
manipulating entity beans, such as for making deposits and withdrawals. All
of our methods throw remote exceptions to signal system-level catastrophic
failures, as is required for methods in the remote interface. Notice that in our
withdrawal method, we also throw our own custom application-level excep-
tion, AccountException. We’ll define that exception later.

A final word on the use of remote interfaces: Generally, a remote client
should call an entity bean directly only when you are writing small test appli-
cations to exercise your entity bean’s API, as in this example. Otherwise you
should use the local interface for performance reasons, and access entity beans
through additional session beans (see Chapter 11).

AccountLocal.java
AccountLocal.java is our entity bean’s local interface—what local clients use to
call our bean’s methods. The interface is shown in Source 7.4.

package examples.bmp;

import javax.ejb.*;

/**

* This is the local interface for AccountBean.

*

* Local clients interact with beans through this interface. The

container will

Source 7.4 AccountLocal.java.

152 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 152

* implement this interface; the implemented object is called the Æ

local object,

* which delegates invocations to the actual bean.

*/

public interface AccountLocal

extends EJBLocalObject {

/**

* Deposits amt into account.

*/

public void deposit(double amt) throws AccountException;

/**

* Withdraws amt from bank account.

* @throw AccountException thrown if amt > available balance

*/

public void withdraw(double amt) throws AccountException;

// Getter/setter methods on Entity Bean fields

public double getBalance();

public String getOwnerName();

public void setOwnerName(String name);

public String getAccountID();

public void setAccountID(String id);

}

Source 7.4 (continued)

AccountHome.java
Our home interface is specified in AccountHome.java, shown in Source 7.5.

package examples.bmp;

import javax.ejb.*;

import java.util.Collection;

import java.rmi.RemoteException;

/**

* This is the home interface for Account. This interface is

implemented by the EJB

* container’s tools – the implemented object is called the home

object, which

Source 7.5 AccountHome.java. (continued)

Writing Bean-Managed Persistent Entity Beans 153

12_576828 ch07.qxd 11/3/04 11:40 AM Page 153

* is a factory for EJB objects.

*/

public interface AccountHome

extends EJBHome {

/**

* We define a single create() method in this home interface,

* which corresponds to the ejbCreate() method in AccountBean.

* This method creates the local EJB object.

*

* Notice that the local home interface returns a local interface,

* whereas the bean returns a Primary Key.

*

* @param accountID The number of the account (unique)

* @param ownerName The name of the person who owns the account

* @return The newly created local object.

*/

Account create(String accountID, String ownerName)

throws CreateException, RemoteException;

/**

* Finds an Account by its primary Key (Account ID)

*/

public Account findByPrimaryKey(AccountPK key)

throws FinderException, RemoteException;

/**

* Finds all Accounts under an owner name

*/

public Collection findByOwnerName(String name)

throws FinderException, RemoteException;

/**

* This home business method is independent of any particular

* account. It returns the total of all accounts in the bank.

*/

public double getTotalBankValue()

throws AccountException, RemoteException;

}

Source 7.5 (continued)

We provide one create() method to create a new account. This will create new
database data representing a bank account. It returns an EJB object to the client
so the client can manipulate that newly created account. Notice that we throw
the application-level javax.ejb.CreateException, which all create() methods must
throw.

We also have two finder methods. findByPrimaryKey() searches the database
for a bank account that already exists; it searches by the account ID, which we

154 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 154

will define in AccountPK.java. We also have a custom finder method,
findByOwnerName(), which searches the database for all bank accounts that have
the same owner’s name. Because we’re using bean-managed persistence, we
need to implement both of these finder methods in our entity bean implementa-
tion. (If we were using container-managed persistence, the container would
search the database for us.) As with our create() method, both finders return EJB
objects so the client can manipulate the newly found bank accounts. We throw
the application-level javax.ejb.FinderException, which all finders must throw.

Finally, we have a business method, getTotalBankValue(). This business
method is an operation applied to the entire table rather than to an individual
row. Thus it is a global method that is independent of any particular entity
bean instance. This business method will be implemented in the bean class as
an ejbHome() method, as previously described in Table 7.1.

AccountLocalHome.java
Our local home interface, the home interface used by local clients, is specified
in AccountLocalHome.java, shown in Source 7.6.

The only differences between the local home interface and the home inter-
face are that the local home interface does not throw remote exceptions, and
extends a different parent interface.

package examples.bmp;

import javax.ejb.*;

import java.util.Collection;

/**

* This is the local home interface for Account. This

* interface is implemented by the EJB container’s tools - the

* implemented object is called the local home object, which

* is a factory for local EJB objects.

*/

public interface AccountLocalHome

extends EJBLocalHome {

/**

* We define a single create() method in this home interface,

* which corresponds to the ejbCreate() method in AccountBean.

* This method creates the local EJB object.

*

* Notice that the local home interface returns a

* local interface, whereas the bean returns a PK.

*

* Notice we don’t throw RemoteExceptions because we are local

not remote.

Source 7.6 AccountLocalHome.java. (continued)

Writing Bean-Managed Persistent Entity Beans 155

12_576828 ch07.qxd 11/3/04 11:40 AM Page 155

*

* @param accountID The number of the account (unique)

* @param ownerName The name of the person who owns the account

* @return The newly created local object.

*/

public AccountLocal create(String accountID, String ownerName)

throws CreateException;

/**

* Finds an Account by its primary Key (Account ID)

*/

public AccountLocal findByPrimaryKey(AccountPK key)

throws FinderException;

/**

* Finds all Accounts under an owner’s name

*/

public Collection findByOwnerName(String name)

throws FinderException;

/**

* This home business method is independent of any particular

* account instance. It returns the total of all the bank

* accounts in the bank.

*/

public double getTotalBankValue()

throws AccountException;

}

Source 7.6 (continued)

AccountPK.java
Our entity bean’s primary key class is defined by AccountPK.java, detailed in
Source 7.7.

package examples.bmp;

/**

* Primary Key class for Account.

*/

public class AccountPK implements java.io.Serializable {

public String accountID;

public AccountPK(String id) {

this.accountID = id;

Source 7.7 AccountPK.java.

156 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 156

}

public AccountPK() {

}

public String toString() {

return accountID;

}

public int hashCode() {

return accountID.hashCode();

}

public boolean equals(Object account) {

if (!(account instanceof AccountPK))

return false;

return ((AccountPK)account).accountID.equals(accountID);

}

}

Source 7.7 (continued)

Notice the following:

■■ Our primary key contains a simple String—the account ID string. For
example, an account ID string could be “ABC-123-0000.” This string
must be unique to its bank account; we rely on the client code that con-
structs our account ID to make sure it is unique. The primary key is
used to identify each bank account uniquely. More advanced entity
beans that map to more than one table may have primary key classes
that have several fields inside of them, each representing the primary
key of a table in the database.

■■ There is a required toString() method. This container calls this method
to retrieve a String value of this primary key. For simple primary keys,
we just return the stored field. For more advanced primary keys, we
need somehow to combine the various fields in the primary key class to
form a String.

■■ There is a required hashCode() method. By supplying this method, our
primary key class can be stored in a Hashtable. The container needs this
because inside of the container it may use a Hashtable or similar struc-
ture to store a list of all entity beans it has in memory, keyed on their
primary keys.

■■ There is a required equals() method. The container calls this to compare
this primary key to others when determining internally if two cached
entity beans (which each have a primary key) are representing the same
database data.

Writing Bean-Managed Persistent Entity Beans 157

12_576828 ch07.qxd 11/3/04 11:40 AM Page 157

AccountBean.java
Next we have our entity bean implementation class, AccountBean.java. Our
bean implementation code is quite lengthy and is divided into several sections.

■■ Bean-managed state fields. These are the persistable fields of our entity
bean class. Our bean instance will load and store the database data into
these fields.

■■ Business logic methods. These methods perform services for clients,
such as withdrawing or depositing into an account. They are exposed
by the remote interface, Account.

■■ EJB-required methods. These are methods that the container calls to
manage our bean. They also include our create and find methods
defined in the home interface.

The code is presented in Source 7.8 through Source 7.10. We divide it into
three parts because the code is extremely cumbersome, even for a simple bank
account. This is an unfortunate drawback of bean-managed persistence
because you must provide all data access code.

package examples.bmp;

import java.sql.*;

import javax.naming.*;

import javax.ejb.*;

import java.util.*;

/**

* Demonstration Bean-Managed Persistent Entity Bean. This Entity Bean

* represents a Bank Account.

*/

public class AccountBean implements EntityBean {

protected EntityContext ctx;

//

// Bean-managed state fields

//

private String accountID; // PK

private String ownerName;

private double balance;

public AccountBean() {

Source 7.8 AccountBean.java (Part 1 of 3).

158 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 158

System.out.println(“New Bank Account Entity Bean Java

Object created by EJB Container.”);

}

... methods continue ...

Source 7.8 (continued)

The first part of our bean is straightforward. We have our bean’s fields (one
of which is the primary key field), and a default constructor. We keep an Enti-
tyContext field around so that we can query the container from our bean as
necessary (however, EntityContext is not a persistent field).

The next part of our bean is the business logic methods, shown in Source 7.9.

... continued ...

//

// Business Logic Methods

//

/**

* Deposits amt into account.

*/

public void deposit(double amt) throws AccountException {

System.out.println(“deposit(“ + amt + “) called.”);

balance += amt;

}

/**

* Withdraws amt from bank account.

* @throw AccountException thrown if amt > available balance

*/

public void withdraw(double amt) throws AccountException {

System.out.println(“withdraw(“ + amt + “) called.”);

if (amt > balance) {

throw new AccountException(“Your balance is “ +

balance + “! You cannot withdraw “

+ amt + “!”);

}

balance -= amt;

Source 7.9 AccountBean.java (Part 2 of 3).(continued)

Writing Bean-Managed Persistent Entity Beans 159

12_576828 ch07.qxd 11/3/04 11:40 AM Page 159

}

// Getter/setter methods on Entity Bean fields

public double getBalance() {

System.out.println(“getBalance() called.”);

return balance;

}

public void setOwnerName(String name) {

System.out.println(“setOwnerName() called.”);

ownerName = name;

}

public String getOwnerName() {

System.out.println(“getOwnerName() called.”);

return ownerName;

}

public String getAccountID() {

System.out.println(“getAccountID() called.”);

return accountID;

}

public void setAccountID(String id) {

System.out.println(“setAccountID() called.”);

this.accountID = id;

}

/**

* This home business method is independent of any

* particular account instance. It returns the total

* of all the bank accounts in the bank.

*/

public double ejbHomeGetTotalBankValue() throws AccountException {

PreparedStatement pstmt = null;

Connection conn = null;

try {

System.out.println(“ejbHomeGetTotalBankValue()”);

/* Acquire DB connection */

conn = getConnection();

/* Get the total of all accounts */

pstmt = conn.prepareStatement(

“select sum(balance) as total from accounts”);

Source 7.9 (continued)

160 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 160

ResultSet rs = pstmt.executeQuery();

/* Return the sum */

if (rs.next()) {

return rs.getDouble(“total”);

}

}

catch (Exception e) {

e.printStackTrace();

throw new AccountException(e);

}

finally {

/*

* Release DB Connection for other beans

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) { }

try { if (conn != null) conn.close(); }

catch (Exception e) { }

}

throw new AccountException(“Error!”);

}

/**

* Gets JDBC connection from the connection pool.

*

* @return The JDBC connection

*/

public Connection getConnection() throws Exception {

try {

Context ctx = new InitialContext();

javax.sql.DataSource ds =

(javax.sql.DataSource)ctx.lookup(“java:comp/env/jdbc/ejbPool”);

return ds.getConnection();

}

catch (Exception e) {

System.err.println(“Couldn’t get datasource!”);

e.printStackTrace();

throw e;

}

}

}

Source 7.9 (continued)

Our withdraw and deposit methods simply modify the in-memory fields of
the entity bean instance. If the client tries to withdraw more money than is

Writing Bean-Managed Persistent Entity Beans 161

12_576828 ch07.qxd 11/3/04 11:40 AM Page 161

available in the account, we throw our custom application-level exception,
AccountException.

The ejbHomeGetTotalBankValue() business method implementation adds the
total of all bank account balances in the database. It retrieves a JDBC connec-
tion using the getConnection() helper method. In that getConnection() method
we look up the database connection using JNDI (see Chapter 10 for a full
description of this process).

Notice, too, that we close each connection after every method call. This
allows our EJB container to pool JDBC connections. When the connection is
not in use, another bean can use our connection. This is the standard, portable
way for connection pooling. The connection pooling is built into the JDBC 2.0
specification and happens automatically behind the scenes.

The final part of our bean demonstrates the various EJB callback methods,
shown in Source 7.10.

... continued ...

//

// EJB-required methods

//

/**

* Called by Container. Implementation can acquire

* needed resources.

*/

public void ejbActivate() {

System.out.println(“ejbActivate() called.”);

}

/**

* Removes entity bean data from the database.

* Corresponds to when client calls home.remove().

*/

public void ejbRemove() throws RemoveException {

System.out.println(“ejbRemove() called.”);

/*

* Remember that an entity bean class can be used to

* represent different data instances. So how does

* this method know which instance in the database

* to delete?

*

* The answer is to query the container by calling

* the entity context object. By retrieving the

* primary key from the entity context, we know

* which data instance, keyed by the PK, that we

* should delete from the DB.

Source 7.10 AccountBean.java (Part 3 of 3).

162 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 162

*/

AccountPK pk = (AccountPK) ctx.getPrimaryKey();

String id = pk.accountID;

PreparedStatement pstmt = null;

Connection conn = null;

try {

/*

* 1) Acquire a new JDBC Connection

*/

conn = getConnection();

/*

* 2) Remove account from the DB

*/

pstmt = conn.prepareStatement(

“delete from accounts where id = ?”);

pstmt.setString(1, id);

/*

* 3) Throw a system-level exception if something

* bad happened.

*/

if (pstmt.executeUpdate() == 0) {

throw new RemoveException(

“Account “ + pk +

“ failed to be removed from the database”);

}

}

catch (Exception ex) {

throw new EJBException(ex.toString());

}

finally {

/*

* 4) Release the DB Connection

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) { }

try { if (conn != null) conn.close(); }

catch (Exception e) { }

}

}

/**

* Called by Container. Releases held resources for

* passivation.

*/

public void ejbPassivate() {

System.out.println(“ejbPassivate () called.”);

Source 7.10 (continued)

Writing Bean-Managed Persistent Entity Beans 163

12_576828 ch07.qxd 11/3/04 11:40 AM Page 163

}

/**

* Called by the container. Updates the in-memory entity

* bean object to reflect the current value stored in

* the database.

*/

public void ejbLoad() {

System.out.println(“ejbLoad() called.”);

/*

* Again, query the Entity Context to get the current

* Primary Key, so we know which instance to load.

*/

AccountPK pk = (AccountPK) ctx.getPrimaryKey();

String id = pk.accountID;

PreparedStatement pstmt = null;

Connection conn = null;

try {

/*

* 1) Acquire a new DB Connection

*/

conn = getConnection();

/*

* 2) Get account from the DB, querying

* by account ID

*/

pstmt = conn.prepareStatement(

“select ownerName, balance from accounts “

+ “where id = ?”);

pstmt.setString(1, id);

ResultSet rs = pstmt.executeQuery();

rs.next();

ownerName = rs.getString(“ownerName”);

balance = rs.getDouble(“balance”);

}

catch (Exception ex) {

throw new EJBException(

“Account “ + pk

+ “ failed to load from database”, ex);

}

finally {

/*

* 3) Release the DB Connection

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) { }

Source 7.10 (continued)

164 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 164

try { if (conn != null) conn.close(); }

catch (Exception e) { }

}

}

/**

* Called from the Container. Updates the database

* to reflect the current values of this in-memory

* entity bean instance.

*/

public void ejbStore() {

System.out.println(“ejbStore() called.”);

PreparedStatement pstmt = null;

Connection conn = null;

try {

/*

* 1) Acquire a new DB Connection

*/

conn = getConnection();

/*

* 2) Store account in DB

*/

pstmt = conn.prepareStatement(

“update accounts set ownerName = ?, balance = ?”

+ “ where id = ?”);

pstmt.setString(1, ownerName);

pstmt.setDouble(2, balance);

pstmt.setString(3, accountID);

pstmt.executeUpdate();

}

catch (Exception ex) {

throw new EJBException(“Account “ + accountID +

“ failed to save to

database”, ex);

}

finally {

/*

* 3) Release the DB Connection

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) { }

try { if (conn != null) conn.close(); }

catch (Exception e) { }

}

Source 7.10 (continued)

Writing Bean-Managed Persistent Entity Beans 165

12_576828 ch07.qxd 11/3/04 11:40 AM Page 165

}

/**

* Called by the container. Associates this bean

* instance with a particular context. We can query

* the bean properties that customize the bean here.

*/

public void setEntityContext(EntityContext ctx) {

System.out.println(“setEntityContext called”);

this.ctx = ctx;

}

/**

* Called by Container. Disassociates this bean

* instance with a particular context environment.

*/

public void unsetEntityContext() {

System.out.println(“unsetEntityContext called”);

this.ctx = null;

}

/**

* Called after ejbCreate(). Now, the Bean can retrieve

* its EJBObject from its context, and pass it as

* a ‘this’ argument.

*/

public void ejbPostCreate(String accountID, String ownerName) {

}

/**

* This is the initialization method that corresponds to the

* create() method in the Home Interface.

*

* When the client calls the Home Object’s create() method,

* the Home Object then calls this ejbCreate() method.

*

* @return The primary key for this account

*/

public AccountPK ejbCreate(String accountID, String ownerName)

throws CreateException {

PreparedStatement pstmt = null;

Connection conn = null;

try {

System.out.println(“ejbCreate() called.”);

this.accountID = accountID;

this.ownerName = ownerName;

this.balance = 0;

Source 7.10 (continued)

166 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 166

/*

* Acquire DB connection

*/

conn = getConnection();

/*

* Insert the account into the database

*/

pstmt = conn.prepareStatement(

“insert into accounts (id, ownerName, balance)”

+ “ values (?, ?, ?)”);

pstmt.setString(1, accountID);

pstmt.setString(2, ownerName);

pstmt.setDouble(3, balance);

pstmt.executeUpdate();

/*

* Generate the Primary Key and return it

*/

return new AccountPK(accountID);

}

catch (Exception e) {

throw new CreateException(e.toString());

}

finally {

/*

* Release DB Connection for other beans

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) { }

try { if (conn != null) conn.close(); }

catch (Exception e) { }

}

}

/**

* Finds a Account by its primary Key

*/

public AccountPK ejbFindByPrimaryKey(AccountPK key)

throws FinderException {

PreparedStatement pstmt = null;

Connection conn = null;

try {

System.out.println(“ejbFindByPrimaryKey(“

+ key + “) called”);

/*

* Acquire DB connection

*/

Source 7.10 (continued)

Writing Bean-Managed Persistent Entity Beans 167

12_576828 ch07.qxd 11/3/04 11:40 AM Page 167

conn = getConnection();

/*

* Find the Entity in the DB

*/

pstmt = conn.prepareStatement(

“select id from accounts where id = ?”);

pstmt.setString(1, key.toString());

ResultSet rs = pstmt.executeQuery();

rs.next();

/*

* No errors occurred, so return the Primary Key

*/

return key;

}

catch (Exception e) {

throw new FinderException(e.toString());

}

finally {

/*

* Release DB Connection for other beans

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) { }

try { if (conn != null) conn.close(); }

catch (Exception e) { }

}

}

/**

* Finds Accounts by name

*/

public Collection ejbFindByOwnerName(String name)

throws FinderException {

PreparedStatement pstmt = null;

Connection conn = null;

Vector v = new Vector();

try {

System.out.println(

“ejbFindByOwnerName(“ + name + “) called”);

/*

* Acquire DB connection

*/

conn = getConnection();

/*

Source 7.10 (continued)

168 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 168

* Find the primary keys in the DB

*/

pstmt = conn.prepareStatement(

“select id from accounts where ownerName = ?”);

pstmt.setString(1, name);

ResultSet rs = pstmt.executeQuery();

/*

* Insert every primary key found into a vector

*/

while (rs.next()) {

String id = rs.getString(“id”);

v.addElement(new AccountPK(id));

}

/*

* Return the vector of primary keys

*/

return v;

}

catch (Exception e) {

throw new FinderException(e.toString());

}

finally {

/*

* Release DB Connection for other beans

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) { }

try { if (conn != null) conn.close(); }

catch (Exception e) { }

}

}

}

Source 7.10 (continued)

Source 7.10 is quite long because of the enormous amount of JDBC coding
required to write even a simple bean-managed persistent entity bean. The bulk
of the code occurs in the methods that perform CRUD operations (Create,
Read, Update, Delete). These are namely ejbCreate(), ejbFind() and ejbLoad(), ejb-
Store(), and ejbRemove(). The code is self-documenting and you should be able
to understand it if you cross-reference Table 7.1. If you’re still stuck, we will
further explain these methods later in this chapter when we discuss the life
cycle of a bean-managed persistent entity bean.

Writing Bean-Managed Persistent Entity Beans 169

12_576828 ch07.qxd 11/3/04 11:40 AM Page 169

When a statement is sent to a database, the container’s installer JDBC driver
parses it, determines the best way to execute the statement based on
statistics that it maintains, and then executes the statement. Parsing and
determining an execution strategy can be computationally expensive. The
good news is that JDBC is smart—when an instance of PreparedStatement is
executed on a connection, it first checks its cache to see whether this
statement has been executed previously; if so, it reuses the previously
prepared version, thus improving performance. For more information, refer
to Billy Newport’s article “How Prepared Statements Greatly Improve
Performance,” posted at www.ejbinfo.com.

AccountException.java
Our custom exception class is AccountException.java, displayed in Source 7.11.
It simply delegates to the parent java.lang.Exception class. It is still useful to
define our own custom exception class, however, so that we can distinguish
between a problem with our bank account component and a problem with
another part of a deployed system.

package examples.bmp;

/**

* Exceptions thrown by Accounts

*/

public class AccountException extends Exception {

public AccountException() {

super();

}

public AccountException(Exception e) {

super(e.toString());

}

public AccountException(String s) {

super(s);

}

}

Source 7.11 AccountException.java.

170 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 170

Client.java
Our last Java file is a simple test client to exercise our bean’s methods. It is
shown in Source 7.12.

package examples.bmp;

import javax.ejb.*;

import javax.naming.*;

import java.rmi.*;

import javax.rmi.*;

import java.util.*;

/**

* Sample client code that manipulates a Bank Account Entity Bean.

*/

public class AccountClient {

public static void main(String[] args) throws Exception {

Account account = null;

try {

/*

* Get a reference to the Account Home Object - the

* factory for Account EJB Objects

*/

Context ctx =

new InitialContext(System.getProperties());

Object obj = ctx.lookup(“AccountHome”);

AccountHome home = (AccountHome)

PortableRemoteObject.narrow(

obj, AccountHome.class);

System.err.println(

“Total of all accounts in bank initially = “

+ home.getTotalBankValue());

/* Use the factory to create the Account EJB Object */

home.create(“123-456-7890”, “John Smith”);

/* Find an account */

Iterator i = home.findByOwnerName(

“John Smith”).iterator();

if (i.hasNext()) {

account =

(Account)javax.rmi.PortableRemoteObject.narrow(

i.next(), Account.class);

Source 7.12 Client.java. (continued)

Writing Bean-Managed Persistent Entity Beans 171

12_576828 ch07.qxd 11/3/04 11:40 AM Page 171

}

else {

throw new Exception(“Could not find account”);

}

/* Call the balance() method, and print it */

System.out.println(“Initial Balance = “ +

account.getBalance());

/* Deposit $100 into the account */

account.deposit(100);

/* Retrieve the resulting balance. */

System.out.println(

“After depositing 100, account balance = “

+ account.getBalance());

System.out.println(

“Total of all accounts in bank now = “

+ home.getTotalBankValue());

/* Retrieve the Primary Key from the EJB Object */

AccountPK pk = (AccountPK) account.getPrimaryKey();

/*

* Release our old EJB Object reference. Now call

* find() again, this time querying on Account ID

* (i.e. the Primary Key).

*/

account = null;

account = home.findByPrimaryKey(pk);

/* Print out current balance */

System.out.println(

“Found account with ID “ + pk + “. Balance = “

+ account.getBalance());

/* Try to withdraw $150 */

System.out.println(

“Now trying to withdraw $150, which is more “

+ “than is currently available. This should “

+ “generate an exception..”);

account.withdraw(150);

}

catch (Exception e) {

System.out.println(“Caught exception!”);

e.printStackTrace();

}

Source 7.12 (continued)

172 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 172

finally {

/*

* Destroy the Entity permanently

*/

try {

System.out.println(“Destroying account..”);

if (account != null) {

account.remove();

}

}

catch (Exception e) {

e.printStackTrace();

}

}

}

}

Source 7.12 (continued)

The client code is fairly self-explanatory. We perform some bank account
operations in the try block. We have a finally clause to make sure our bank
account is properly deleted afterward, regardless of any exceptions that may
have been thrown.

The Deployment Descriptor
Now, let’s take a look at our deployment descriptor, shown in Source 7.13.

<?xml version=”1.0” encoding=”UTF-8”?>

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee” version=”2.1”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<display-name>AccountJAR</display-name>

<enterprise-beans>

<entity>

<ejb-name>AccountEJB</ejb-name>

<home>examples.bmp.AccountHome</home>

<remote>examples.bmp.Account</remote>

<ejb-class>examples.bmp.AccountBean</ejb-class>

<persistence-type>Bean</persistence-type>

<prim-key-class>examples.bmp.AccountPK</prim-key-class>

<reentrant>false</reentrant>

<resource-ref>

<res-ref-name>jdbc/bmp-account</res-ref-name>

Source 7.13 The Account Bean’s ejb-jar.xml deployment descriptor. (continued)

Writing Bean-Managed Persistent Entity Beans 173

12_576828 ch07.qxd 11/3/04 11:40 AM Page 173

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

</entity>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>AccountEJB</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

<method>

<ejb-name>AccountEJB</ejb-name>

<method-intf>Local</method-intf>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Source 7.13 (continued)

Notice the following features of our deployment descriptor that are differ-
ent from session beans:

■■ The persistence-type element indicates whether we are bean-managed
persistent (set it to “Bean”) or container-managed persistent (set it to
“Container”).

■■ The prim-key-class element specifies our primary key class.

■■ The reentrant element dictates whether our bean can call itself through
another bean. A given bean A is reentrant if bean A calls bean B, which
calls back on bean A. This is a special case of multithreading because it
is really only one path of execution that happens to loop back on itself.
If we would like to support this reentrant behavior, we should set this
setting to True so that the container will allow two threads to run inside
of bean A at once. Since our bean doesn’t call itself through another
bean, we set it to False, which is usually what you’ll want to do to avoid
unintended multithreading issues.

■■ The resource-ref element sets up our JDBC driver and makes it available
at the proper JNDI location (see Chapter 10 for a full description of this
process).

■■ The assembly-descriptor associates transactions with our bean. We will
describe transactions fully in Chapter 12.

174 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 174

The Container-Specific Deployment Descriptor
Finally, we have our container-specific deployment descriptor, which config-
ures our bean in ways specific to a particular EJB server. We will not show this
file because we want the code in this book to remain vendor-neutral. Typically,
you would use this proprietary descriptor to associate the home interface,
local home interface, and JDBC driver with JNDI locations. For an example
descriptor, see the book’s accompanying source code.

Setting up the Database
Lastly, we need to create the appropriate database table and columns for our
bank accounts. You can do this through your database’s GUI or command-line
interface. The book’s included source code includes installation scripts that
will do this for you for the J2EE SDK’s database. If you’re using a different
database, you should enter the following SQL Data Definition Language (DDL)
statements in your database’s SQL interface:

drop table accounts;

create table accounts (id varchar(64), ownername varchar(64), balance

numeric(18));

This creates an empty table of bank accounts. The first column is the bank
account ID (the primary key), the second column is the bank account owner’s
name, and the third column is the bank account balance.

Running the Client Program

To run the client program, type a command similar to the following (depend-
ing on what your EJB container’s Java Naming and Directory Interface [JNDI]
connection parameters are—see your container’s documentation):

java -Djava.naming.provider.url=corbaloc::localhost:3700/NameService

-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

examples.bmp.AccountClient

The initialization parameters are required by JNDI to find the home object,
as we learned in Chapter 3.

Server-Side Output
When you run the client, you should see something similar to the following
output on the server side. Note that your particular output may vary, because
of variances in EJB container behavior.

Writing Bean-Managed Persistent Entity Beans 175

12_576828 ch07.qxd 11/3/04 11:40 AM Page 175

New Bank Account Entity Bean Java Object created by EJB Container.

setEntityContext called.

ejbHomeGetTotalBankValue() called.

ejbCreate() called.

ejbStore() called.

New Bank Account Entity Bean Java Object created by EJB Container.

setEntityContext called.

ejbFindByOwnerName(John Smith) called.

ejbLoad() called.

getBalance() called.

ejbStore() called.

ejbLoad() called.

deposit(100.0) called.

ejbStore() called.

ejbLoad() called.

getBalance() called.

ejbStore() called.

ejbHomeGetTotalBankValue() called.

ejbFindByPrimaryKey(123-456-7890) called.

ejbLoad() called.

getBalance() called.

ejbStore() called.

ejbLoad() called.

withdraw(150.0) called.

ejbStore() called.

ejbLoad() called.

ejbRemove() called.

Notice what’s happening here:

■■ When our client code called create() on the home object, the container
created an entity bean instance. The container first called newInstance()
and setEntityContext() to get the entity bean into the available pool of
entity beans. The container then serviced our client’s home business
method and used the bean in the pool. Then the client called create(),
which caused the container to take the bean out of the pool and call the
bean’s ejbCreate() method, which created some new database data, and
returned control back to the container. Finally, the container associated
the bean instance with a new EJB object and returned that EJB object to
the client.

176 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 176

■■ To service our finder method, the container instantiated another entity
bean. The container called newInstance() and then setEntityContext() to
get that new bean instance into the available pool of entity beans. It
then used the bean in the pool to service our finder method. Note that
the bean instance is still in the pool and could service any number of
finder methods.

■■ In addition to the methods that the client calls, our EJB container
inserted a few ejbStore() and ejbLoad() calls to keep the database in
synch.

Client-Side Output
Running the client program yields the following client-side output:

Total of all accounts in bank initially = 1200000.0

Initial Balance = 0.0

After depositing 100, account balance = 100.0

Total of all accounts in bank now = 1200100.0

Found account with ID 123-456-7890. Balance = 100.0

Now trying to withdraw $150, which is more than is currently

available. This should generate an exception..

Caught exception!

examples.AccountException: Your balance is 100.0! You cannot

withdraw 150.0!

Destroying account..

Our table already had $1,200,000 from previous records in the database. We
then created an entity bean, deposited into it, and tried to withdraw more than
we had. The entity bean correctly threw an application-level exception, indi-
cating that our balance had insufficient funds.

Putting It All Together: Walking through
a BMP Entity Bean’s Life Cycle

Let’s wrap up this chapter by examining the big picture and understanding
exactly how a container interacts with a BMP entity bean. The state machine
diagram in Figure 7.3 illustrates the life cycle of a BMP entity bean.

Writing Bean-Managed Persistent Entity Beans 177

12_576828 ch07.qxd 11/3/04 11:40 AM Page 177

Figure 7.3 The BMP entity bean life cycle.

Here is what’s going on in this diagram:

1. The does not exist state represents entity bean instances that have not
been instantiated yet.

2. To create a new instance, the container calls the newInstance() method
on the entity bean class. This calls your entity bean’s default construc-
tor, bringing a new instance into memory. Next, the container associates
your entity bean with an entity context object through a callback that

Does Not Exist

Pooled

Ready

ejbRemove()

ejbStore()

1: newInstance()
2: setEntityContext()

1: unsetEntityContext()
2: JVM Will Garbage Collect
 and Call finalize()

ejbFind()

Activate Your Bean:
1: ejbActivate()
2: ejbLoad()

Passivate Your Bean:
1: ejbStore()
2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

ejbLoad()

Business Method

The lifecycle of a bean-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean
instance.

ejbHome()

178 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 178

you implement, called setEntityContext(EntityContext ctx). Note that this
step occurs only when the container wants to increase the available
pool of entity bean instances, not necessarily when a client connects.

3. Next, your entity bean is in a pool of other entity beans. At this point
your entity bean does not have any entity bean database data loaded
into it, and it does not hold any bean-specific resources, such as socket
connections. Your bean instance can be used in this mode to find entity
data in the database, by servicing a finder method on behalf of a client.
Your bean instance can also perform operations not dependent on a
particular data instance by servicing an ejbHome() method on behalf of a
client. If the container wants to reduce its pool size, it can destroy your
bean. The container signals your bean instance that it is about to be
destroyed by calling the unsetEntityContext() method on your bean.
Once this is done, the container releases any references to your bean,
and eventually, the Java garbage collector cleans up the memory your
instance had been using. Therefore your unsetEntityContext() method
should prepare your bean to be cleaned up, perhaps by releasing any
resources your bean had claimed during setEntityContext().

4. When the client wants to create some new database data (say, a new
order for goods placed over the Internet), it calls a create() method on
your entity bean’s home object. The container then grabs an entity bean
instance from the pool, and the instance’s ejbCreate() method is called.
ejbCreate() initializes the entity bean to a specific data set. For example,
if a client calls a create() method to create a bank account, it might pass
the bank account holder’s name and the initial balance as parameters.
Your entity bean’s ejbCreate() method would populate its member vari-
ables with these parameters. It would also create the corresponding
database representation (if you’re using bean-managed persistence).
Now your bean is in the “ready” state.

5. While your bean is in the ready state, it is tied to specific data and hence
a specific EJB object. If there are other entity bean instances that are
views into the same database data, the container may occasionally need
to synchronize your bean instance with the underlying database, so that
you will always be working with the most recent data. The ejbLoad() and
ejbStore() methods do this; the container calls them as appropriate, based
on how you define your transactions (see Chapter 11).

6. Your entity beans can be kicked back into the pool in two ways. If a
client calls remove() on the home object, the container will call your
instance’s ejbRemove(). The underlying database data is destroyed and
so, of course, your entity bean instance will become disassociated with
the client’s EJB object to which it was bound.

Writing Bean-Managed Persistent Entity Beans 179

12_576828 ch07.qxd 11/3/04 11:40 AM Page 179

7. The second way your bean can return to the pool is if the EJB container
decides that your client has timed out, if the container needs to use
your bean to service a different client, or if the container is simply run-
ning out of resources. At this point, your bean is passivated, and the
container calls your ejbStore() method to ensure the database has the
most recent version of your in-memory data. Next the container calls
your ejbPassivate() method, allowing your bean instance to release held
resources. Your bean instance then enters the pool.

8. When the container wants to assign you to an EJB object again, your
bean instance must be activated. The container calls your bean’s ejbActi-
vate() method, allowing your bean to acquire resources. The container
then calls your instance’s ejbLoad() method to load the database data
into your bean.

Note that there are a few other minor steps in this process, such as transac-
tional synchronization. Overall, these stages are the essence of a BMP entity
bean instance’s life cycle. The next step is for you to look at Figure 7.3 again
and make sure you fully grasp it. Do you understand how a single Java object
instance can be pooled and reused, going back and forth through various tran-
sitions between the pooled and ready state, perhaps representing different
database data each time? If so, congratulations. This is a crucial step toward
fully understanding EJB.

Summary

In this chapter, you’ve seen how to write bean-managed persistent (BMP)
entity beans. Table 7.1 is provided for your reference and summarizes what
you should implement in each method in your entity bean when using bean-
managed persistence. You should refer to it when rereading the code in this
chapter or when programming your own entity bean classes.

Bean-managed persistent entity beans are useful if you need to control the
underlying database operations yourself. From a developer’s perspective, the
real advantage of EJB comes from container-managed persistent entity beans.
Container-managed persistent (CMP) entity beans can be developed much
more rapidly because the container handles all data access logic for you. The
next chapter covers the EJB container-managed persistence model.

180 Chapter 7

12_576828 ch07.qxd 11/3/04 11:40 AM Page 180

181

In the previous chapters, we learned the basics of entity beans and wrote a
bean-managed persistent entity bean that represented a bank account. In this
chapter, we’ll see how things change when we move to a container-managed
persistent (CMP) model. With container-managed persistence, you don’t
implement any persistence logic (such as JDBC) in the entity bean itself; rather,
the EJB container performs storage operations for you. As you will see, this
greatly simplifies bean development.

Features of CMP Entity Beans

We’ll kick things off by looking at the major differences between CMP and
bean-managed persistence (BMP). Before reading this, you should be familiar
with the entity bean concepts we covered in the previous two chapters.

CMP Entity Beans Are Subclassed
Imagine that you are a bean provider who writes beans that others will con-
sume, such as an independent software vendor (ISV) or a department that
writes components that other departments reuse. You need to write your
beans to be database-independent because you don’t know what storage

Writing Container-Managed
Persistent Entity Beans

C H A P T E R

8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 181

the consumers of your bean will use. You certainly don’t want to allow the
consumers of your beans to access your source code, because it violates your
intellectual property rights. Furthermore, if they modify the code, it makes
future upgrades to new versions of your components difficult.

To answer this need, the authors of the EJB specification tried to make a
clean separation between an entity bean and its persistent representation—
that is, a separation between the business methods, such as logic in your entity
bean to add two fields together, and the data access layer. This separation is
valuable because you can modify the persistent representation of an entity
bean (for example, to change from a relational database to an object database)
without affecting the entity bean logic. This is a crucial feature for bean
providers.

To achieve this clean separation, you write your CMP entity bean class with-
out any persistence logic. The container then generates the data access code by
subclassing your entity bean class. The generated subclass inherits from your
entity bean class. Thus, all CMP entity beans actually comprise two classes: the
superclass, which you write and which contains the entity bean business logic;
and the subclass, which the container generates and which contains the per-
sistence logic. These two classes achieve a clean separation of entity bean logic
and persistent representation. The actual entity bean is a combination of the
superclass and the subclass. This is shown in Figure 8.1.

Entity beans are very different between EJB 1.1 and EJB 2.x. EJB 1.1 entity
beans do not require the use of subclassing. EJB 2.x containers must
support both the old EJB 1.1 style and the EJB 2.x style of entity beans.

CMP Entity Beans Have No Declared Persistent Fields
Another issue with CMP is that the container might have additional fields or
logic that are part of your persistent representation but are container-specific.
As a bean developer, you should be oblivious to this information. Here are two
examples:

■■ A container might keep around a bit vector that tracks which of your
entity bean fields have been modified (that is, are dirty) and need to be
written to storage. Then when your bean is stored, the container per-
sists only the part of your bean that has changed.

■■ Your bean might hold references to other beans. The container must
preserve the referential integrity of those relationships, as described in
Chapter 12.

182 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 182

Figure 8.1 The subclassing concept.

Since every container has its own proprietary way of dealing with your per-
sistent representation, your persistent fields are kept in the subclass, not the
superclass. This is another paradigm shift with container-managed persistent
entity beans: You don’t declare any persistent fields in your bean. For example,
take a look at the following snippet of code from the BMP bank account entity
bean class that we wrote in Chapter 7:

// BMP

public class AccountBean implements EntityBean {

CMP Entity Bean Class
(Contains Data Logic)

Supplied by Bean Provider (We Will Write)

Generated for Us by Container Vendor's Tools

<<interface>>
java.io.Serializable

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.EntityBean

Comes with EJB Distribution

Comes with Java 2 Platform

CMP Entity Bean Subclass
(Contains Persistence Logic)

Writing Container-Managed Persistent Entity Beans 183

13_576828 ch08.qxd 11/3/04 11:41 AM Page 183

public String accountID; // PK

public String ownerName;

public double balance;

...methods...

}

With CMP, the fields are not present. Rather, the container generates your
persistent fields in the subclass. For example, the following subclass might be
generated from the container tools:

// CMP Subclass

public class AccountBeanSubClass extends AccountBean {

public String accountID; // PK

public String ownerName;

public double balance;

...methods...

}

CMP Get/Set Methods Are Defined in the Subclass
One corollary of the subclass paradigm is that the subclass, not the superclass,
implements the get/set methods. For example, here is that BMP bank account
again:

// BMP

public class AccountBean implements EntityBean {

public String accountID; // PK

public String ownerName;

public double balance;

public String getOwnerName() {

return ownerName;

}

public void setOwnerName(String ownerName) {

this.ownerName = ownerName;

}

...other methods...

}

With CMP, the get/set methods would appear in the subclass, since that is
where the fields exist and thus the only place they can be accessed. Here is
what the container-generated subclass looks like.

184 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 184

// CMP subclass

public class AccountBeanSubClass extends AccountBean {

public String accountID; // PK

public String ownerName;

public double balance;

public String getOwnerName() {

return ownerName;

}

public void setOwnerName(String ownerName) {

this.ownerName = ownerName;

}

...other methods...

}

So what does the superclass look like? First, realize that the superclass can-
not possibly implement the get/set methods because it doesn’t have access to
the fields. However, the superclass does need to call those get/set methods. For
example, let’s say you have a shopping cart entity bean that contains a subtotal
field and a taxes field on the contents in the shopping cart. One useful method
you might want to write is a getTotal() method, which returns the subtotal 1
taxes. That is more than just a simple get/set method and thus cannot be gen-
erated automatically by the container in the subclass. Therefore you need to
write that method in the superclass yourself. But what would that getTotal()
method look like? With BMP, it could look like this:

// BMP

public class CartBean implements EntityBean {

...

public float getTotal() {

return this.getSubtotal() + this.getTaxes();

}

...

}

This code works well with BMP because we can define the getSubtotal() and
getTaxes() methods. But with CMP, the simple get/set methods getSubtotal()
and getTaxes() are defined in the subclass, so how can we access those get/set
methods? The answer is to declare your get/set methods as abstract methods
in the superclass. An abstract method is a method whose implementation is
deferred to a subclass; yet by defining a method as abstract you can call it from
the superclass. For example, a CMP shopping cart bean would look like this:

// CMP superclass

public abstract class CartBean implements EntityBean {

Writing Container-Managed Persistent Entity Beans 185

13_576828 ch08.qxd 11/3/04 11:41 AM Page 185

// no fields

// abstract get/set methods

public abstract float getSubTotal();

public abstract float getTaxes();

// other business methods

public float getTotal() {

return this.getSubtotal() + this.getTaxes();

}

// EJB required methods follow

}

The subclass for this bean is the subclass we showed earlier. As another
example, a CMP account bean would look like this:

// CMP superclass

public abstract class AccountBean implements EntityBean {

// no fields

// abstract get/set methods

public abstract String getOwnerName();

public abstract void setOwnerName(String ownerName);

// EJB required methods follow

}

CMP Entity Beans Have an Abstract Persistence Schema
So far, we’ve discussed how the container generates JDBC code, persistent
fields, and get/set method implementations. One lurking question is how
does the container know what to generate? The answer is that you declare it in
your bean’s deployment descriptors. The EJB container inspects the deploy-
ment descriptors to figure out what to generate. This definition of how you’d
like to be persisted is called your abstract persistence schema. For example, here
is a snippet from an Account deployment descriptor:

...

<cmp-version>2.x</cmp-version>

<abstract-schema-name>AccountBean</abstract-schema-name>

<cmp-field>

<field-name>accountID</field-name>

186 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 186

</cmp-field>

<cmp-field>

<field-name>ownerName</field-name>

</cmp-field>

<cmp-field>

<field-name>balance</field-name>

</cmp-field>

<primkey-field>accountID</primkey-field>

...

Here is a brief explanation of this deployment descriptor snippet.

■■ The cmp-version must be 2.x if you want to take advantage of EJB 2.0
CMP. If you are on the older EJB 1.1 specification, you should define
this to be 1.x. We do not cover EJB 1.1 CMP in this book; see your appli-
cation server’s documentation and samples for details.

■■ The abstract-schema-name is the nickname you want to give this abstract
persistence schema. It can have any value you want. We recommend
naming it after your bean, or using other, consistent naming schemes.
Later we will reference this nickname when doing queries. The abstract
schema is not to be confused with the concrete database schema. A
mapping between the abstract and the concrete schema is defined using
platform tools, for example by generating a database-specific mapping
file from the abstract schema.

■■ The cmp-field elements are your container-managed persistent fields.
Each field is a persistent field that the container will generate in the sub-
class. The names of these fields must match the names of your abstract
get/set methods, except the first letter is not capitalized. For example, if
your abstract get/set methods are getOwnerName() and setOwnerName(),
your cmp-field should be called ownerName. The container derives the
types of these fields from the get/set methods as well.

We will see a complete example of an abstract persistence schema later in
this chapter.

CMP Entity Beans Have a Query Language
Another piece of our CMP entity bean puzzle is addressing how to query entity
beans. To enable clients of your bean to find you, you must define finder meth-
ods. For example, in BMP, you’d define this method in your home interface:

public Collection findBigAccounts(int minimum);

Writing Container-Managed Persistent Entity Beans 187

13_576828 ch08.qxd 11/3/04 11:41 AM Page 187

The home object would delegate this call to your bean. The implementation
would be:

public Collection ejbFindBigAccounts(int minimum) {

// Perform JDBC, and return primary keys for

// all accounts whose balance is greater

// than the minimum passed in

}

With CMP, the container generates JDBC code for us. However, we need a
way to tell the container how to generate the data access code, because the con-
tainer can’t magically know what find big accounts means. We want to specify
how to generate the persistence code in a portable way so that we don’t have
to rewrite completely the definitions of these finder methods every time we
port our bean to a new container.

The solution to this challenge is the EJB Query Language (EJB-QL). EJB-QL is
an object-oriented SQL-like syntax for querying entity beans. It contains a
SELECT clause, a FROM clause, and optional WHERE and ORDER_BY
clauses. You write the EJB-QL code in the deployment descriptor, and the con-
tainer should be able to generate the corresponding database logic (such as
SQL), perhaps with some help from the container tools. This is a similar con-
cept to the Object Query Language (OQL) described in Chapter 6.

Here is an example of EJB-QL that finds all accounts:

SELECT OBJECT(a)

FROM Account AS a

WHERE a.accountID IS NOT NULL

If you are using a relational database, at deployment time and with the help
of the container’s tools that you use, the container will inspect this code and
generate the appropriate JDBC code.

Here is another example that satisfies the findBigAccounts() home method:

SELECT OBJECT(a)

FROM Account AS a

WHERE a.balance > ?1

In the preceding code, ?1 means the first parameter passed in, which in this
case is the variable minimum.

We will see more EJB-QL in the example later in this chapter. For the details,
refer to the EJB-QL reference in Appendix D.

188 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 188

Not all fields within the bean have to be managed by the container. You
might be pulling data manually from a secondary source, or you might have
calculated fields. The EJB container automatically notifies your bean class
during persistent operations, allowing you to manage these fields.

In general, containers are not responsible for persisting any data in the
superclass, such as entity context references or environment naming
contexts used for JNDI lookups. You never store these persistently as
container-managed fields because they contain runtime EJB-specific
information, and they do not represent persistent business data.

The complete process of developing and deploying a CMP entity bean is
shown in Figure 8.2.

CMP Entity Beans Can Have ejbSelect() Methods
The final major difference between BMP and CMP entity beans is that CMP
entity beans can have special ejbSelect() methods. An ejbSelect() method is a
query method (like a finder method) but is not directly exposed to the client in
the home interface or component interface. Rather, ejbSelect() is used internally
within an entity bean as a helper method to access a storage. ejbSelect() is use-
ful when you have entity beans in relationships with external data, such as
other entity beans.

Figure 8.2 The process of developing and deploying a CMP entity bean.

EJB Container/Server
 Provider

Deployer System Administrator
(Maintains Deployment)

Bean Provider
and/or

Application Assembler

Build CMP Entity Bean
Design Abstract
Persistence Schema
Write EJB-QL

Supply

EJB Container/S
erve

r

Design Database Mapping
Code with Container Tools
Generate Subclass and
Other Helper Code

Writing Container-Managed Persistent Entity Beans 189

13_576828 ch08.qxd 11/3/04 11:41 AM Page 189

For example, in our bank account example from the previous chapter, we
defined a method called ejbHomeGetTotalBankValue(), which added the total of
all bank accounts in the bank table by performing a SQL SELECT statement
using JDBC. With CMP, you shouldn’t be writing this JDBC code—rather, the
container should generate it for you in an ejbSelect() method, and you should
call that ejbSelect() method from the ejbHomeGetTotalBankValue() method. You
then tell the container how to write the ejbSelect() method just like you do for a
finder method—by using the EJB Query Language (EJB QL) described earlier.

For example, you might define the following method in your entity bean:

public abstract double ejbSelectAllAccountBalances()

throws FinderException;

public double ejbHomeGetTotalBankValue() throws Exception {

// Get a collection of bank account balances

Collection c = this.ejbSelectAllAccountBalances();

// Loop through collection and return sum

}

ejbSelect() methods are not exposed to end clients via the remote interface or
local interface. They must be called from within your bean, either from a busi-
ness method or a home business method.

The value of ejbSelect() methods are threefold:

■■ Select methods can perform fine-grained database operations that your
bean needs, but that you do not want to expose to end clients.

■■ Select methods can retrieve data from other entity beans that you have
relationships with. (See Chapter 12 to learn more about relationships.)

■■ Like finder methods, select methods can return entity beans. But select
methods are more powerful because they can also return container-
managed fields, such as our previous example—it returns a collection
of double values.

You tell the container about how to implement your select method by defin-
ing an EJB-QL query string. For more details on how EJB-QL affects ejbSelect()
methods, see Appendix D.

As you may have noticed by now, the major differences between CMP and
BMP lie in the entity bean class and the deployment descriptors. The
remote, local, home, local home interfaces, and primary key class remain
basically the same. This means it is possible to switch between CMP and
BMP without changing the clients who call your beans, which is a nice
side effect.

190 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 190

Implementation Guidelines for
Container-Managed Persistence

Now that we’ve explored CMP entity beans in theory, let’s see how to build
CMP entity beans. The method implementations of your BMP entity beans
should be different for CMP. No longer are you controlling the routine persis-
tent operations of your beans, and so many of the methods can be left empty—
the container will do it for you. Table 8.1 summarizes what you should
implement in each method, assuming your entity bean’s persistence is con-
tainer managed. Take a quick glance at the table for now. As you can see, many
of the database-intensive operations have been reduced in scope significantly.
You should refer to the table when reading through the code in this chapter or
when programming your own entity bean classes.

Table 8.1 Descriptions and Implementation Guidelines for Container-Managed Persistent
Entity Beans

METHOD EXPLANATION TYPICAL IMPLEMENTATION

setEntityContext() If the container wants Stick the entity context
(same as BMP) to increase its pool size somewhere, such as in a

of bean instances, it member variable. You can access
instantiates a new the context later to acquire
entity bean instance. environment information, like
Following this, the security information, from the
container calls the container. You should also
instance’s request any resources your
setEntityContext() instance will need regardless of
method. This method what data the bean represents.
associates a bean with The bean is now in a pool, does
context information— not have any specific database
information about the data inside of it, and is not
bean’s environment. bound to any particular EJB
Once this method is object.
called, the bean can
access information
about its environment.

(continued)

Writing Container-Managed Persistent Entity Beans 191

13_576828 ch08.qxd 11/3/04 11:41 AM Page 191

Table 8.1 (continued)

METHOD EXPLANATION TYPICAL IMPLEMENTATION

ejbFind,....(,....) You do not write You should not implement these
(new for CMP) finder methods for methods for CMP entity beans.

container-managed
beans. The EJB container
will handle all issues
related to finding data for
you. But how does the
EJB container know what
kinds of finder methods
you want in your bean?
After all, an infinite variety
of ways exist to find data
in a database. The answer
is that your EJB container
ships with tools for this
purpose. You use EJB-QL
and the container tools
to tell the container what
logic to execute when the
client performs a finder
method on the home
object.

ejbSelect,....(,....) ejbSelect() methods are Define this method as abstract.
(new for CMP) helper methods that Then write EJB-QL in the

perform queries deployment descriptor to set up
internally by your bean the query.
but are not accessible
to clients of your bean.

192 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 192

Table 8.1 (continued)

METHOD EXPLANATION TYPICAL IMPLEMENTATION

ejbHome,....(,....) Sometimes you need Perform your global operations,
(new for CMP) methods on an entity such as counting up the rows in

bean that are not a database and returning the
specific to any given results to the client. The
data instance (or row)— fast-and-easy way to achieve this
for example, counting is to use JDBC. The cleaner (but
up the total number of lower-performing if you’re not
accounts in a table. You careful) way is to call ejbSelect()
can write ejbHome and perhaps other entity bean
methods to perform methods.
these operations. The
ejbHome methods are
special business methods
because they are called
from a bean in the pool
before the bean is
associated with any
specific data. Clients call
these methods from
the home interface or
local home interface.

ejbCreate(,....) When a client calls Do not create database data in
(new for CMP) create() on a home this method. Rather, validate the

object, the container client’s initialization parameters.
Note: You do not then calls ejbCreate() Call your abstract set() methods
need to write any on a pooled bean to initialize the generated bean
ejbCreate() methods instance. ejbCreate() subclass to the parameters
if you don’t want EJB methods are responsible passed in. The container will
clients to be able to for creating new then use these values in the
create new database data and subclass to create the database
database data. initializing your bean. data for you. Your entity bean
Some systems may instance is then no longer in the
allow creation of pool—it now has specific
data to occur via database data inside it. The
direct database container will bind your instance
inserts through to a particular EJB objects.
batch files or
other means.

(continued)

Writing Container-Managed Persistent Entity Beans 193

13_576828 ch08.qxd 11/3/04 11:41 AM Page 193

Table 8.1 (continued)

METHOD EXPLANATION TYPICAL IMPLEMENTATION

ejbPostCreate(,....) There is one The container calls
(same as BMP) ejbPostCreate(...) for ejbPostCreate() after it has

each ejbCreate(...). associated your bean instance
Each pair has the same with an EJB object. You can now
parameters. The container complete your initialization by
calls your bean instance’s doing anything you need to that
ejbPostCreate(...) requires that EJB object, such as
method following passing your bean’s EJB object
ejbCreate(...). reference to other beans. Note:

By now the EJB container will
have created your primary key
object, so you can retrieve and
use it.

ejbActivate() When a client calls a Acquire any bean-specific
(same as BMP) business method on resources, like socket

an EJB object, but no connections, that your bean
entity bean instance is needs to service a particular
bound to the EJB object, client when it is moved into the
the container needs to ready state.
take a bean from the
pool and transition it
into a ready state. This
is called activation.
On activation, the
ejbActivate() method is
called by the EJB
container.

ejbLoad() The EJB container calls Do not read data from the
(new for CMP) this method to load database in this method. Rather,

database data into your the EJB container will read in
bean instance, based data from the database for you
on the current automatically right before calling
transactional state. your ejbLoad() method. It does

this by setting your container-
managed fields to the data it
reads from the database. In this
method, you should perform any
utilities you need to work with
the read-in data, such as
decompressing a text field.

194 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 194

Table 8.1 (continued)

METHOD EXPLANATION TYPICAL IMPLEMENTATION

ejbStore() The EJB container Do not update the database in
(new for CMP) calls this to update the this method. Rather, the EJB

database to the new container will update the
values of your in-memory database for you automatically
fields, thus synchronizing right after calling your ejbStore()
the database. The method. It does this in the
current transactional subclass by writing your
state dictates when this container-managed fields to the
method is called. This database. In method, you should
method is also called prepare your container-managed
during passivation, fields to be written to the
directly before database. For example, you can
ejbPassivate(). compress the text of your fields

if necessary by calling your own
abstract set() methods.

ejbPassivate() The EJB container calls Release any resources, such as
(same as BMP) this method when it socket connections, that you

wants to return your allocated in ejbActivate() and
entity bean to the pool. that your bean was holding
This is called passivation during the ready state for a
and is the opposite of particular client.
activation. On passivation,
the ejbPassivate()
method is called by the
EJB container.

ejbRemove() The client calls the home Do not destroy database data in
(new for CMP) object’s remove() this method. Rather, simply

method to destroy perform any operations that
database data remove(), must be done before the data in
then calls your the database is destroyed. The
ejbRemove(). Note that EJB container will destroy the
this does not destroy the data for you right after
Java object because ejbRemove() is called.
the object can be
pooled and reused for
different data.

unsetEntityContext() This method Release any resources you
(same as BMP) disassociates a bean allocated during

from its environment. setEntityContext(), and get ready
The container calls this for garbage collection.
right before your entity
bean instance is
destroyed (when it
wants to reduce the
pool size).

Writing Container-Managed Persistent Entity Beans 195

13_576828 ch08.qxd 11/3/04 11:41 AM Page 195

Looking to see how BMP and CMP method implementations compare?
Appendix E has a table comparing them.

Container-Managed Persistence Example:
A Product Line

Let’s see a quick demonstration of CMP in action, applied to the concept of a
product line.

If you work for a product-based company, your company’s product line is
the suite of products that your company offers. For example, if you’re an appli-
ance company, you might offer a dishwasher, a stove, and a dryer. If you’re a
computer hardware company, you might offer memory, hard disks, and
processors. We’re going to model a generic product as an entity bean that uses
CMP.

Figure 8.3 details the class diagram for our product line.

Figure 8.3 The class diagram for the product line example.

Let’s take a look at each of the files that we must create for our entity bean
component.

Product
Bean Abstract Class

<<interface>>
Product

Remote Interface

Product
EJB Object

<<interface>>
Product

Home Interface

Product
Home Object

Supplied by Bean Provider (We Will Write)

Generated for Us by Container Vendor's Tools

Product
Primary Key Class

<<interface>>
java.rmi.Remote

<<interface>>
java.io.Serializable

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.EntityBean

<<interface>>
javax.ejb.EJBHome

<<interface>>
javax.ejb.EJBObject

Comes with EJB Distribution

Comes with Java 2 Platform

<<interface>>
Product

Local Home Interface

Product
Local Home Object

<<interface>>
javax.ejb.EJBLocalHome

<<interface>>
Product

Local Interface

Product
EJB Local Object

<<interface>>
javax.ejb.EJBLocalObject

Product
Bean Subclass

196 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 196

Product.java
Remote clients will call our remote interface. The only case in which a remote
client should call an entity bean is when you are writing small test applications
to exercise your entity bean’s API, as we will do in this example. Otherwise
you should use the local interface for performance reasons, and wrap your
entity beans with session beans (see Chapter 13). The remote interface is
shown in Source 8.1.

package examples.cmp;

import javax.ejb.*;

import java.rmi.RemoteException;

/**

* These remote interface with public business methods of ProductBean.

*

* This interface is what remote clients operate on when they interact

* with beans. The EJB Server vendor will implement this interface;

* the implemented object instance is called the EJB Object, which

* delegates invocations to instances of the ProductBean class.

*/

public interface Product

extends EJBObject

{

// Getter/setter methods for Entity Bean fields

public String getName() throws RemoteException;

public void setName(String name) throws RemoteException;

public String getDescription() throws RemoteException;

public void setDescription(String description) throws

RemoteException;

public double getBasePrice() throws RemoteException;

public void setBasePrice(double price) throws RemoteException;

public String getProductID() throws RemoteException;

}

Source 8.1 Product.java.

Our remote interface is quite simple. It has methods to modify the entity
bean instance’s fields and throws remote exceptions to indicate system-level
errors.

Writing Container-Managed Persistent Entity Beans 197

13_576828 ch08.qxd 11/3/04 11:41 AM Page 197

ProductLocal.java
Our local interface is our business interface called by local clients, such as ses-
sion beans or other entity beans. It is shown in Source 8.2.

package examples.cmp;

import javax.ejb.*;

/**

* These are the public business methods of ProductBean.

*

* This local interface is what local clients operate

* on when they interact with our bean. The container

* will implement this interface; the implemented object

* is called the EJB local object, which delegates

* invocations to instances of the entity bean class.

*/

public interface ProductLocal extends EJBLocalObject {

public String getName();

public void setName(String name);

public String getDescription();

public void setDescription(String description);

public double getBasePrice();

public void setBasePrice(double price);

public String getProductID();

}

Source 8.2 ProductLocal.java.

The local interface is trivially different than the remote interface. The only
differences are the lack of thrown RemoteExceptions and the fact that we extend
EJBLocalObject rather than EJBObject.

ProductHome.java
Next, we have the product’s home interface, which is shown in Source 8.3. As
with the remote interface, this home interface should be used only by remote
clients, such as a standalone application.

198 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 198

package examples.cmp;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.util.Collection;

/**

* This is the home interface for Product. This interface

* is implemented by the EJB container. The implemented

* object is called the Home Object, and serves as a

* factory for EJB Objects.

*

* One create() method is in this Home Interface, which

* corresponds to the ejbCreate() method in the bean class.

*/

public interface ProductHome extends EJBHome {

/*

* Creates a product

*

* @param productID The number of the product (unique)

* @param name The name of the product

* @param description Product description

* @param basePrice Base Price of product

*

* @return The newly created EJB Object.

*/

Product create(String productID, String name, String description,

double basePrice) throws CreateException, RemoteException;

// Finder methods. These are implemented by the

// container. You can customize the functionality of

// these methods in the deployment descriptor through

// EJB-QL and container tools.

public Product findByPrimaryKey(ProductPK key) throws

FinderException, RemoteException;

public Collection findByName(String name) throws FinderException,

RemoteException;

public Collection findByDescription(String description) throws

FinderException, RemoteException;

public Collection findByBasePrice(double basePrice) throws

FinderException, RemoteException;

Source 8.3 ProductHome.java. (continued)

Writing Container-Managed Persistent Entity Beans 199

13_576828 ch08.qxd 11/3/04 11:41 AM Page 199

public Collection findExpensiveProducts(double minPrice) throws

FinderException, RemoteException;

public Collection findCheapProducts(double maxPrice) throws

FinderException, RemoteException;

public Collection findAllProducts() throws FinderException,

RemoteException;

}

Source 8.3 (continued)

Our home interface defines a single create() method to create a new product
in the database. It returns a Product EJB object so the client can manipulate
the entity bean data and throws a javax.ejb.CreateException to indicate an
application-level problem.

We also expose all sorts of finder methods to find existing products. One of
the finders returns a single EJB object, while others return a java.util.Collection
of multiple EJB objects. This is needed if the finder methods find more than
one matching object. Note that findByPrimaryKey() should never return a col-
lection, because primary keys must be unique.

ProductLocalHome.java
Our entity bean’s local home interface is the more optimized (see Chapter 2)
home interface that session beans or other entity beans should use. The code is
in Source 8.4.

package examples.cmp;

import javax.ejb.*;

import java.util.Collection;

/**

* This is the local home interface for Product.

* This interface is implemented by the EJB container.

* The implemented object is called the local home object,

* and serves as a factory for EJB local objects.

*

* One create() method is in this Home Interface, which

* corresponds to the ejbCreate() method in the bean class.

*/

public interface ProductLocalHome extends EJBLocalHome {

/*

* Creates a product

Source 8.4 ProductLocalHome.java.

200 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 200

*

* @param productID The number of the product (unique)

* @param name The name of the product

* @param description Product description

* @param basePrice Base Price of product

*

* @return The newly created EJB local Object.

*/

ProductLocal create(String productID, String name, String

description, double basePrice) throws CreateException;

// Finder methods. These are implemented by the

// container. You can customize the functionality of

// these methods in the deployment descriptor through

// EJB-QL and container tools.

public ProductLocal findByPrimaryKey(ProductPK key) throws

FinderException;

public Collection findByName(String name) throws FinderException;

public Collection findByDescription(String description) throws

FinderException;

public Collection findByBasePrice(double basePrice) throws

FinderException;

public Collection findExpensiveProducts(double minPrice) throws

FinderException;

public Collection findCheapProducts(double maxPrice) throws

FinderException;

public Collection findAllProducts() throws FinderException;

}

Source 8.4 (continued)

ProductPK.java
Our primary key class is defined by ProductPK.java, shown in Source 8.5.
This unique identifier uses a productID that could represent the product’s SKU
number.

Writing Container-Managed Persistent Entity Beans 201

13_576828 ch08.qxd 11/3/04 11:41 AM Page 201

package examples;

import java.io.Serializable;

/**

* Primary Key class for our ‘Product’ Container-Managed

* Entity Bean

*/

public class ProductPK implements java.io.Serializable {

/*

* Note that the primary key fields must be a

* subset of the container-managed fields.

* The fields we are marking as container-managed in

* our Bean are productID, name, desc, and basePrice.

* Therefore our PK fields need to be from that set.

*/

public String productID;

public ProductPK(String productID) {

this.productID = productID;

}

public ProductPK() { }

public String toString() {

return productID.toString();

}

public int hashCode() {

return productID.hashCode();

}

public boolean equals(Object prod) {

return ((ProductPK)prod).productID.equals(productID);

}

}

Source 8.5 ProductPK.java.

As with BMP, CMP dictates that your primary key class must be serializable.
Because the EJB container is persisting for you, it may need to query the pri-
mary key class and manipulate or compare its fields with the fields in your
bean. Thus, an important restriction with CMP is that the fields you have in
your primary key class must come from the container-managed fields defined
in your deployment descriptor.

In our example, the ProductPK class is valid because it is serializable and
because its public fields come from our container-managed fields, which we
will define shortly in the deployment descriptor.

202 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 202

ProductBean.java
Next, we have our container-managed entity bean implementation, Product-
Bean.java, shown in Source 8.6.

package examples.cmp;

import javax.ejb.*;

/**

* Entity Bean that demonstrates Container-Managed persistence.

*

* This is a product that’s persistent. It has an ID #, a name,

* a description, and a base price.

*/

public abstract class ProductBean implements EntityBean {

protected EntityContext ctx;

public ProductBean() {

}

//---

// Begin abstract get/set methods

//---

public abstract String getName();

public abstract void setName(String name);

public abstract String getDescription();

public abstract void setDescription(String description);

public abstract double getBasePrice();

public abstract void setBasePrice(double price);

public abstract String getProductID();

public abstract void setProductID(String productID);

//---

// End abstract get/set methods

//---

//---

// Begin EJB-required methods. The methods below

// are called by the Container, and never called

// by client code.

//---

/**

* Called by Container.

* Implementation can acquire needed resources.

*/

Source 8.6 ProductBean.java. (continued)

Writing Container-Managed Persistent Entity Beans 203

13_576828 ch08.qxd 11/3/04 11:41 AM Page 203

public void ejbActivate() {

System.out.println(“ejbActivate() called.”);

}

/**

* EJB Container calls this method right before it

* removes the Entity Bean from the database.

* Corresponds to when client calls home.remove().

*/

public void ejbRemove() {

System.out.println(“ejbRemove() called.”);

}

/**

* Called by Container.

* Releases held resources for passivation.

*/

public void ejbPassivate() {

System.out.println(“ejbPassivate () called.”);

}

/**

* Called from the Container. Updates the entity bean

* instance to reflect the current value stored in

* the database.

*

* Since we’re using Container-Managed Persistence, we

* can leave this method blank. The EJB Container will

* automatically load us in the subclass.

*/

public void ejbLoad() {

System.out.println(“ejbLoad() called.”);

}

/**

* Called from the Container. Updates the database to

* reflect the current values of this in-memory Entity Bean

* instance representation.

*

* Since we’re using Container-Managed Persistence, we can

* leave this method blank. The EJB Container will

* automatically save us in the subclass.

*/

public void ejbStore() {

System.out.println(“ejbStore() called.”);

}

/**

* Called by Container. Associates this Bean instance with

Source 8.6 (continued)

204 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 204

* a particular context. Once done, we can query the

* Context for environment info

*/

public void setEntityContext(EntityContext ctx) {

System.out.println(“setEntityContext called”);

this.ctx = ctx;

}

/**

* Called by Container. Disassociates this Bean instance

* with a particular context environment.

*/

public void unsetEntityContext() {

System.out.println(“unsetEntityContext called”);

this.ctx = null;

}

/**

* Called after ejbCreate(). Now, the Bean can retrieve

* its EJBObject from its context, and pass it as a ‘this’

* argument.

*/

public void ejbPostCreate(String productID, String name, String

description, double basePrice) {

System.out.println(“ejbPostCreate() called”);

}

/**

* This is the initialization method that corresponds to the

* create() method in the Home Interface.

*

* When the client calls the Home Object’s create() method,

* the Home Object then calls this ejbCreate() method.

*

* We need to initialize our Bean’s fields with the

* parameters passed from the client, so that the Container

* can create the corresponding database entries in the

* subclass after this method completes.

*/

public String ejbCreate(ProductPK productID, String name,

String description, double basePrice)

throws CreateException {

System.out.println(“ejbCreate() called”);

setProductID(productID);

setName(name);

setDescription(description);

Source 8.6 (continued)

Writing Container-Managed Persistent Entity Beans 205

13_576828 ch08.qxd 11/3/04 11:41 AM Page 205

setBasePrice(basePrice);

return new ProductPK(productID);

}

// No finder methods

// (they are implemented by Container)

//---

// End EJB-required methods

//---

}

Source 8.6 (continued)

This bean is more complex than our bank account example. We’ve defined
many finder methods, and we have more persistent fields. Yet even though
we’ve added this complexity, our bean is less than 40 percent of the size of our
Bank Account bean. This is an amazing reduction in code complexity. And
because our bean has no database code in it, we have reduced the chance for
bugs in our bean due to user error working with JDBC code. This is a huge
savings in development and testing time.

We do not have any fields, since the container declares them in the subclass.
We have a few abstract get/set methods, which the container also implements
in the subclass. The only really interesting method is ejbCreate(), which takes
the parameters passed in from the client and calls the bean’s own abstract set()
methods to populate the bean with the initialization data. The container then
performs a SQL INSERT in the subclass once ejbCreate() concludes.

The rest of our bean is just empty EJB-required methods and comments. In
fact, if we took the comments, whitespace, and printlns out, the bean would
just be this:

package examples.cmp;

import javax.ejb.*;

public abstract class ProductBean implements EntityBean {

protected EntityContext ctx;

public abstract String getName();

public abstract void setName(String name);

public abstract String getDescription();

public abstract void setDescription(String description);

public abstract double getBasePrice();

public abstract void setBasePrice(double price);

public abstract String getProductID();

public abstract void setProductID(String productID);

public void ejbActivate() { }

206 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 206

public void ejbRemove() { }

public void ejbPassivate() { }

public void ejbLoad() { }

public void ejbStore() { }

public void setEntityContext(EntityContext ctx) {

this.ctx = ctx;

}

public void unsetEntityContext() { this.ctx = null; }

public void ejbPostCreate(String productID, String name,

String description, double basePrice) { }

public String ejbCreate(String productID, String name,

String description, double basePrice) {

setProductID(productID);

setName(name);

setDescription(description);

setBasePrice(basePrice);

return productID;

}

}

The Deployment Descriptor
We now need to inform our container about our entity bean, including our
container-managed fields and our EJB-QL. The deployment descriptor that
now plays a primary role in the entire ensemble is shown in Source 8.7.

<?xml version=”1.0”?>

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee” version=”2.1”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<display-name>Product</display-name>

<enterprise-beans>

<entity>

<ejb-name>Product</ejb-name>

<home>examples.cmp.ProductHome</home>

<remote>examples.cmp.Product</remote>

<ejb-class>examples.cmp.ProductBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>false</reentrant>

<cmp-version>2.x</cmp-version>

Source 8.7 ejb-jar.xml. (continued)

Writing Container-Managed Persistent Entity Beans 207

13_576828 ch08.qxd 11/3/04 11:41 AM Page 207

<abstract-schema-name>PRODUCTS</abstract-schema-name>

<cmp-field>

<field-name>productID</field-name>

</cmp-field>

<cmp-field>

<field-name>name</field-name>

</cmp-field>

<cmp-field>

<field-name>description</field-name>

</cmp-field>

<cmp-field>

<field-name>basePrice</field-name>

</cmp-field>

<primkey-field>productID</primkey-field>

<query>

<query-method>

<method-name>findByName</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>SELECT DISTINCT OBJECT(p) FROM PRODUCTS p WHERE p.name = ?1

</ejb-ql>

</query>

<query>

<query-method>

<method-name>findByDescription</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>SELECT DISTINCT OBJECT(p) FROM PRODUCTS p WHERE p.description =

?1

</ejb-ql>

</query>

<query>

<query-method>

<method-name>findByBasePrice</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

</query-method>

<ejb-ql>SELECT DISTINCT OBJECT(p) FROM PRODUCTS p WHERE p.basePrice =

?1</ejb-ql>

</query>

<query>

Source 8.7 (continued)

208 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 208

<query-method>

<method-name>findExpensiveProducts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

</query-method>

<ejb-ql><![CDATA[SELECT DISTINCT OBJECT(p) FROM PRODUCTS p WHERE

p.basePrice > ?1]]></ejb-ql>

</query>

<query>

<query-method>

<method-name>findCheapProducts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

</query-method>

<ejb-ql><![CDATA[SELECT DISTINCT OBJECT(p) FROM PRODUCTS p WHERE

p.basePrice < ?1]]></ejb-ql>

</query>

<query>

<query-method>

<method-name>findAllProducts</method-name>

<method-params>

</method-params>

</query-method>

<ejb-ql>SELECT DISTINCT OBJECT(p) FROM PRODUCTS p WHERE p.productID IS

NOT NULL</ejb-ql>

</query>

</entity>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>Product</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

<method>

<ejb-name>Product</ejb-name>

<method-intf>Home</method-intf>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Source 8.7 (continued)

Writing Container-Managed Persistent Entity Beans 209

13_576828 ch08.qxd 11/3/04 11:41 AM Page 209

Our deployment descriptor begins by identifying the name of the bean,
then the bean class, and so on, which is the same as BMP. We then define the
container-managed fields, which must match the abstract get/set methods in
the enterprise bean class.

The bulk of the descriptor following this is the code for our queries. For
example, the findExpensiveProducts() finder method locates all products that are
more expensive than the double parameter passed in. To instruct the container
on how to implement this finder functionality, we define our EJB-QL as follows:

<![CDATA[SELECT OBJECT(p) FROM PRODUCTS p WHERE p.basePrice > ?1]]>

When the container interprets this EJB-QL, it generates database access code
(such as JDBC) to find all of the expensive products whose basePrice column is
greater in value than the double passed in, represented by the ?1. Whenever a
client wants to execute a finder method on the home object, the container auto-
matically runs the database access code.

Notice also the word CDATA. This instructs the container’s XML parser that
reads the descriptor to treat the text SELECT OBJECT(a) FROM ProductBean AS
a WHERE basePrice . ?1 as unstructured character data. This is important
because the container’s XML parser may think that the text inside the CDATA
section does not comply with the XML standard; it may think the > character
is actually the closing of an XML tag, rather than a less-than sign. Thus, all EJB-
QL that contains < or > must be enclosed in CDATA sections. Alternatively,
< and > can be written as the escape sequences ‘<’ and ‘>’, so the previ-
ous example could also be written as:

SELECT OBJECT(p) FROM PRODUCTS p WHERE p.basePrice > ?1

We recommend enclosing queries in CDATA sections, however, so that the
whole query remains readable.

The end of our descriptor associates transactions with our entity bean,
which we’ll discuss in Chapter 11.

The Container-Specific Deployment Descriptor
In addition to the deployment descriptor, we need to tell the container exactly
how to perform persistent operations. This is one trade-off of CMP—you still
need to declare persistent rules, even if you don’t code them into your bean
using JDBC.

If you’re using a relational data store, you need to define exactly how your
entity bean’s public fields map to that database. Thus, we must define a series

210 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 210

of object-relational mapping entries. These entries map entity bean fields to
relational database column names. The EJB container uses this mapping when
storing or retrieving our container-managed fields from the database. Note
that this is very EJB container-specific! Some EJB containers support object
databases and thus do not have a mapping into a two-dimensional relational
database. Consult your EJB container’s documentation for more information.
Our product line bean’s persistent entries for a relational database are shown in
Table 8.2. See the book’s accompanying source code for the actual descriptor.

Table 8.2 Sample Persistent Settings for ProductBean

OBJECT/RELATIONAL SETTING
(ENTITY BEAN FIELD = RELATIONAL COLUMN NAME)

productID=productid

name=name

description=description

basePrice=basePrice

Writing Container-Managed Persistent Entity Beans 211

WHEN TO USE CUSTOM PRIMARY KEY CLASSES

In our bean we’ve declared a custom primary key class, ProductPK. We then
have this element in our deployment descriptor:

<prim-key-class>examples.ProductPK</prim-key-class>

This is not strictly necessary, however. You can choose not to invent a
custom primary key class and just use one of your container-managed fields
as the primary key. For example, we could use the productID String field as the
primary key, rather than wrapping it in another primary key wrapper class. Then
we would declare the primary key class to be a java.lang.String, and we would
have this element after we declare the container-managed fields:

<primkey-field>productID</primkey-field>

When should you use a custom primary key class, and when should you use
one of your fields? In our opinion, you should avoid using your own fields as
primary key classes. The reason is because having a primary key class wrapper
isolates you from changes to how you’d like to be uniquely represented in an
underlying storage. Having a primary key class wrapper makes it much easier to
change how you’d like to be uniquely identified without breaking code.

13_576828 ch08.qxd 11/3/04 11:41 AM Page 211

Client.java
Our client code is a simple suite of test cases to try out our bean, as shown
Source 8.8.

package examples.cmp;

import javax.ejb.*;

import javax.naming.*;

import java.rmi.*;

import javax.rmi.PortableRemoteObject;

import java.util.*;

/**

* Client test application on a CMP Entity Bean, Product.

*/

public class ProductClient {

public static void main(String[] args) throws Exception {

ProductHome home = null;

try {

/*

* Get a reference to the Product Home Object - the

* factory for Product EJB Objects

*/

Context ctx = new InitialContext(System.getProperties());

home = (ProductHome) PortableRemoteObject.narrow(

ctx.lookup(“ProductHome”), ProductHome.class);

/*

* Use the factory to create the Product EJB Object

*/

home.create(“123-456-7890”, “P5-350”, “350 Mhz Pentium”, 200);

home.create(“123-456-7891”, “P5-400”, “400 Mhz Pentium”, 300);

home.create(“123-456-7892”, “P5-450”, “450 Mhz Pentium”, 400);

home.create(“123-456-7893”, “SD-64”, “64 MB SDRAM”, 50);

home.create(“123-456-7894”, “SD-128”, “128 MB SDRAM”, 100);

home.create(“123-456-7895”, “SD-256”, “256 MB SDRAM”, 200);

/*

* Find a Product, and print out its description

*/

Iterator i = home.findByName(“SD-64”).iterator();

System.out.println(“These products match the name SD-64:”);

while (i.hasNext()) {

Source 8.8 Client.java. (continued)

212 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 212

Product prod = (Product) PortableRemoteObject.narrow(

i.next(), Product.class);

System.out.println(prod.getDescription());

}

/*

* Find all products that cost $200

*/

System.out.println(“Finding all products that cost $200”);

i = home.findByBasePrice(200).iterator();

while (i.hasNext()) {

Product prod = (Product) PortableRemoteObject.narrow(

i.next(), Product.class);

System.out.println(prod.getDescription());

}

}

catch (Exception e) {

e.printStackTrace();

}

finally {

if (home != null) {

System.out.println(“Destroying products..”);

/*

* Find all the products

*/

Iterator i = home.findAllProducts().iterator();

while (i.hasNext()) {

try {

Product prod = (Product) PortableRemoteObject.narrow(

i.next(), Product.class);

if (prod.getProductID().startsWith(“123”)) {

prod.remove();

}

}

catch (Exception e) {

e.printStackTrace();

}

}

}

}

}

}

Source 8.8 (continued)

Writing Container-Managed Persistent Entity Beans 213

13_576828 ch08.qxd 11/3/04 11:41 AM Page 213

Because this standalone application runs in a separate process from the
application server, for testing purposes, this client calls through the bean’s
remote interface rather than a local interface. However, in a real-world sce-
nario, we would wrap this entity bean with a session bean and call it through
its local interface.

The client performs a JNDI lookup to acquire the home object and create
some entity bean data. We then try out a couple of finder methods. We can
loop through the finders’ returned collection and call business methods on
each EJB object. We then destroy all the EJB objects we created in a finally{ }
clause.

Running the Client Program

To run the client program, type a command similar to the following (depend-
ing on your EJB container’s JNDI initialization parameters):

java -Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

-

Djava.naming.provider.url=corbaloc::raccoon:3700/NameServiceexamples.cmp

.ProductClient

The initialization parameters are required by JNDI to find the home object,
as we learned in Chapter 3.

When we run the client, we first create a few products and then perform a
find for all products that cost $200. Indeed, multiple entity beans were returned
in our collection, as shown here:

These products match the name SD-64:

64 MB SDRAM

Finding all products that cost $200

350 Mhz Pentium

256 MB SDRAM

Destroying products..

The Life Cycle of a CMP Entity Bean

Now that we’ve seen a complete CMP entity bean example, you should be able
to understand Figure 8.4, which illustrates how the container interacts with
CMP entity beans.

214 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 214

Figure 8.4 The CMP entity bean life cycle.

The life cycle of a CMP entity bean is exactly the same as that of a BMP entity
bean, which we fully described at the end of the previous chapter. The only
differences are that ejbSelect() methods can be called from the pooled state or
ready state.

does not exist

pooled

ready

ejbRemove()

ejbStore()

1: newInstance()
2: setEntityContext()

1: unsetEntityContext()
2: JVM will garbage collect
 and call finalize()

ejbFind()
or

ejbSelect()

Activate your bean:
1: ejbActivate()
2: ejbLoad()

Passivate your bean:
1: ejbStore()
2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

ejbLoad()

business method
or

ejbSelect()

The life cycle of a container-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean
instance.

ejbHome()

Writing Container-Managed Persistent Entity Beans 215

13_576828 ch08.qxd 11/3/04 11:41 AM Page 215

Summary

In this chapter, we learned how to write CMP entity beans. We saw how the
bean instance callback methods differ between BMP and CMP. We then went
through an example that modeled a product line. Finally, we wrapped up with
a look at the life cycle of a CMP entity bean.

In the next chapter, we’ll look at the last EJB 2.0 bean type, message-driven
beans.

216 Chapter 8

13_576828 ch08.qxd 11/3/04 11:41 AM Page 216

217

In this chapter, we will learn about messaging, which is a lightweight vehicle
for communications. Messaging is more appropriate than RMI-IIOP in numer-
ous scenarios. We’ll also learn about message-driven beans, special beans that
can be accessed via messaging. Message-driven beans were added in the 2.0
release of the EJB specification.

Specifically, you’ll learn about the following:

■■ How to implement messaging, including an overview of asynchronous
behavior and message-oriented middleware (MOM)

■■ How to use Java Message Service (JMS), the underlying MOM frame-
work for JMS-based message-driven beans

■■ What the features of message-driven beans are
■■ How message-driven beans compare with entity and session beans
■■ How to develop message-driven beans
■■ How to work with message-driven beans, including advanced topics,

such as gotchas and possible solutions

Motivation to Use Message-Driven Beans

In previous chapters, you learned how to code session and entity beans—
distributed components that are accessed using RMI-IIOP. RMI-IIOP is a

Introduction to
Message-Driven Beans

C H A P T E R

9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 217

traditional, heavyweight way to call components. While RMI-IIOP may be
useful in many scenarios, several other areas are challenging for RMI-IIOP.
Here are just four examples:

■■ Performance. A typical RMI-IIOP client must wait (or block) while the
server performs its processing. Only when the server completes its
work does the client receive a return result, which enables it to continue
processing.

■■ Reliability. When an RMI-IIOP client calls the server, the latter has to
be running. If the server crashes or the network crashes, the client can-
not perform its intended operation.

■■ Support for multiple senders and receivers. RMI-IIOP limits you to a
single client talking to a single server at any given time. There is no
built-in functionality for multiple clients to broadcast events to multiple
servers.

■■ Integration with other MOM systems. When you have enterprise sys-
tems that communicate through messages, message-driven beans cou-
pled along with J2EE connectors can integrate these different
message-driven enterprise systems.

Messaging is an alternative to remote method invocations (see Figure 9.1).
The idea behind messaging is that a middleman sits between the client and the
server. (A layer of indirection solves every problem in computer science.) This
middleman receives messages from one or more message producers and broad-
casts those messages to one or more message consumers. Because of this mid-
dleman, the producer can send a message and then continue processing. He
can optionally be notified of the response later when the consumer finishes.
This is called asynchronous programming.

Figure 9.1 Remote method invocations versus messaging.

Application

Message
Middleware

Application Application

Application

Remote Method Invocations:

Messaging:

218 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 218

Messaging addresses the three previous concerns with RMI-IIOP as follows:

■■ Non-blocking request processing. A messaging client does not need to
block when executing a request. As an example, when you purchase a
book using the Amazon.com one-click order functionality, you can
continue browsing the site without waiting to see if your credit card
authorizes. Unless something goes wrong, Amazon.com sends you a
confirmation e-mail afterwards. This type of fire-and-forget system
could easily be coded using messaging. When the user clicks to buy the
book, a message is sent that results in credit card processing later. The
user can continue to browse.

■■ Reliability. If your message-oriented middleware supports guaranteed
delivery, you can send a message and know for sure that it will reach its
destination, even if the consumer is not available. You send the message
to the MOM middleman, and that middleman routes the message to the
consumer when he comes back alive again. With RMI-IIOP, this is not
possible because there is no middleman. If the server is down, an
exception is thrown.

■■ Support for multiple senders and receivers. Most message-oriented
middleware products can accept messages from many senders and
broadcast them to many receivers. This enables you to have multinary
communications.

Note that messaging also has many disadvantages. Performance, for one,
can be slower in many circumstances due to the overhead of having the mes-
saging middleman. For a complete comparison of when to (and when not to)
use messaging, see Chapter 18.

Message-oriented middleware (MOM) is a term used to refer to any infrastruc-
ture that supports messaging. A variety of products are considered to have a
MOM-based architecture. Examples include Tibco Rendezvous, IBM Web-
Sphere MQ, BEA Tuxedo/Q, Sun Java System Messaging Server, Microsoft
MSMQ, Sonic Software SonicMQ, and FioranoMQ. These products can give
you a whole host of value-added services, such as guaranteed message deliv-
ery, fault tolerance, load balancing of destinations, subscriber throttling of
message consumption, inactive subscribers, support for SOAP over JMS, and
much, much more. By allowing the MOM server to address these infrastruc-
ture issues, you can focus on the business task at hand.

The Java Message Service

Over the years, MOM systems have evolved in a proprietary way. Each prod-
uct has its own API, which creates vendor lock-in because code is not portable
to other messaging systems. It also hurts developers, because they need to
relearn each messaging product’s proprietary API.

Introduction to Message-Driven Beans 219

14_576828 ch09.qxd 11/3/04 11:41 AM Page 219

The Java Message Service (JMS) is a messaging standard, designed to elimi-
nate many of the disadvantages that MOM-based products faced over past
years. JMS has two parts: an API, for which you write code to send and receive
messages, and a Service Provider Interface (SPI) where you plug in JMS
providers. A JMS provider knows how to talk to a specific MOM implementa-
tion. The JMS promise is that you can learn the JMS API once and reuse your
messaging code with different plug-and-play MOM implementations (an idea
similar to the other J2EE APIs, such as JNDI or JDBC).

Let’s explore the JMS API and see how to write a simple JMS program that
publishes messages.

Messaging Domains
When you perform messaging, you need to choose a domain. A domain is a
fancy word for style of messaging. The types of domains are:

■■ Publish/subscribe (pub/sub). Publish/subscribe is analogous to watch-
ing television. Many TV stations broadcast their signals, and many

220 Chapter 9

HOW DOES GUARANTEED MESSAGE DELIVERY WORK?

With guaranteed message delivery, the MOM system persists your messages to
a file, database, or other store. Your message resides in the persistent store
until it’s sent to a message consumer, and the message consumer
acknowledges the consumption of the message. If the acknowledgment of a
message is not received in a reasonable amount of time, the message remains
on the persistent store and is redelivered.

This feature is beneficial when the message consumer is brought down on a
regular basis for maintenance, and lost messages are unacceptable. This is
especially true in industries, such as financial services, where messages
represent securities changing hands.

A variation on the guaranteed message delivery theme is certified message
delivery. Certified message delivery not only ensures the delivery of a message
from a producer to a consumer, but also generates a consumption receipt that
is delivered to the message originator, indicating a successful consumption of
the message. Certified message delivery is used by producers to better manage
communication with consumers.

Another variation of guaranteed message delivery is called store and forward.
Store and forward enables a message producer to successfully send a message
to an inactive MOM system. The producer transparently spools the message to a
local store until the MOM system is reactivated, at which point the message is
delivered to the MOM system and forwarded to any available consumers.
Guaranteed message delivery without the store-and-forward option requires
producers to send messages to active MOM systems, but consumers do not have
to be active. Store and forward with guaranteed message delivery allows
messages to be sent whether MOM systems or consumers are active or inactive.

14_576828 ch09.qxd 11/3/04 11:41 AM Page 220

people listen to those broadcasts. Thus, with publish/subscribe, you can
have many message producers talking to many message consumers. In
this sense, the pub/sub domain is an implementation of a distributed
event-driven processing model. Subscribers (listeners) register their inter-
est in a particular event topic. Publishers (event sources) create messages
(events) that are distributed to all of the subscribers (listeners). Producers
aren’t hard-coded to know the specific consumers interested in receiving
its messages; rather, the MOM system maintains the subscriber list.

■■ Point-to-point (PTP). Point-to-point is analogous to calling a toll-free
number and leaving a voice mail. Some person will listen to your voice
mail and then delete it. Thus, with point-to-point, you can have only a
single consumer for each message. Multiple consumers can grab mes-
sages off the queue, but any given message is consumed exactly once.
In this sense, point-to-point is a degenerate case of publish/subscribe.
Multiple producers can send messages to the queue, but each message
is delivered only to a single consumer. The way this works is that pub-
lishers send messages directly to the consumer or to a centralized queue.
Messages are typically distributed off the queue in a first-in, first-out
(FIFO) order, but this isn’t assured.

Figure 9.2 shows the difference between publish/subscribe and point-to-point.

Figure 9.2 Publish/subscribe versus point-to-point.

Publish/Subscribe:

Topic

Producer 1 Consumer 1

Producer 2 Consumer 2

Point-to-Point:

Queue

Producer 1

Consumer 1

Producer 2

Introduction to Message-Driven Beans 221

14_576828 ch09.qxd 11/3/04 11:41 AM Page 221

Another domain called request/reply is less broadly used than the others.
The request/reply domain is analogous to RMI-IIOP. It requires any producer
that generates a message to receive a reply message from the consumer at
some later point in time. Typically, most MOM architectures implement a
request/reply paradigm asynchronously using the technologies supplied in
the point-to-point and publish/subscribe domains.

The JMS API
The JMS API is more involved than RMI-IIOP. You need to become familiar
with many different interfaces to get going. Despite the complexities involved
in working with each of these interfaces, low-level topology issues, such as
networking protocol, message format and structure, and server location, are
mostly abstracted from the developer.

The JMS programming model is shown in Figure 9.3. It is explained in the
list that follows:

1. Locate the JMS Provider ConnectionFactory instance. You first need
to get access to the JMS provider of the particular MOM product
you’re using. For this, you need to establish a connection using a
ConnectionFactory instance. You can get hold of ConnectionFactory by
looking it up in JNDI. An administrator will typically create and config-
ure the ConnectionFactory for the JMS client’s use.

2. Create a JMS connection. A JMS Connection is an active connection to
the JMS provider, managing the low-level network communications
(similar to a JDBC connection). You use the ConnectionFactory to get a
Connection. If you’re in a large deployment, this connection might be
load-balanced across a group of machines.

3. Create a JMS session. A JMS Session is a helper object that you use
when sending and receiving messages. It serves as a factory for mes-
sage consumers and producers, and also enables you to encapsulate
your messages in transactions. You use the Connection to get a Session.

4. Locate the JMS destination. A JMS Destination is the channel to which
you’re sending or from which you’re receiving messages. Locating the
right destination is analogous to tuning into the right channel when
watching television or answering the correct phone, so that you get the
messages you desire. Your deployer typically sets up the destination in
advance by using your JMS provider’s tools, so that the destination is
permanently set up. Your code looks up that destination using JNDI.
This enables your programs to use the destination over and over again
at runtime.

222 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 222

5. Create a JMS producer or a JMS consumer. If you want to send mes-
sages, you need to call a JMS object to pass it your messages. This object
is called producer. To receive messages, you call a JMS object and ask it
for a message. This object is called the Consumer object. You use the
Session and Destination to get a hold of a Producer or a Consumer object.

6. Send or receive your message. If you’re producing, you first need to
put your message together. There are many different types of messages,
such as text, bytes, streams, objects, and maps. After you instantiate
your message, you send it using the Producer object. If, on the other
hand, you’re receiving messages, you first receive a message using the
Consumer object, and then crack it open (depending on the message
type) and see what is in it.

Figure 9.3 Client view of a JMS system.

JMS Server

Queue1

Queue2

Topic1

Serialized
Message

Communication

Naming Service
Such as LDAP

1: Retrieve
JMS Driver
(Connection
Factory)

Client

JMS Connection
Factory

JMS Connection

3: Create
Session

4: Lookup
JMS Destination

JNDI

5: Create
Producer
or Consumer

JMS Producer
or

JMS Consumer

6: Send or
Receive
Message

JMS Session

2: Create
Connection

JMS Driver Client Runtime

Introduction to Message-Driven Beans 223

14_576828 ch09.qxd 11/3/04 11:41 AM Page 223

Everything we just learned applies to both publish/subscribe and point-to-
point messaging. The words in italics in the preceding process represent actual
JMS interface names. There are two different flavors of those interfaces, and
the flavor you use depends on if you’re using publish/subscribe or point-to-
point. See Table 9.1 for a list.

As you can see from Table 9.1, point-to-point has two types of message
consumers: a receiver and a browser. What do you think these are for? And
why does publish/subscribe have only one type of consumer?

As an example, the code for a client application that publishes a TextMessage
to a topic using publish/subscribe is provided in Source 9.1.

import javax.naming.*;

import javax.jms.*;

import java.util.*;

public class Client {

public static void main (String[] args) throws Exception {

// Initialize JNDI

Context ctx = new InitialContext(System.getProperties());

// 1: Lookup ConnectionFactory via JNDI

TopicConnectionFactory factory =

(TopicConnectionFactory)

ctx.lookup(“TopicConnectionFactory”);

// 2: Use ConnectionFactory to create JMS connection

TopicConnection connection =

factory.createTopicConnection();

// 3: Use Connection to create session

TopicSession session = connection.createTopicSession(

false, Session.AUTO_ACKNOWLEDGE);

// 4: Lookup Destination (topic) via JNDI

Topic topic = (Topic) ctx.lookup(“testtopic”);

// 5: Create a Message Producer

TopicPublisher publisher = session.createPublisher(topic);

// 6: Create a text message, and publish it

TextMessage msg = session.createTextMessage();

msg.setText(“This is a test message.”);

publisher.publish(msg);

}

}

Source 9.1 TopicClient.java.

224 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 224

Table 9.1 The Two Flavors of JMS Interfaces

PARENT INTERFACE POINT-TO-POINT PUB/SUB

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber

Most of Source 9.1 is self-explanatory. Here are the answers to a few ques-
tions you might have:

■■ The parameters to InitialContext should be your JNDI provider informa-
tion. If your JMS provider is integrated into your EJB server, the JNDI
parameters should be the same as those when you look up an EJB home.
You specify this via the command line using the -D switch to the java
runtime. See the book’s accompanying source code for example scripts.

■■ Our JNDI name for the TopicConnectionFactory is TopicConnectionFactory
but it could be anything—it depends on your container’s policy and
also where you choose to place it using your container’s tools.

■■ When we create a Session, we pass two parameters: false, which indi-
cates that we don’t want to use transactions (see Chapter 12 for more on
transactions), and Session.AUTO_ACKNOWLEDGE, which indicates
how we should acknowledge messages that we receive. Since our code
is sending (not receiving) messages, this parameter doesn’t matter. If
you’re curious about how message acknowledgment works, see Table
9.3 later in this chapter.

Note that this example does not illustrate point-to-point. The point-to-point
code is basically the same, except we use the point-to-point interfaces listed in
Table 9.1. We’ll leave the point-to-point example as an exercise for you.

Note, too, that this example does not demonstrate any consumption logic.
Although message consumption is an important concept, it’s not relevant to
our discussion, because message-driven beans effectively act as our message
consumers.

You should now know enough about JMS to be productive with message-
driven beans. If you want to learn more about JMS, a free tutorial is available at
http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.
html. Rather than repeating this free information, let’s cover some more inter-
esting topics—JMS-EJB integration, advanced message-driven bean topics, and
gotchas.

Introduction to Message-Driven Beans 225

14_576828 ch09.qxd 11/3/04 11:41 AM Page 225

Integrating JMS with EJB

JMS-EJB integration is a compelling idea. It would allow EJB components to
benefit from the value proposition of messaging, such as non-blocking clients
and multinary communications.

To understand the motivations behind introducing a completely different
type of bean to consume messages in an EJB application, let us contemplate for
a moment what other approaches could we have taken and whether they
would have worked:

■■ Using a Java object that receives JMS messages to call EJB compo-
nents. Rather than coming up with a whole new type of bean, the Java
community could have promoted the idea of a Java object that can
receive messages and in turn call the appropriate EJB components, such
as session beans and entity beans. The problems with this approach are
as follows:

226 Chapter 9

SINGLE-THREADED VERSUS MULTITHREADED BEANS

One great benefit of EJB is you don’t need to write thread-safe code. You design
your enterprise beans as single-threaded components and never need to worry
about thread synchronization when concurrent clients access your component.
In order to service concurrent client requests, your EJB container automatically
instantiates multiple instances of your component.

The container’s thread services can be both a benefit and a restriction. The
benefit is that you don’t need to worry about race conditions or deadlock in
your application code. The restriction is that some problems lend themselves
well to multithreaded programming, and that class of problems cannot be
easily solved in an EJB environment.

So why doesn’t the EJB specification allow for multithreaded beans? EJB is
intended to relieve the component developers’ worry about threads or thread
synchronization. The EJB container handles those issues for you by load-
balancing client requests to multiple instances of a single-threaded component.
An EJB server provides a highly scalable environment for single-threaded
components.

If the EJB specification allowed for beans to control threads, a Pandora’s box
of problems would result. For example, an EJB container would have a very
hard time controlling transactions if beans were randomly starting and
stopping threads, especially because transaction information is often
associated with a thread.

The bottom line is that EJB was not meant to be a Swiss army knife, solving
every problem in existence. It was designed to assist with server-side business
problems, which are largely single-threaded. For applications that absolutely
must be multithreaded, EJB may not be the correct choice of distributed object
architectures.

14_576828 ch09.qxd 11/3/04 11:41 AM Page 226

■■ You’d need to write special code to register yourself as a listener for
JMS messages. This is a decent amount of code (as we demonstrated
previously).

■■ To increase the throughput of message consumption, you would
have to write the multithreading logic such that you can listen to the
messages on multiple threads. However, writing multithreaded
applications is not a trivial task for a business application developer.

■■ Your Java object that listens to messages would need some way of
starting up, since it wrapped your other EJB components. If the class
ran within the container, you would need to use an EJB server-specific
startup class to activate your Java object when the EJB server came up.
This is not portable because EJB specification does not define a stan-
dard way of activating a given logic.

■■ Your plain Java object wouldn’t receive any services from an EJB
container, such as automatic life cycle management, clustering, pool-
ing, and transactions. You would need to hard-code this yourself,
which is difficult and error-prone.

■■ You would need to hard-code the JMS destination name in your Java
object. This hurts reusability, because you couldn’t reuse that Java
object with other destinations. If you get the destination information
from a disk (such as with property files), this is a bit clunky.

■■ Reuse an existing type of EJB component somehow to receive JMS
messages. Another option could have been to shoehorn session beans
or entity beans into receiving JMS messages. Problems with this
approach include:

■■ Threading. If a message arrives for a bean while it’s processing
other requests, how can it take that message, given that EJB does not
allow components to be multithreaded?

■■ Life cycle management. If a JMS message arrives and there are no
beans, how does the container know to create a bean?

What Is a Message-Driven Bean?
A message-driven bean, introduced in EJB 2.0, is a special EJB component that
can receive JMS messages as well as other types of messages. See the sidebar
Pluggable Message Providers to find out more about how message-driven beans
can be used to consume messages other than JMS. A message-driven bean is
invoked by the container upon arrival of a message at the destination or end-
point that is serviced by message-driven bean. A message-driven bean is

Introduction to Message-Driven Beans 227

14_576828 ch09.qxd 11/3/04 11:41 AM Page 227

228 Chapter 9

PLUGGABLE MESSAGE PROVIDERS

A message-driven bean can be defined to consume messages of a given
messaging type in accordance with the message listener interface it employs,
that is JMS-based message-driven beans will implement the javax.jms.
MessageListener interface and so on. In EJB 2.0, message-driven beans
supported consumption of JMS messages only. You could not receive non-JMS
messages, such as asynchronous enterprise information system–specific
message. This has changed in EJB 2.1 standard so that the message-driven bean
can employ different listener interfaces to consume different message types in
addition to JMS.

This is achieved with the help of J2EE Connector Architecture 1.5. Connector
architecture defines message inflow contracts to enable resource adapters to
asynchronously deliver messages to message endpoints residing in the
application server independent of the specific messaging type or messaging
semantics. So in practice, we can write resource adapters that act as
message providers. Resource adapters are standard J2EE components and
hence, can be plugged into any J2EE compliant application server. As a
result, resource adapters capable of delivering messages to message
endpoints, such as message-driven beans, can be plugged into any J2EE-
compliant application server as well. This is widely known as message
provider pluggability.

For example, imagine a scenario where you want your EJB application to
receive EbXML messages. Using JAX-RPC is not a choice here since it supports
only SOAP 1.1 messages. Besides, JAX-RPC does not support asynchronous
messaging. In this case, connector architecture–based message providers/
resource adapters can be extremely handy. We can write an EbXML message
provider using connector architecture such that it provides a specific messaging
listener interface say, com.xyz.messaging.EbXMLMessageListener, which can be
implemented by message-driven beans so as to enable their receiving EbXML
messages.

This is a powerful concept—any enterprise information system can effectively
send any type of messages to a message-driven bean endpoint via J2EE
connector architecture-based resource adapter. All message providers from EJB
2.1 onwards, regardless of whether they consume JMS messages or not, are
resource adapters based on J2EE Connector Architecture 1.5. In Chapter 17 we
discuss J2EE connector architecture and provide guidance toward developing
resource adapters that consume messages.

decoupled from any clients that send messages to it. A client cannot access a
message-driven bean through a component interface. You will have to use message
provider–specific API, such as JMS, to send messages from clients, which in
turn would be received by the message-driven beans (see Figure 9.4).

14_576828 ch09.qxd 11/3/04 11:41 AM Page 228

Figure 9.4 A client calling JMS message-driven beans.

The following are some major characteristics of message-driven beans.

■■ A message-driven bean does not have a home interface, local home
interface, remote interface, or a local interface. You do not call mes-
sage-driven beans using an object-oriented remote method invocation
interface. The reason is that message-driven beans process messages,
and those messages can come from any messaging client, such as an
MQSeries client, an MSMQ client, a message provider/resource adapter,
or a J2EE client using the JMS API. Message-driven beans, along with
appropriate message providers, can thus consume any valid message.

■■ Message-driven beans have weakly typed business method. Message-
driven beans are merely receiving messages from a destination or a
resource adapter and they do not know anything about what’s inside
the messages. The listener interface implemented by message-driven
beans typically has a method (or methods) called by an EJB container
upon arrival of a message or by the resource adapter (via application
server). JMS message listener interface, javax.jms.MessageListener has

EJB Server

Message-Driven
Bean Pool

The EJB container is a
consumer of messages
from JMS Destination as
specified by the deployer
in the deployment
descriptor.

Message-Driven
Bean Instances

JMS DestinationClient

Sends /
Publishes

Introduction to Message-Driven Beans 229

14_576828 ch09.qxd 11/3/04 11:41 AM Page 229

only one method called onMessage(). This method accepts a JMS Message,
which could represent anything—a BytesMessage, ObjectMessage,
TextMessage, StreamMessage, or MapMessage. In a typical implementation
of onMessage(), the message is cracked open at runtime and its contents
are examined, perhaps with the help of a bunch of if statements. In for-
mal terms, you don’t get compile-time type-checking of messages that
are consumed; rather, you need to use the instanceof operator to deter-
mine the exact type of a consumed message at runtime. This also means
that you need to be careful to make sure the message you receive is
intended for you. In comparison, session or entity beans can support
strongly typed business methods. Type checking can be performed at
compile time to ensure that clients are properly using a given interface.

■■ Message-driven bean listener method(s) might not have any return
values. Although EJB 2.1 specification does not restrict a message-
driven bean listener method from returning a value to the client, certain
messaging types might not be suitable for this. For example, consider
the listener interface of a messaging type that supports asynchronous
messaging, such as JMS. In this case, due to the asynchronous interac-
tion between message producers and consumers, the message produc-
ers don’t wait for your message-driven bean to respond. As a result, it
doesn’t make sense for the onMessage() listener method on the
javax.jms.MessageListener interface to return value. The good news is
that using several design patterns, it is possible to send a response to an
asynchronous message producer. We discuss this later in this chapter.

■■ Message-driven beans might not send exceptions back to clients.
Although, EJB 2.1 does not restrict message-driven bean listener interface
methods from throwing application exceptions, certain messaging types
might not be able to throw these exceptions to the clients. Again consider
the example of a listener interface of a messaging type that supports asyn-
chronous messaging, such as JMS. In this case, message producers won’t
wait for your message-driven bean to send a response because the interac-
tion is asynchronous. Therefore clients can’t receive any exceptions. All
message listener interfaces, however, can generate system exceptions
regardless of the messaging semantics (synchronous versus asynchronous)
because the container (rather than the client) handles system exceptions.

■■ Message-driven beans are stateless. Message-driven beans hold no con-
versational state. It would be impossible to spread messages across a clus-
ter of message-driven beans if a message-driven bean held state. In this
sense, they are similar to stateless session beans because the container can
similarly treat each message-driven bean instance as equivalent to all other
instances. All instances are anonymous and do not have an identity that is
visible to a client. Thus, multiple instances of the bean can process multi-
ple messages from a JMS destination or a resource adapter concurrently.

230 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 230

Developing Message-Driven Beans

Let’s now take a look at what’s involved with developing message-driven
beans. In the subsequent sections, we will focus on JMS message-driven beans.
To a great extent, the programming model for developing other types of mes-
sage-driven beans will be quite similar to that for JMS message-driven beans.

The Semantics
JMS message-driven beans are classes that implement two interfaces:
javax.jms.MessageListener and javax.ejb.MessageDrivenBean. Additionally, every
JMS message-driven bean implementation class must provide an ejbCreate()
method that returns void and accepts no arguments. Here is what the
javax.jms.MessageListener interface looks like:

public interface javax.jms.MessageListener {

public void onMessage(Message message);

}

Here is what the javax.ejb.MessageDrivenBean interface looks like:

public interface javax.ejb.MessageDrivenBean

extends javax.ejb.EnterpriseBean {

public void ejbRemove()

throws EJBException;

public void setMessageDrivenContext(MessageDrivenContext ctx)

throws EJBException;

}

Introduction to Message-Driven Beans 231

JMS MESSAGE-DRIVEN BEANS AND DURABLE-NONDURABLE
SUBSCRIBERS

A durable subscription to a topic means that a JMS subscriber receives all
messages, even if the subscriber is inactive. If a message is sent to a topic that
has an inactive durable subscriber, the message is persisted and delivered
when the durable subscriber is once again active. A non-durable subscription
to a topic means the subscriber receives only messages that are published
while the subscriber is active. Any messages delivered while the subscriber is
inactive are lost. Since a JMS message-driven bean is essentially a consumer, it
can register itself as a durable or non-durable subscriber to messages
published to a topic. Durability allows persistent messages to be sent to a topic
even though the application server hosting the JMS message-driven bean
consumer has crashed. The messages will persist until the crashed application
server restarts and the durable subscriber message-driven bean container
positively acknowledges consumption of all of the stored messages.

14_576828 ch09.qxd 11/3/04 11:41 AM Page 231

We summarize the methods that must be provided in every message-driven
bean implementation class in Table 9.2.

Table 9.2 Methods to Be Implemented in JMS Message-Driven Beans

METHOD DESCRIPTION

onMessage(Message) This method is invoked for each message that is
consumed by the bean. The input parameter of the
method is the incoming JMS message that is being
consumed. The container is responsible for
serializing messages to a single message-driven
bean. A single message-driven bean can process
only one message at a time. It is the container’s
responsibility to provide concurrent message
consumption by pooling multiple message-driven
bean instances. A single instance cannot
concurrently process messages, but a container
can. This method does not have to be coded for
reentrancy and should not have any thread
synchronization code contained within.

ejbCreate() This method is invoked when a message-driven
bean is first created and added to a pool.
Application server vendors can implement an
arbitrary algorithm that decides when to add
message-driven bean instances from the pool.
Beans are typically added to the pool when the
component is first deployed or when the load of
messages to be delivered increases. Bean
developers should initialize variables and
references to resources needed by the bean, such
as other EJBs or database connections. Bean
developers should initialize only references to
resources that are needed for every message that
is consumed by the bean, as opposed to gaining
access and releasing the resource every time a
message is consumed.

ejbRemove() This method is invoked when a message-driven
bean is being removed from a pool. Application
server vendors can implement an arbitrary
algorithm that decides when to remove message-
driven bean instances from the pool. Beans are
typically removed from the pool when the
component is being undeployed or when a load of
messages to be delivered by an application server
decreases, thereby requiring the application server
to remove idle instances to free up system
resources. Bean developers should use this
method to clean up any dangling resources that
are used by the bean.

232 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 232

Table 9.2 (continued)

METHOD DESCRIPTION

SetMessageDrivenContext This method is called as part of the event
(MessageDrivenContext) transition that a message-driven bean goes

through when it is being added to a pool. This
method is called before the ejbCreate() method is
invoked. The input parameter for this method is an
instance of the MessageDrivenContext interface.
The input parameter gives the bean access to
information about the environment that it
executes within. The only methods on the
MessageDrivenContext that are accessible by the
message-driven bean are transaction related
methods. Other methods, such as
getCallerPrincipal(), cannot be invoked in this
method because message-driven beans do not
have home, local home, remote, or local interface,
and do not have a visible client security context.

Given this simple description, you can see that developing JMS message-
driven beans is significantly less complicated than developing session or
entity beans. The number of methods that have to be implemented is less than
with session or entity beans.

The life cycle of a message-driven bean is also very straightforward. Figure 9.5
illustrates the life cycle of a message-driven bean.

A message-driven bean is in either the does not exist state or in the pooled
state. When a container decides to add another instance to its pool, it creates a
new instance, passes the instance its MessageDrivenContext object describing
the domain and then calls ejbCreate(), allowing the bean to initialize itself. That
application server will likely create an initial pool of beans at boot time and
then increase the size of the pool as the quantity of messages increases. A con-
tainer will remove an instance from the pool and destroy it at system shut-
down or when the container decides it needs to decrease the size of the pool to
conserve cache space. If the container decides to take an instance out of the
bean pool, it calls the bean’s ejbRemove() method.

A Simple Example
Now that we’ve learned the theory behind message-driven beans, let’s
apply our knowledge to construct a simple bean that logs text messages to the
screen. In the future, you could generalize this bean and make it into a generic
logging facility, where you have different log levels depending on the urgency
of the log.

Introduction to Message-Driven Beans 233

14_576828 ch09.qxd 11/3/04 11:41 AM Page 233

Figure 9.5 Life cycle of a message-driven bean.

This is a trivial example and not demonstrative of real-world systems. It is,
however, a good template to use when writing your own beans. If you want to
see a real-world message-driven bean in action that uses other EJB compo-
nents, see Chapter 22, along with the book’s accompanying source code. As we
will see when writing this bean, the rules for writing JMS message-driven
beans are trivial.

The Bean Implementation Class

Since message-driven beans do not have home, component, local home, or
local interfaces associated with them, we can completely skip designing the
public interface to our bean. We can get right to the heart of development of
this bean and write the implementation class. The code for the implementation
class is shown in Source 9.2.

package examples;

import javax.ejb.*;

import javax.jms.*;

/**

Source 9.2 LogBean.java.

Does Not Exist

Pooled

1: newInstance()
2: setMessageDrivenContext()
3: ejbCreate()

ejbRemove()

onMessage()

The life cycle of a
message-driven bean.
Each method call shown is
an invocation from the
container to the bean
instance.

234 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 234

* Sample JMS Message-Driven Bean

*/

public class LogBean implements MessageDrivenBean, MessageListener {

protected MessageDrivenContext ctx;

/**

* Associates this Bean instance with a particular context.

*/

public void setMessageDrivenContext(MessageDrivenContext ctx) {

this.ctx = ctx;

}

/**

* Initializes the bean

*/

public void ejbCreate() {

System.err.println(“ejbCreate()”);

}

/**

* Our one business method

*/

public void onMessage(Message msg) {

if (msg instanceOf TextMessage) {

TextMessage tm = (TextMessage) msg;

try {

String text = tm.getText();

System.err.println(“Received new message : “ + text);

}

catch(JMSException e) {

e.printStackTrace();

}

}

}

/**

* Destroys the bean

*/

public void ejbRemove() {

System.err.println(“ejbRemove()”);

}

}

Source 9.2 (continued)

Introduction to Message-Driven Beans 235

14_576828 ch09.qxd 11/3/04 11:41 AM Page 235

This is the most basic message-driven bean. Notice the following:

■■ Our bean implements the javax.ejb.MessageDrivenBean interface that
makes it a message-driven bean.

■■ Our bean implements the javax.jms.MessageListener interface that pro-
vides the methods necessary for JMS message consumption.

■■ The setMessageDrivenContext() method associates a bean with an envi-
ronment. We store the context as a member of the implementation class
so that other methods of the bean can make use of it.

■■ The bean is stateless and does not contain any client-specific state that
spans messages. Therefore each bean is identical and has an identical
initialization method—a simple ejbCreate() that takes no arguments.

■■ The onMessage() method receives a message, checks to make sure that
the passed-in message is of type TextMessage by using the instanceof
operator, and then downcasts appropriately. If the passed-in message is
not a TextMessage, the method just returns. TextMessage is a particular
type of JMS message that has methods for getting and setting the text as
the body of the message. After down-casting the input parameter, the
method prints out the content of the message, if any exists.

■■ When the bean is being destroyed, there is nothing to clean up so we
have a very simple ejbRemove() method.

Notice that you don’t hard-code JMS message-driven beans for a specific
queue or topic. Your JMS message-driven bean code is independent of desti-
nation. The deployment descriptor determines whether a topic or a queue is
consumed, as we will see.

A message-driven bean can register itself with the EJB timer service for time-
based notifications by implementing the javax.ejb.TimedObject interface
apart from the message listener and javax.ejb.MessageDrivenBean
interfaces. The container will invoke the bean instance’s ejbTimeout()
method upon timer expiration.

The Deployment Descriptor

Message-driven beans have only a couple of deployment descriptor tags
applicable to them. The portion of the deployment descriptor relevant to our
simple JMS message-driven bean is shown in Source 9.3.

236 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 236

<?xml version=”1.0” encoding=”UTF-8”?>

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”

version=”2.1”>

<enterprise-beans>

<!--

For each message-driven bean that is located in an

ejb-jar file, you have to define a <message-driven> entry

in the deployment descriptor.

-->

<message-driven>

<!-- The nickname for the bean could be used later in DD -->

<ejb-name>Log</ejb-name>

<!-- The fully qualified package name of the bean class -->

<ejb-class>examples.LogBean</ejb-class>

<messaging-type>javax.jms.MessageListener</messaging-type>

<!-- The type of transaction supported (see Chapter 12) -->

<transaction-type>Container</transaction-type>

<!-- Whether I’m listening to a topic or a queue -->

<message-destination-type>javax.jms.Topic</message-destination-type>

<!-- Provide further details on message-driven bean activation -->

<activation-config>

<activation-config-property>

<activation-config-property-name>

destinationType

</activation-config-property-name>

<activation-config-property-value>

javax.jms.Topic

</activation-config-property-value>

</activation-config-property>

</message-driven>

</enterprise-beans>

</ejb-jar>

Source 9.3 ejb-jar.xml for the simple bean.

Introduction to Message-Driven Beans 237

14_576828 ch09.qxd 11/3/04 11:41 AM Page 237

Table 9.3 contains definitions for additional deployment descriptor tags that
are unique to JMS message-driven beans. Just glance over it now—it’s not
important to fully understand them if you’re just starting to learn message-
driven beans. See Appendix C for a complete deployment descriptor reference.

EJB 2.1 introduced new <activation-config-property> elements in the
deployment descriptors, specifically to configure message-driven beans.
These elements are meant to represent operational information pertaining
to message-driven beans, JMS or others, in the deployment descriptors. In
the case of JMS message-driven beans, these elements are used to specify
their specific operational requirements, such as type of subscription to
topics, type of destination, and so on.

Table 9.3 Optional Sub-Elements for the <message-driven> Tag

FUNCTIONALITY DESCRIPTION EXAMPLE

Destination type Destination type setting <activation-config-property>
advises the deployer as
to whether a JMS <activation-config-property-
message-driven bean will name>destinationType</
consume messages from activation-config-property-
a queue or a topic. The name>
bean developer should
provide this setting in <activation-config-property-
the deployment value>javax.jms.Topic</
descriptor even though activation-config-property-
deployer can override it. value>

</activation-config-property>

Message selector A message selector filters, <activation-config-property>
or limits, which messages
are sent to your bean. <activation-config-property-
Message selectors are name>messageSelector</
very powerful; they activation-config-property-
increase overall name>
performance by reducing
the number of messages <activation-config-property-
delivered to clients that value>JMSType=’log’ AND
have no interest in the logLevel=’severe’
message. To use message </activation-config-property-
selectors, first your JMS value>
client sets up header fields

238 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 238

Table 9.3 (continued)

FUNCTIONALITY DESCRIPTION EXAMPLE

Message selector on JMS messages using </activation-config-property>
(continued) the JMS API. For example,

the JMS client might call Note: You can use the more
message.setStringProperty complicated SQL-like
(“logLevel”, “severe”) functionality here as well,
before sending the such as arithmetic, logical
message. When the JMS operators (AND/OR/NOT),
destination receives the and more. If you use greater
message, the container than (>) or less than (<)
applies the message signs then you need to wrap
selector criteria defined in this in a CDATA section, to
the deployment descriptor. avoid XML parsing confusion,
Only messages with as we described in Chapter 8.
headers that match the See the JMS specification at
selector are delivered. http://java.sun.com/ for

complete rules for message
selector syntax, which is a
subset of the SQL 92
standard.

Message If you let the container <activation-config-property>
acknowledgment handle transactions

(called container- <activation-config-property-
managed transactions name>acknowledgeMode</
described in Chapter 12), activation-config-property-
then the container name>
delivers the message to
you in a transaction. <activation-config-property-
There is no need for value>Auto-acknowledge</
message acknowledgment activation-config-property-
then, because if the value>
transaction rolls back the
message is automatically </activation-config-property>
put back on the queue.
If you program your own
transactions (called
bean-managed
transactions), the
transaction occurs within
your bean, and begins and
ends after the message
has been delivered to your
bean; thus the consumption
of the message occurs
outside the transaction.

(continued)

Introduction to Message-Driven Beans 239

14_576828 ch09.qxd 11/3/04 11:41 AM Page 239

Table 9.3 (continued)

FUNCTIONALITY DESCRIPTION EXAMPLE

Message Therefore, if you are using
acknowledgment bean-managed transactions,
(continued) you need to tell the container

to acknowledge messages.
Auto-acknowledge setting
forces the container to
acknowledge a message
when the JMS message-
driven bean’s onMessage()
method has successfully
returned. The Dups-ok-
acknowledge setting allows
the container to acknowledge
a message when it feels like
doing so and when it finds
the required resources and
processing time. Since it may
not acknowledge the
messages fast enough, you
run the risk of the JMS
destination sending you a
duplicate message. You should
use this only if you can
tolerate duplicate messages.

Message durability JMS message-driven <activation-config-property>
beans that consume
messages from topic can <activation-config-property-
be either of durable type name>subscription
or nondurable type. We Durability</activation-
discuss durable and config-property-name>
nondurable subscriptions
in the sidebar, “JMS <activation-config-property-
Message-Driven Beans value>NonDurable</
and Durable-Nondurable activation-config-property-
Subscriptions.” value>

</activation-config-property>

As you can see, developing the deployment descriptor for JMS message-
driven beans is simple. In addition to the characteristics that are definable for all
message-driven beans, application server vendors can provide value-add exten-
sions in an application server–specific deployment descriptor. For example, an

240 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 240

application server vendor may provide a deployment descriptor parameter that
defines the maximum size of the message-driven bean pool or another parame-
ter that defines its initial size.

A question that you may be asking now is, “Exactly how does the applica-
tion server bind a JMS message-driven bean container to a specific topic or
queue?” If you look closely at the deployment descriptor provided in Source
9.3, the <message-driven-destination> tag specifies whether the bean should con-
sume queue or topic messages; however, it never indicates which topic or
queue the JMS message-driven bean container should bind to. This is done
purposely to make JMS message-driven beans portable across application
servers. Since the names of actual topics and queues deployed into a
JMS server are application server-specific, the mapping of a bean’s container to
a specific JMS server destination has to be done in an application server-
specific deployment descriptor. Most EJB vendors are expected to have a cus-
tom deployment descriptor that binds the bean to a specific destination.

The Client Program

The client application for our simple JMS message-driven bean example is the
JMS client we developed earlier in this chapter in Source 9.1. This shows you
the power of message-driven beans—our client is solely a JMS client, and the
application is never the wiser that a JMS message-driven bean is consuming
the messages.

If you’d like to try this example yourself, see the book’s accompanying
source code for compilation and deployment scripts.

Advanced Concepts

So far, we have discussed the mechanics of developing JMS message-driven
beans. Now let’s take a closer look at the support containers can give for JMS
message-driven beans. We’ll see how they might integrate with transactions,
provide advanced JMS features, and behave in a clustered environment.

Transactions

JMS message-driven beans do not run in the same transaction as the producer
who sends the message, because there are typically two transactions associated
with every durable JMS message (one transaction for the producer to put the
message on the queue, and another transaction for the JMS message-driven

Introduction to Message-Driven Beans 241

14_576828 ch09.qxd 11/3/04 11:41 AM Page 241

bean to get the message off the queue). It is theoretically impossible for the JMS
message-driven bean to participate in the same transaction (and hence the same
unit of work) as the producer, because until the producer commits the transac-
tion, the message wouldn’t even appear on the queue!

For a complete discussion of transactions and how they apply to JMS
message-driven beans, see Chapter 12.

Security

JMS message-driven beans do not receive the security identity of the producer
who sends the message, because there is no standard way to stick security
information into a JMS message. Therefore you cannot perform EJB security
operations (described in Chapter 13) with JMS message-driven beans.

Load-balancing

Clustering message-driven beans is quite different than clustering session or
entity beans (see Chapter 19). With session and entity beans, your requests are
load-balanced across a group of containers. The load-balancing algorithm
guesses which server is the least-burdened server and pushes requests out to
that server. It’s guessing because the client’s RMI-IIOP runtime can never
know for sure which server is the least burdened, because all load-balancing
algorithms are approximation algorithms based on imperfect historical data.
This is called a push model because we are pushing requests out to the server,
and the server has no say about which requests it receives.

With JMS message-driven beans, producers put messages onto a destina-
tion. The messages reside in the destination until a consumer takes the mes-
sages off of the destination, or (if the messages are nondurable) the server
hosting the destination crashes. This is a pull model, since the message resides
on the destination until a consumer asks for it. The containers contend (fight)
to get the next available message on the destination.

Thus, JMS message-driven beans feature an ideal load-balancing paradigm
and distribute the load more smoothly than session or entity beans do. The
server that is the least burdened and asks for a message gets the message.
The trade-off for this optimal load-balancing is that messaging has extra over-
head because a destination “middleman” sits between the client and the server.

242 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 242

Duplicate Consumption in a Cluster

Since JMS topics use the publish/subscribe model, it’s possible that a message
sent to a JMS topic will be delivered to more than one consumer. Many con-
tainers will create a pool of many message-driven beans instances to process
multiple messages concurrently, so some concern can arise around message-
driven bean containers that subscribe to JMS topics.

In particular, if a JMS message-driven bean container has pooled five
instances of its message-driven bean type and is subscribed to the DogTopic,
how many consumers will consume a message sent to the DogTopic topic? Will
the message be consumed by each JMS message-driven bean instance in the
container or just once by a single JMS message-driven bean? The answer is
simple: A container that subscribes to a topic consumes any given message
only once. This means that for the five instances that the container created to
concurrently process messages, only one of the instances will receive any par-
ticular message freeing up the other instances to process other messages that
have been sent to the DogTopic.

Be careful, though. Each container that binds to a particular topic will con-
sume a JMS message sent to that topic. The JMS subsystem will treat each JMS
message-driven bean container as a separate subscriber to the message. This
means that if the same JMS message-driven bean is deployed to many con-
tainers in a cluster, then each deployment of the JMS message-driven bean will
consume a message from the topic it subscribes to. If this is not the behavior
you want, and you need to consume messages exactly once, you should con-
sider deploying a queue instead of a topic.

For JMS message-driven beans that bind to a queue, the JMS server will
deliver any message on the queue to only one consumer. Each container regis-
ters as a consumer to the queue, and the JMS server load-balances messages to
consumers based on availability. JMS message-driven beans that bind to
queues that are deployed in a cluster are ideal for scalable processing of mes-
sages. For example, if you have two servers in your cluster and 50 messages on
a queue, each server will consume on average 25 messages—as opposed to a
single server responsible for consuming 50 messages.

JMS message-driven beans in a cluster are shown in Figure 9.6. Notice that
many JMS message-driven beans process the same JMS message from Topic
#1. Also notice that only a single bean processes any given message from
Queue #1.

Introduction to Message-Driven Beans 243

14_576828 ch09.qxd 11/3/04 11:41 AM Page 243

Figure 9.6 JMS message-driven beans in a cluster.

JMS Message-Driven Bean Gotchas

Although developing JMS message-driven beans is a straightforward process,
many dark corners and caveats can be encountered unknowingly. In this section
we uncover some of these JMS message-driven demons and suggest solutions to
help speed you on your way to successful implementation.

JMS Server

Queue1

Queue1-M1

Server1

Message-Driven
Bean Pool

Message Driven
Bean Instances

Server2

Message-Driven
Bean Pool

Message Driven
Bean Instances

Server3

Message-Driven
Bean Pool

Message Driven
Bean Instances

Since messages from a queue
are delivered only to one
consumer, the queue can have
multiple messages processed
concurrently by different servers
in a cluster!

Topic1

Queue1-M2

Queue1-M3

Topic1-M1

Since messages from a topic can
be consumed by more than one
client, each message-driven bean
container that binds to a given
topic will receive each message.

Topic1-M1

Topic1-M1

244 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 244

Message Ordering
A JMS server does not guarantee delivery of messages to a pool of JMS
message-driven beans in any particular order. The container likely attempts
to deliver messages in an order that doesn’t impact the concurrency of mes-
sage processing, but there is no guarantee as to the order that the beans actu-
ally process the message. Therefore JMS message-driven beans should be
prepared to process messages that are not in sequence. For example, a message
adding a second hamburger to a fast food order might be processed before the
message indicating that a new fast food order with a hamburger should be cre-
ated. Bean developers must take these scenarios into account and handle them
appropriately.

Missed ejbRemove() Calls
As with session and entity beans, you are not guaranteed that the container
will call your ejbRemove() method when your bean is destroyed. In particular,
if there is a system crash or a crash from within the EJB container, any active
message-driven bean instances are destroyed without going through the
proper life cycle shutdown. Additionally, for any method that throws a system
exception, such as EJBException, the ejbRemove() method is not invoked. Devel-
opers should be alert to this fact and perform any relevant cleanup before
throwing a system exception.

Developers should also be aware that the ejbRemove() method is invoked by
the container only when the container no longer needs that instance. Many
containers pool the necessary number of message-driven bean instances
needed to handle concurrently multiple messages. The limits on the minimum
and maximum size of the message-driven bean pool are typically set in an
application-server specific deployment descriptor. A container adds and
removes message-driven bean instances to and from the pool as appropriate.
However, since message-driven beans are extremely lightweight objects, a
container generally destroys a message-driven bean instance only when the
EJB itself is being undeployed (the whole EJB component is being unde-
ployed). For most systems, the only time container undeployment occurs is
at system shutdown or when an administrator decides to undeploy the
component. The important point here is that message-driven bean contain-
ers are rarely undeployed and therefore message-driven instances are
rarely destroyed. As a general rule of thumb, the ejbRemove() method is rarely
invoked.

Introduction to Message-Driven Beans 245

14_576828 ch09.qxd 11/3/04 11:41 AM Page 245

Poison Messages
When using container-managed transactions (see Chapter 12) with a JMS
message-driven bean, it is easy to code yourself into a situation that causes the
generation of poison messages. A poison message is a message that is continu-
ally retransmitted by a JMS destination to the consumer because the consumer
continuously fails to acknowledge the consumption of the message. Any time
your JMS message-driven bean does not acknowledge messages to the JMS
destination, you have a situation with the potential to create poison messages.
See Figure 9.7 to see a diagram indicating how poison messages can inadver-
tently be generated.

246 Chapter 9

USING QUEUES TO PARTITION BUSINESS PROCESSING IN A CLUSTER

Suppose you have two clusters of machines: One cluster is configured for a
development and test environment, and the other cluster is configured for a
production environment. You need to make sure that traffic coming from test
clients is sent to the development cluster, while traffic coming from real clients
is sent to the production cluster.

As one solution, you could set up your JMS server with two queues:
DevelopmentQueue and ProductionQueue. You could deploy a series of JSPs or
front-end stateless session beans that analyze each incoming request, format it
into a JMS message, and then place requests onto one of the queues. Requests
that come from an internal development machine could be placed onto the
DevelopmentQueue, and all other requests could be placed on the
ProductionQueue.

On the back end, you could configure two clusters: One cluster has JMS
message-driven beans bound to the DevelopmentQueue, and the other cluster
has JMS message-driven beans bound to the ProductionQueue. The logic for
each of these beans can vary based on the needs of the system. For example,
the behavior of the JMS message-driven beans bound to the
DevelopmentQueue can mimic those bound to the ProductionQueue but add
on debugging statements. You can also tune each cluster independently based
on load to the system. Since the ProductionQueue will likely have more load
than the DevelopmentQueue, you could independently grow the size of the
cluster servicing the ProductionQueue without impacting the cluster servicing
the DevelopmentQueue.

This illustrates a general paradigm of using queues to partition business
logic processing. Rather than the servers pulling messages off a single queue,
you pre-choose which machines get the messages by splitting the queue into
two queues. This is an artificial way to achieve controlled load-balancing in a
JMS system.

14_576828 ch09.qxd 11/3/04 11:41 AM Page 246

Figure 9.7 How JMS message-driven beans can cause poison messages.

For example, suppose you have a stock-quoting JMS message-driven bean
that accepts a text message, which represents the stock ticker symbol to be
quoted. Your bean cracks open that message. If the string contained within the
message matches a stock symbol, the bean retrieves the value of that symbol
and sends a response message. Otherwise, the bean throws a system exception
or calls MessageDrivenContext.setRollbackOnly(). This causes the transaction to
be rolled back, which means the message acknowledgment will never be sent
to the JMS destination. The JMS destination eventually resends the same mes-
sage to the container, causing this same process to occur.

See Source 9.4 for an example of a JMS message-driven bean implementa-
tion class that will cause a poison message scenario. Note that our abuse of
threading is for illustrative purposes only!

package examples;

import javax.ejb.*;

import javax.jms.*;

public class PoisonBean

implements MessageDrivenBean, MessageListener {

private MessageDrivenContext ctx;

public void setMessageDrivenContext(MessageDrivenContext ctx) {

this.ctx = ctx;

Source 9.4 PoisonBean.java. (continued)

1: Mesage Sent to Consumer
4: Message Resent to Consumer at a Later Point
...

JMS Server

Queue1

JMS Consumer

2: onMessage()
3: Transaction Rolls Back
5: onMessage()
6: Transaction Rolls Back
...

Message

Introduction to Message-Driven Beans 247

14_576828 ch09.qxd 11/3/04 11:41 AM Page 247

}

public void ejbCreate() { }

public void ejbRemove() { }

public void onMessage(Message msg) {

try {

System.out.println(“Received msg “ + msg.getJMSMessageID());

// Let’s sleep a little bit so that we don’t

// see rapid fire re-sends of the message.

Thread.sleep(3000);

// We could either throw a system exception here or

// manually force a rollback of the transaction.

ctx.setRollbackOnly();

}

catch (Exception e) {

e.printStackTrace();

}

}

}

Source 9.4 (continued)

You can use any of the following strategies to resolve poison messages:

■■ Make sure to not throw any system exceptions for any business logic-
related error conditions. System exceptions like EJBException are
intended to indicate system or container failure. If this were a session or
entity bean, the ideal solution would be to generate an application
exception and throw it (especially since application exceptions do not
force transactions to be rolled back). However, the EJB specification
discourages application exceptions from being thrown from the
onMessage() method of a JMS message-driven bean. The ideal solution
to this problem would likely involve logging the business error mes-
sage and then quietly returning.

■■ Consider using bean-managed transactions instead of container-
managed transactions. Message consumption and acknowledgment
is not part of the transaction if bean-managed transactions are used. A
bean-managed transaction can be rolled back and the message is
acknowledged anyway.

■■ Some application servers enable you to configure a poison message
queue. Messages that are redelivered a certain number of times are
flagged as poison messages, removed from their primary queue, and

248 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 248

placed into a poison message queue. Typically, any message that is
redelivered from three to five times can be considered a poison mes-
sage. You can then bind special consumers or JMS message-driven
beans to the poison message queue to handle any unexpected error
conditions.

■■ Some application servers place a retry count value as a property of any
redelivered messages. Each redelivery of a message incrementally
increases the retry count. Your JMS message-driven bean could check
the value of a retry count (if it exists) to see if it has repeatedly con-
sumed the same message.

■■ Some application server vendors provide a redelivery delay feature that
administrators can configure to determine how long the JMS destina-
tion delays the redelivery of a message after it receives a negative
acknowledgment. This way, your system doesn’t grind to a halt in case
of rapid-fire poison messages.

How to Return Results Back to Message Producers
The EJB specification does not outline any mechanism that allows a JMS mes-
sage-driven bean to propagate a response back to the client that originally gen-
erated the message. So we need to build those facilities ourselves. Figure 9.8
shows how this could be accomplished.

Figure 9.8 A simple JMS request/response paradigm solution.

JMS Server

Incoming Queue

JMS Client

Message-Driven
Bean Pool

Message-Driven
Bean Instances

Outgoing Temporary Queue

3. Client creates request message with
temporary queue as value of JMSReplyTo field.
4. Client sends request message.

1. Client creates temporary queue.
2. Client binds consumer to temporary queue.
8. Client receives response message.

5. MDB consumes
request message.

6. MDB creates response message.
7. MDB sends response message to
the destination specified in the
JMSReplyTo field of the request
 message.

In-Message

In-Message

Out-Message

Introduction to Message-Driven Beans 249

14_576828 ch09.qxd 11/3/04 11:41 AM Page 249

Here is an explanation of Figure 9.8:

1. The client that generates a JMS message for consumption creates a tem-
porary destination associated with its Connection object. The JMS server
temporarily creates a Topic or Queue object and that object exists for the
lifetime of the Connection object.

2. The request message that the client sends contains extra information, so
the receiving JMS message-driven bean knows how to reply correctly.
Specifically, the client sticks the name of the temporary queue in the
JMSReplyTo header field of the request message. The JMS message-driven
bean can harness this field to reply on the correct queue. The client also
has a unique identifier of the original message in the JMSCorrelationID
header field of the original message. When the JMS message-driven bean
replies, it embeds this original identifier, so the client knows to which
original message he’s receiving a reply.

3. The client creates a new Session object and registers a MessageListener
object to consume messages sent to the temporary destination that was
just created.

4. The client sends the message.

5. After consuming the message, the JMS message-driven bean formats a
response and sends it using the JMSReplyTo and JMSCorrelationID
attribute of the received message.

6. The client’s MessageListener class asynchronously consumes the mes-
sage that is sent to the temporary destination, recognizes that it is a
response to the original message, and processes it.

Even though this scenario seems like a straightforward solution for
responding to clients from within a JMS message-driven bean, it could poten-
tially lead to some unexpected results. The problem arises if the client itself is
an EJB component, such as a stateful session bean. When your stateful session
bean creates the temporary destination, that temporary destination has a life-
span equal to the lifespan of the JMS connection that your bean currently
holds. If your bean is passivated (meaning swapped out of memory), then you
need to release that connection. The temporary destination then goes away,
and you’ve lost all messages delivered to that temporary destination while
you were passivated, even if you recreate the destination after you are
swapped into memory again.

We propose two possible solutions to this problem:

■■ Don’t use a stateful session bean. Instead the end client, such as a
servlet, application, or JSP tag library (rather than the stateful session

250 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 250

bean), creates a temporary queue that all response messages are sent to.
The stateful session bean is therefore not holding onto a connection,
eliminating any danger of the destination going away because of passi-
vation. See the book’s accompanying source code for an implementa-
tion of this solution.

The advantages of using this architecture include:

■■ Ease of implementation. Creating temporary queues doesn’t require
any extra configuration from an administrator, whereas setting up a
dedicated response topic requires management on the part of the
administrator and your application.

■■ Security. Since temporary queues are bound to a particular connec-
tion, malicious clients cannot bind to a temporary queue and intercept
response messages.

■■ Immediate client notification. Since the remote client creates and
manages the receiving logic for the temporary queue, the client is
notified immediately when a response message is generated, rather
than having to wait for a middleman session bean to respond.

The disadvantages of this architecture include:

■■ No persistent messages. Temporary queues cannot have persistent
stores associated with them and therefore cannot support guaran-
teed message delivery. If the system fails while a response message
is located on the temporary queue, the message will be lost.

■■ Poor abstraction. Since temporary queues are associated with a
Connection object, a stateful session EJB cannot perform middle-tier
management of the request/response process. It might be more nat-
ural to abstract away the JMS request/response logic from the client.

■■ A permanent response topic is configured and deployed in the JMS
server. All response messages are delivered to the same response topic
for all clients. Clients filter out the messages that belong to them by reg-
istering a message selector with the JMS server. Any request message
that is sent has a custom application property called ClientName=MyID
where MyID varies for each client. The JMS message-driven bean that
consumes the request message takes the application property from the
request message and inserts the same property in the response mes-
sage. All response messages are sent to the same response topic irre-
spective of the client. Figure 9.9 illustrates this scenario, and the book’s
accompanying source code has its implementation.

Introduction to Message-Driven Beans 251

14_576828 ch09.qxd 11/3/04 11:41 AM Page 251

Figure 9.9 Another JMS request/response paradigm solution.

The advantages of using this architecture include:

■■ Better fault tolerance. Because this architecture proposes that a per-
manent topic be set up for all outgoing messages, the response topic
could be associated with a persistent store. All outgoing messages
could then be sent persistently with guaranteed message delivery.
Temporary topics and queues cannot have persistent messages
delivered to them. This could be ideal for a data retrieval system.
For example, suppose you had a remote client that randomly con-
nected to the central server requesting a download of the latest mar-
ket data as it pertains to that client. The data could be anywhere
from 1K to 1MB. Let’s also suppose that for situations where a large
amount of data needs to be retrieved for the client, you want to
break up the data chunks into 100K messages. If the client needed to
retrieve 1MB of data, you would need to send 10 response messages.
All of the response messages could be sent with guaranteed message
delivery. If the remote client application were to fail during the
download process, it could easily resume from the last response
message that it received instead of having to restart the entire
download process.

■■ Better filtering. You can add additional filtering of response mes-
sages through the message selector that the client registers with
the JMS server. In the example provided with this book, the client
registers to receive messages that have an application property

JMS Server

Incoming Queue

JMS Client
Message-Driven
Bean Pool

Message-Driven
Bean Instances

OutgoingResponseTopic

2. Client creates request message with
application property:ClientName=MyID.
MyID changes for each client.
3. Client sends request message.

1. Client binds consumer to permanent
response topic. The registration on the
topic has a message selector that will
filter out only messages that have an
application property: ClientName=MyID.
MyID changes for each client.
7. Client receives response message.

4. MDB consumes
request message.

5. MDB creates response message. The MDB
sets the response message ClientName
property to be the value of the request message.
6. MDB sends response to response topic.

In-Message

In-Message

Out-Message

252 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 252

ClientName=MyID. You could conceivably add application proper-
ties about the response message that the client filters on. These prop-
erties could be message size, message importance, and so on.

The disadvantages are as follows:

■■ Lack of security. The main disadvantage of this architecture is lack
of security. Since the JMS specification does not have any security
restrictions on which clients can bind which message selectors, any
client can register any message selector. This presents the opportu-
nity for a malicious client to register for consumption of response
messages that are destined for another client. This malicious behav-
ior is not possible with temporary destinations. Of course, if you’re
secured by a firewall, security probably isn’t an issue. Also, it would
take a pretty snazzy developer to actually figure out that you’re
sending messages and register a message listener.

■■ Intermediary EJB. This approach allows a session EJB to act as a
mediator between the client and the back-end system, as mentioned
in the actual description of the problem. By using an intermediary
session EJB, security can be improved, because the topic that
response messages are delivered to can be made available only inter-
nally by simply not exposing it to a client or blocking the message
server using a firewall or other security measure. The session EJB can
be coded to filter out messages based upon the logged-in user name.

An Alternative Request/Response Paradigm

If you don’t feel like writing your own request/response code as we’ve just
described, you can tap into the JMS facilities to help you. JMS has two special
classes, javax.jms.QueueRequestor and javax.jms.TopicRequestor, that implement
a simple request/response paradigm. You call a method called request() that
takes as input the request message and returns the response message. This is
implemented in the book’s accompanying source code.

The downsides to this approach are:

■■ You need to block when waiting for a response. You can’t continue
processing and do other things, which is one of the major advantages of
messaging in the first place.

■■ You can’t use transactions. If you did, the outgoing message would be
buffered until the transaction committed. Since the QueueRequestor class
doesn’t commit right away, but instead blocks until it receives a response
message, it will block indefinitely. The outgoing request message will
wait forever to be flushed from the buffer. See Chapter 12 for more on
transactions.

Introduction to Message-Driven Beans 253

14_576828 ch09.qxd 11/3/04 11:41 AM Page 253

The Future: Asynchronous Method Invocations
One of the downsides to JMS message-driven beans is that you need to learn a
whole new API, JMS, to call them. This API is highly procedural in nature,
because you are not invoking lots of different business methods on your JMS
message-driven bean; rather, you are sending messages using the JMS API,
and the server has a single method to crack the message open and then call the
intended method using a giant if statement.

An asynchronous method invocation is a real method invocation executed in an
asynchronous fashion. You are actually calling business methods on the
server, such as logMessage() or quoteStock(). You can choose whether you want
to block and wait for an asynchronous response or to return immediately and
not wait for a response. Furthermore, the server can take on the context infor-
mation of the client.

Asynchronous RMI and Microsoft Queued Components are asynchronous
method invocation infrastructures. JAX-RPC supports one-way RPC over
SOAP. CORBA also has some support for this, with a slightly different defini-
tion of deferred synchronous invocations: “A request where the client does not
wait for completion of the request, but does intend to accept results later.”

We hope a future EJB specification supports asynchronous method invoca-
tions. Until then, you’ll have to build such facilities on top of JMS yourself,
perhaps by writing a code generator.

Summary

In this chapter, we’ve learned about developing JMS message-driven beans
and the pitfalls associated with doing asynchronous development with EJBs.
We started by learning about the various benefits of developing asynchronous
components and how message-driven beans compare to their session and
entity bean counterparts. We also learned about the key difference between
message-driven beans of EJB 2.0 and those of EJB 2.1. We looked at how to
build a JMS message-driven bean and deploy it. Next we looked at how a JMS
message-driven bean behaves in its environment, including how it interacts
with transactions. Finally, we took a look at the common pitfalls of using
message-driven beans and proposed some solutions.

254 Chapter 9

14_576828 ch09.qxd 11/3/04 11:41 AM Page 254

255

In previous chapters, you learned the fundamentals of EJB programming. In
this chapter, we’ll build on that knowledge and cover a slew of essential top-
ics, including:

■■ How to call beans from other beans

■■ How to use environment properties to customize your beans and access
those environment properties at runtime

■■ How to access resource factories (such as JDBC or JMS drivers) from
your bean

■■ How to use EJB object handles and EJB home handles

This knowledge is key for building nontrivial EJB deployments. So let’s get
to it!

Calling Beans from Other Beans

Any nontrivial EJB object model has layers of beans calling other beans.
For example, a bank teller bean might call a bank account bean, or a customer
bean might call a credit card bean. In this chapter, we’ll use the following
examples:

Adding Functionality
to Your Beans

C H A P T E R

10

15_576828 ch10.qxd 11/3/04 11:42 AM Page 255

■■ A pricing engine that computes prices of products, using all sorts of
interesting rules, such as discounts, taxes, and shipping costs

■■ A catalog engine that is a catalog for products, retrieving products from
the database as necessary

The pricing engine calls the catalog engine. For simplicity, we’ll assume that
both of these beans are stateless session beans, since that’s what you’ve
learned so far.

Default JNDI Lookups
For your bean to call another bean, you must go through the same process that
any other client would go through. Your bean might:

1. Look up the other bean’s home object via JNDI

2. Call create() on the home object

3. Call business methods on the EJB object

4. Call remove() on the EJB object

As we mentioned earlier, to look up a home object using JNDI, you first
need to supply JNDI initialization parameters, such as the JNDI driver you’re
using, which differs from container to container. But if you’re writing a bean
that calls another bean, how do you know which JNDI service provider to use?
After all, your beans should be container-independent. Hard-coding that JNDI
information into your bean would destroy portability.

The good news is that if you’re looking up a bean from another bean, you
don’t need to supply any JNDI initialization parameters. You simply acquire a
default JNDI initial context. The container sets the default JNDI initial context
before your bean ever runs. For example, the following code snippet is taken
from a bean calling another bean:

// Obtain the DEFAULT JNDI initial context by calling the

// no-argument constructor

Context ctx = new InitialContext();

// Look up the home interface

Object result = ctx.lookup(“java:comp/env/ejb/CatalogHome”);

// Convert the result to the proper type, RMI-IIOP style

CatalogHome home = (CatalogHome)

javax.rmi.PortableRemoteObject.narrow(

result, CatalogHome.class);

// Create a bean

Catalog c = home.create(...);

256 Chapter 10

15_576828 ch10.qxd 11/3/04 11:42 AM Page 256

The preceding code is portable because nobody ever needs to supply con-
tainer-specific JNDI initialization parameters.

Understanding EJB References
Notice from the previous section that we looked up a bean in java:comp/env/ejb.
This is the JNDI context that the EJB specification recommends (but does not
require) you to put your beans’ names that are referenced from other beans.

Unfortunately, you cannot guarantee that the JNDI location you’ve specified
will be available. It could be unavailable if your bean has a conflict with
another bean or if the deployer has a funky JNDI tree that is spread out across
multiple domain boundaries.

Thus, your code will break if the JNDI location changes at deployment time.
And often, the deployer is unable to modify your code, because it comes to
him as .class files only. This could happen for example, if you are an indepen-
dent software vendor that ships beans, and you want to protect your intellec-
tual property and make future upgrades easier by preventing customers from
seeing source code.

EJB resolves this situation with EJB references. An EJB reference is a nickname
for the JNDI location that you want to look up a bean. This nickname may not
correspond to the actual JNDI location the deployer sticks your bean into. Your
code looks up a home via its nickname, and the deployer then binds that
nickname to the JNDI location of its choice, perhaps using symbolic links
(an advanced JNDI feature not covered in this book—see the JNDI specifica-
tion for more). Once again, a layer of indirection solves every problem in com-
puter science.

EJB references are declared in the deployment descriptor. Source 10.1 illus-
trates references.

...

<enterprise-beans>

<!--

Here, we define our Catalog bean. Notice we use the

“Catalog” ejb-name. We will use this below.

-->

<session>

<ejb-name>Catalog</ejb-name>

<home>examples.CatalogHome</home>

...

Source 10.1 Declaring an EJB reference. (continued)

Adding Functionality to Your Beans 257

15_576828 ch10.qxd 11/3/04 11:42 AM Page 257

</session>

<session>

<ejb-name>Pricer</ejb-name>

<home>examples.PricerHome</home>

...

<ejb-ref>

<description>

This EJB reference says that the Pricing Engine

session bean (Pricer) uses the Catalog Engine

session bean (Catalog)

</description>

<!--

The nickname that Pricer uses to look

up Catalog. We declare it so the deployer

knows to bind the Catalog home in

java:comp/env/ejb/CatalogHome. This may not

correspond to the actual location to which the

deployer binds the object via the container

tools. The deployer may set up some kind of

symbolic link to have the nickname point to the

real JNDI location.

-->

<ejb-ref-name>ejb/CatalogHome</ejb-ref-name>

<!-- Catalog is a Session bean -->

<ejb-ref-type>Session</ejb-ref-type>

<!-- The Catalog home interface class -->

<home>examples.CatalogHome</home>

<!-- The Catalog remote interface class -->

<remote>examples.Catalog</remote>

<!-- (Optional) the Catalog ejb-name -->

<ejb-link>Catalog</ejb-link>

</ejb-ref>

</session>

</enterprise-beans>

...

Source 10.1 (continued)

258 Chapter 10

15_576828 ch10.qxd 11/3/04 11:42 AM Page 258

Programming with EJB references is straightforward. Our pricer bean is
using a catalog bean, so inside the pricer bean we simply list all the necessary
information about the catalog bean in an EJB reference. The deployer then
knows that our pricer bean uses exactly one other enterprise bean—catalog—
and no other. This is useful, because the deployer now knows which class files
the pricer bean depends on and which JNDI location needs to be bound. Sim-
ilarly, the container’s tools can easily inspect the deployment descriptor and
verify that the deployer has done his job.

Note that while this example declares the catalog bean within our deploy-
ment descriptor, we didn’t have to do this. The catalog bean could have been
in its own Ejb-jar file with its own deployment descriptor.

You can also access EJB components from other EJB components through
their local interfaces rather than through their remote interfaces. To do this,
our deployment descriptor would be almost exactly the same—except instead
of calling the element <ejb-ref>, we would call it <ejb-local-ref>, instead of
<home> we would use <local-home>, and instead of <remote> we would use
<local>. The JNDI code to look up the bean would change as well; it would
look up the local home interface rather than the home interface, and call the
local interface rather than the remote interface:

// Obtain the DEFAULT JNDI initial context by calling the

// no-argument constructor

Context ctx = new InitialContext();

// Look up the home interface

Object result = ctx.lookup(“java:comp/env/ejb/CatalogLocalHome”);

// Convert the result to the proper type. No RMI-IIOP cast

// required since local interfaces are being used.

CatalogLocalHome home = (CatalogLocalHome) result;

// Create a bean

CatalogLocal c = home.create(...);

Resource Factories

Our next topic is how to perform callouts to external resources from an EJB
component. A resource factory is a provider of resources. Examples include a
Java Database Connectivity (JDBC) driver, a Java Message Service (JMS) dri-
ver, or a J2EE Connector Architecture (JCA) resource adapter. A resource fac-
tory is the driver that gives you connections, such as a JDBC driver giving you
a database connection.

Adding Functionality to Your Beans 259

15_576828 ch10.qxd 11/3/04 11:42 AM Page 259

To begin using a resource factory, you need to locate it. EJB mandates that
you use JNDI to look up a resource factory. This is very nice, because you
merely need to learn a single API—JNDI—and you can look up JDBC drivers,
JMS drivers, JCA drivers, and so on. In fact, you already know how to perform
this lookup. It’s the same JNDI code you use to look up an EJB home object:

// Obtain the initial JNDI context

Context initCtx = new InitialContext();

// Perform JNDI lookup to obtain resource factory

javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbc/ejbPool”);

Notice that we’re using java:comp/env/jdbc. While this is the EJB-suggested
location for your JDBC resources, you must specify your resource factory’s
JNDI location in the deployment descriptor. When your bean is deployed, the
deployer binds a real resource factory to that JNDI location. The correspond-
ing deployment descriptor is shown in Source 10.2.

...

<enterprise-beans>

<session>

<ejb-name>Catalog</ejb-name>

<home>examples.CatalogHome</home>

...

<!--

This element indicates a resource factory reference

-->

<resource-ref>

<description>

This is a reference to a JDBC driver used within

the Catalog bean.

Source 10.2 Declaring a resource factory reference within a deployment descriptor.

260 Chapter 10

CONNECTION POOLING

Connection pooling is the reuse of sockets. If a client isn’t using a socket, a
different client can harness the socket. This increases the scalability of a
system. Connection pooling is built into most containers. JDBC specifies
standard interfaces for connection pooling, further enhancing your code
portability. The connection pooling typically happens completely behind the
scenes, and your bean code is oblivious to it.

15_576828 ch10.qxd 11/3/04 11:42 AM Page 260

</description>

<!--

The JNDI location that Catalog uses to look up

the JDBC driver.

We declare it so the deployer knows to bind the

JDBC driver in java:comp/env/jdbc/ejbPool.

-->

<res-ref-name>jdbc/ejbPool</res-ref-name>

<!--

The resource factory class

-->

<res-type>javax.sql.DataSource</res-type>

<!--

Security for accessing the resource factory.

Can either be “Container” or “Application”.

-->

<res-auth>Container</res-auth>

<!--

Whether connections should be shared with other

clients in the different transactions

-->

<res-sharing-scope>Sharable</res-sharing-scope>

</resource-ref>

</session>

</enterprise-beans>

...

Source 10.2 (continued)

Source 10.2 is fairly self-explanatory, except for the res-auth entry. To under-
stand it, realize that when you acquire a connection to a database or other
resource, that resource may require authorization. For example, you may need
to specify a user name and password when obtaining a JDBC connection. EJB
gives you two choices for authenticating yourself to a resource:

■■ Perform the authentication yourself in the bean code. Call the
resource factory with the appropriate sign-on information, such as a
login name and password. In this case, set the deployment descriptor’s
res-auth element to Application.

■■ Let the deployer handle authentication for you. The deployer specifies
all sign-on information in the deployment descriptor. In this case, set
the deployment descriptor’s res-auth element to Container.

Adding Functionality to Your Beans 261

15_576828 ch10.qxd 11/3/04 11:42 AM Page 261

The second choice is the most useful, especially when you are writing beans
for resale or reuse by other companies, because only the deployer will know
which sign-on credentials are needed to access a particular resource.

Environment Properties

Our next tidbit of essential EJB knowledge is how to customize our beans at
runtime. What does customization mean? Well, our pricing bean might have
several different pricing algorithms it could apply. We’d like the consumers of
our bean to be able to select their preferred algorithm.

Your bean’s environment properties are application-specific properties that
your beans read in at runtime. These properties can be used to customize your
bean and make your beans data-driven. It’s a quick-and-dirty alternative to
storing information in a database.

The first step to using environment properties is to declare them in the
deployment descriptor. The container reads in this deployment descriptor and
makes the environment properties available for your bean to access at run-
time. An example is shown in Source 10.3.

. . .

<enterprise-beans>

<session>

<ejb-name>Pricer</ejb-name>

<home>examples.PricerHome</home>

. . .

<!--

This element contains a single environment property.

The property is only accessible from the Pricer.

-->

<env-entry>

<description>

The algorithm for this pricing engine.

</description>

<!--

The JNDI location that Pricer uses to look up

the environment property. We declare it so the

container knows to bind the property in

java:comp/env/PricerProperties/algorithm.

-->

Source 10.3 Declaring environment properties within an EJB deployment descriptor.

262 Chapter 10

15_576828 ch10.qxd 11/3/04 11:42 AM Page 262

<env-entry-name>Pricer/algorithm</env-entry-name>

<!-- The type for this environment property -->

<env-entry-type>java.lang.String</env-entry-type>

<!-- The environment property value -->

<env-entry-value>NoTaxes</env-entry-value>

</env-entry>

</session>

</enterprise-beans>

. . .

Source 10.3 (continued)

The environment property declared in Source 10.3 tells our pricing engine to
use an algorithm that gives all customers no taxes, due to the Internet tax
moratorium that we all love.

You use JNDI to access the environment from your bean. The following code
illustrates this.

// 1: Acquire the initial context

Context initCtx = new InitialContext();

// 2: Use the initial context to look up

// the environment properties

String taxAlgorithm = (String)

initCtx.lookup(“java:comp/env/Pricer/algorithm”);

// 3: Do what you want with the properties

if (!taxAlgorithm.equals(“NoTaxes”)) {

// add tax

}

Notice that we look up environment properties under the JNDI name
java:comp/env. All EJB environment properties must be somewhere beneath this
naming context.

Understanding Handles

Our final topic in this chapter is the subject of handles. Many EJB applications
require that clients be able to disconnect from beans and reconnect later to
resume using that bean. For example, if you have a shopping cart that you’d
like to save for a later time, and a stateful session bean manifests that shopping
cart, you’d want your shopping cart state maintained when you reconnect
later.

Adding Functionality to Your Beans 263

15_576828 ch10.qxd 11/3/04 11:42 AM Page 263

EJB provides for this need with EJB object handles. An EJB object handle is a
long-lived proxy for an EJB object. If for some reason you disconnect from
the EJB container/server, you can use the EJB object handle to reconnect to
your EJB object, so that you don’t lose your conversational state with that
bean. An EJB object handle is an essentially persistent reference to an EJB
object. The following code demonstrates using EJB object handles:

// First, get the EJB object handle from the EJB object.

javax.ejb.Handle myHandle = myEJBObject.getHandle();

// Next, serialize myHandle, and then save it in

// permanent storage.

ObjectOutputStream stream = ...;

stream.writeObject(myHandle);

// time passes...

// When we want to use the EJB object again,

// deserialize the EJB object handle

ObjectInputStream stream = . . .;

Handle myHandle = (Handle) stream.readObject();

// Convert the EJB object handle into an EJB object

MyRemoteInterface myEJBObject = (MyRemoteInterface)

javax.rmi.PortableRemoteObject.narrow(

myHandle.getEJBObject(), MyRemoteInterface.class);

// Resume calling methods again

myEJBObject.callMethod();

The getHandle() method is available only in remote interfaces, not in local
ones. The EJB specification does not require that handles have the ability to be
saved in one environment and then restored in a different environment. This
means handles are not guaranteed to be portable across EJB containers, nor
across machines.

Home Handles
A variant on EJB object handles are the EJB home handles. These are simply
persistent references to home objects, rather than persistent references to EJB
objects. The following code shows how to use home handles:

// First, get the EJB home handle from the home object.

javax.ejb.HomeHandle homeHandle = myHomeObject.getHomeHandle();

// Next, serialize the home handle, and then save it in

// permanent storage.

264 Chapter 10

15_576828 ch10.qxd 11/3/04 11:42 AM Page 264

ObjectOutputStream stream = ...;

stream.writeObject(homeHandle);

// time passes...

// When we want to use the home object again,

// deserialize the home handle

ObjectInputStream stream = ...;

javax.ejb.HomeHandle homeHandle =

(HomeHandle) stream.readObject();

// Convert the home object handle into a home object

MyHomeInterface myHomeObject = (MyHomeInterface)

javax.rmi.PortableRemoteObject.narrow(

homeHandle.getHomeObject(), MyHomeInterface.class);

// Resume using the home object

myHomeObject.create();

Home handles may be useful because you can acquire a reference to a home
object, persist it, and then use it again later without knowledge of the
home object’s JNDI location. But in our opinion, home handles are not going
to benefit most applications a tremendous amount. We have never seen any
organization make use of them (e-mail us and be the first!).

Summary

In this chapter, we learned a great deal about how to make our beans more
robust. We learned how to call beans from other beans, how to use resource
factories, how to access environment properties, and how to use handles. Most
nontrivial EJB deployment will make use of some of these concepts.

This completes Part Two. You’ve now covered the fundamentals and should
have a strong foundation for learning about advanced concepts. Let’s now
move on to Part Three, which begins with transactions.

Adding Functionality to Your Beans 265

15_576828 ch10.qxd 11/3/04 11:42 AM Page 265

15_576828 ch10.qxd 11/3/04 11:42 AM Page 266

PA R T

Advanced Enterprise
JavaBeans Concepts

If you’ve read to this point, you should be quite familiar with the basics of
Enterprise JavaBeans development. In Part Three, we raise the bar by mov-
ing on to more advanced concepts. These include the following:

■■ EJB best practices. Chapter 11 covers a lot of best practices pertinent
to EJB such as when to use EJB, how to choose the right Web applica-
tion framework when working with EJB applications that have Web
clients, how to apply aspect-oriented programming concepts with
EJB, and many more best practices/guidelines.

■■ Transactions. Chapter 12 shows you how to harness transactions to
make your EJB deployments reliable. We’ll discuss transactions at a
conceptual level and how to apply them to EJB. We’ll also learn about
the Java Transaction API (JTA).

■■ EJB Security. Chapter 13 provides an in-depth coverage of tech-
niques and best practices surrounding EJB application security. It
covers how to enable authentication and authorization declaratively
and programmatically in EJB applications. Also the chapter show-
cases enabling JAAS-based authentication for EJB applications.

■■ EJB Timers. Chapter 14 focuses on building EJB timers. It covers
how to write and deploy code that uses the timer service provided by
containers.

Three

16_576828 pt03.qxd 11/3/04 11:42 AM Page 267

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

■■ BMP and CMP relationships. Chapter 15 covers how to build rela-
tionships between entity beans, both BMP and CMP. This is an essen-
tial EJB 2.0 topic for anyone performing persistent operations with
entity beans.

■■ Persistence best practices. In Chapter 16, you’ll learn about some of
the critical tradeoffs when building a persistence layer—how to
choose between session beans and entity beans, how to choose
between BMP and CMP—and survey a collection of persistence best
practices that we’ve assembled from our knowledge and experience.

■■ EJB-based integration. Chapter 17 covers various approaches to inte-
grating disparate applications with EJB. Here you will learn how var-
ious technologies, such as J2EE Connectors and Web Services, could
be used to integrate EJB applications with the outside world.

■■ EJB performance optimizations. Chapter 18 covers tips and tech-
niques for boosting EJB performance. You’ll learn about best practices
for boosting performance of stateless session beans, stateful session
beans, entity beans, and message-driven beans. Also, a lot of miscel-
laneous design and development tips are presented in this chapter.

■■ Clustering. Chapter 19 shows you how EJBs are clustered in large-
scale systems. You’ll learn how clustering works behind the scenes
and a few strategies for how containers might achieve clustering.
This is a critical topic for anyone building a system that involves sev-
eral machines working together.

■■ Starting your EJB project on the right foot. Chapter 20 shows you
how to get your project off in the right direction. This includes how
to choose between J2EE and .NET, how to staff your project team,
how to determine the important investment areas to ensure project
success, and so on.

■■ How to choose an EJB server. In Chapter 21, we’ll describe our
methodology for how an organization can compare and contrast dif-
ferent vendors’ offerings. We’ll also list our criteria for what we
would want in an EJB server.

■■ EJB-J2EE integration: Building a complete application. Chapter 22
shows how each of the EJB components can work together to solve a
business problem, as well as how EJB and J2EE can be integrated
through Java servlets and JavaServer Page (JSP) technology.

These are extremely interesting middleware topics; indeed, many books
could be written on each subject alone. To understand these concepts, we
highly recommend you read Part One and Part Two first. However, if you’re
already well versed in EJB, please join us to explore these advanced issues.

268 Part Three

16_576828 pt03.qxd 11/3/04 11:42 AM Page 268

269

In this chapter, we will discuss best practices in terms of design, development,
building, testing, and working with EJB. These guidelines will help in answer-
ing some of the dilemmas you face in real-world EJB projects. By being aware
of these best practices, you will avoid common pitfalls that others have expe-
rienced when building EJB systems.

Note that persistence-related best practices and various performance opti-
mizations are covered in Chapter 16 and Chapter 18, respectively.

Let us begin now with various design, development, testing, debugging,
and deployment strategies.

We do not discuss lower-level EJB design patterns in this chapter since there
are many resources in terms of books, papers, and so on that already focus
on that. Besides, discussing lower-level EJB design patterns itself warrants a
whole book. Our recommendation is that you read EJB Design Patterns
(ISBN: 0-471-20831-0) published by John Wiley & Sons as a guide for EJB
design patterns.

EJB Best Practices

C H A P T E R

11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 269

When to Use EJB

The cost of not making a correct go or no-go decision for EJB can be very high.
It can range from a project getting delayed to a project getting scrapped.
Hence, we would like to take a few moments to address this very crucial
design point in the very beginning.

In our opinion, you should think of using EJB in the following design
situations:

■■ Remoting is required. Gone are the days when everybody used to
think of distributed systems as a panacea. Modeling an application’s
functionality into various tiers composed of reusable components is
surely a way to achieve a clean and manageable design. However,
deploying these components on separate boxes just for the heck of it
does not necessarily result in the best systems. Do not confuse the need
for componentization by way of distribution of these components on
multiple systems. Both are quite different and both have different costs
associated with them.

With that said, once you determine the need for distributed compo-
nents in your application, consider EJB as your first alternative. Their
sole purpose is to provide a programming model to build managed and
distributed components in Java platform.

■■ Distributed transactions are required. Transaction semantics are beau-
tifully defined by the EJB standard. A protocol as complicated as the
two-phase commit—one of the most widely used distributed transac-
tions protocols in enterprise applications today—is neatly supported by
the EJB architecture. Although, non-standard frameworks such as
Spring and Hibernate do support distributed transactions, the level of
support of these in EJB containers is one of the best. It probably has to
do with maturity gained by EJB server vendors on account of imple-
menting distributed transactions for years. Hence, for large-scale dis-
tributed transactional systems, leveraging EJB makes a lot of sense.

One of the common complaints against the EJB transaction model is its lack
of support for nested transactions and long-running transactions. Well, this
will not remain the case for long. JSR 095 (J2EE Activity Service for Extended
Transactions) defines a low-level framework for creating various transaction
models. At the time of this writing, JSR 095 is in proposed final draft stage.
Hopefully, it shall become part of J2EE 1.5 platform.

■■ Component-security is required. EJB architecture defines a standard
fine-grained security model for the components. Although, EJB

270 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 270

architecture does not provide support for fancy security schemes, such
as Single Sign-On or Biometric authentication, as yet, it does provide a
basic framework for authentication and access control that is more than
enough to meet security needs of 85 percent of enterprise applications.
So if you have a requirement for access control at the application-
component level (and not just at the Web level), then you should
consider using EJB.

■■ Persistence is required. Much has been said—both, good and bad—
about the persistence functionality as defined by the EJB standard.
Although there are numerous ways to achieve persistence in EJB appli-
cations these days, ranging from the de facto open source frameworks,
such as Hibernate, to de jure frameworks, such as Java Data Objects
(JDO), an important point to remember here is that EJB persistence,
especially CMP, can come in very handy for systems that are extremely
transactional and time sensitive. Chapter 16 covers various persistence-
related best practices.

■■ Integration with legacy applications is required. More recently, this has
become one of the main selling points of EJB architecture. EJB provides
multiple elegant models through. J2EE Connector Architecture, EJB Web
Services, and JMS for integrating with legacy/non-legacy applications
deployed on heterogeneous platforms. Thus, if your application requires
integration with another application, you should consider using the EJB
framework for this integration. Chapter 17 covers these EJB integration
programming models and related best practices in depth.

■■ Scalability is required. EJB technology was designed with scalability in
mind. The idea is to make scaling up of applications seamless, for
example without re-architecting and reprogramming, so that it simply
becomes a matter of throwing more hardware at an application. J2EE
enables you to scale your EJB and Web tiers separately. Remoting
allows you to keep both of these tiers on separate boxes and scale these
boxes as needed. For example, in an application that involves a simple
Web interface but complex middle-tier processing, throwing more
resources at systems on which an EJB application is deployed just
makes more sense.

In conclusion, if you are going to need transactions, remoting, security, per-
sistence, application integration, and other such infrastructure-oriented facili-
ties in your application, consider leveraging the time-tested EJB framework in
your project. Working with EJB can get complex if not done right. However,
there are thousands of ways to deal with this complexity. But, creating your
own framework is definitely not one of them.

EJB Best Practices 271

17_576828 ch11.qxd 11/3/04 11:42 AM Page 271

How to Choose a Web Application
Framework to Work with EJB

Model 2 Web application frameworks have very much become a part of infra-
structure software these days and rightly so. Working with such frameworks
guarantees a lot of functionality related to localization, error handling, valida-
tion of form data, and so on out of the box. Many of these functions would
otherwise need to be coded when working with raw Web components, such as
servlets and Java Server Pages (JSP).

You can choose from dozens of Web application frameworks, both open
source and closed source. Choosing a Web application framework is an impor-
tant decision for you as an architect. Here are some of the factors that you
should consider while deciding on a Web application framework for your EJB
project:

272 Chapter 11

IS USING A POJO + FRAMEWORK COMBINATION ALWAYS
A GOOD IDEA?

The recent wave in enterprise Java computing is to replace all or some parts of
the EJB framework with frameworks, such as Spring, Hibernate, and so on.
Spring framework (springframework.org) is a J2EE framework. Spring
applications can be built using EJB or Plain Old Java Object (POJO). In case you
choose POJO, Spring can provide declarative local transactions for POJO
without relying on the EJB container. Similarly, Spring supports data access via
JDBC and O/R mapping frameworks such as Hibernate. Thus, Spring is unique
in the sense that it makes using heavyweight EJB containers a matter of choice
and not necessity in some respects. It provides a lightweight framework
alternative for writing business tier objects.

Hibernate (hibernate.org) is another popular O/R framework whose biggest
value proposition is ease of use. It is a POJO-driven lightweight transactional
persistence and data access framework. One of the interesting features it
provides is the modeling of inheritance relationships of data.

Like always, we would like to maintain that just as EJB is not a sure shot way
of building robust and scalable applications, using POJO frameworks is not a
sure shot way of simplifying business tier development and deployment. Think
of using POJOs only when the architectural benefits are substantial. Note that
ease of development is not always equipped with highly transactional
enterprise functionality. For instance, if distributed transactions are a must for
your application, Spring + POJO would not work.

The safest route is to stick to EJBs and trust the Java Community Process
(JCP) to evolve the standard, and evolve it they will. EJB 3.0 entity beans from
the draft specification seem to have borrowed many concepts from Hibernate.
If the direction taken by EJB 3.0 tells us anything, it is that JCP is open to gain
from the experiences of the community.

17_576828 ch11.qxd 11/3/04 11:42 AM Page 272

■■ Integration with EJB technology. In EJB projects one of the obvious
requirements for your Web application framework would be how well
it integrates with EJB technology. EJB integration basically implies the
support for EJB design patterns, EJB entity beans handling, and so on
from within the framework components. For instance, the Struts com-
munity has made it quite simple to work with EJB via the StrutsEJB
project (http://strutsejb.dev.java.net). The StrutsEJB project provides
base classes and patterns (mainly—Service Locator, Business Delegate,
DTO, and Session Façade patterns) to build a Struts Web application
that uses EJB in the business tier.

■■ Tools support. Tools enable Rapid Application Development (RAD)
thereby increasing productivity. Most of the framework communities
and vendors provide some kind of IDE plug-in technology-based tools
to help in development. However, usually this plug-in support is lim-
ited to one or two IDE at most. So if you are using an IDE the plug-in
doesn’t support, you might have no tools available for the framework.

For instance, although Tapestry is a powerful framework, Spindle, a
plug-in that provides IDE support for Tapestry, is available only for the
Eclipse IDE. As a result, developers of projects that use other IDEs, such
as NetBeans, have to develop and deploy the framework components
manually.

On the other hand, mature frameworks, such as Struts, have good tools
support in the form of IDE plug-ins (Struts Console plug-in for NetBeans,
Eclipse and Struts Tools for IBM WSAD, and so on) and standalone GUI
tools (Struts Console and Struts Studio).

■■ Small device support. Generating content in a markup language so
that it can be rendered on small devices is a very real requirement of
today’s business applications. If your application falls in this category,
then you should select an application framework that provides a com-
paratively painless way of generating markup content for small device
browsers. Most of the device browsers today support WML, HDML,
cHTML, or XHTML markup languages. Frameworks, such as Cocoon,
SOFIA, and Struts, provide tag libraries for generating device markups,
such as WML, HDML, and XHTML.

If your candidate framework does not provide a tag library for the needed
markup language, then you should think about developing a new tag library.
Developing a tag library is a non-trivial task and hence, should be
considered only when other options are not available.

EJB Best Practices 273

17_576828 ch11.qxd 11/3/04 11:42 AM Page 273

■■ Standards support. View technology leveraged by these Web applica-
tion frameworks should be standards-based simply because you do not
want to trade innovation from the wider JCP community for innovation
from your specific Web application framework community. Although,
all the Web application frameworks are based on standards, watch out
for those proprietary hooks.

■■ Learning curve and availability of expertise. If you are planning on
using your existing staff for application development, then you should
consider the learning curve required for them in order to efficiently
develop using the candidate Web application framework. Make sure
that proper help and documentation is available for the candidate
framework, regardless of whether it is open or closed sourced, to speed
up the learning. On the other hand, if you are planning to hire new peo-
ple for your project, then select a framework that is popular and widely
used so that finding the right talent is possible.

■■ Open source versus closed source. At the end of the day, if most of
your requirements in the areas mentioned previously are met by a
given application framework, we’d like to say it does not matter
whether it is closed source or open source. However, in the real world,
both cost and a sense of control over your own destiny are important
concerns. We have witnessed quite a few projects where open source
Web application frameworks were chosen because they were “good
enough” and were “free.” In some other projects, open source Web
application frameworks were chosen simply because their source was
made available for tweaking; whereas in a select few cases, customers
went for closed-source application frameworks from vendors because
of a well-defined product support model.

Whatever your reasons might be for choosing an open or closed source
Web application framework, we recommend that you select a frame-
work that meets most of the criteria given in this section.

A very interesting project named Wafer (www.waferproject.org) is under
way. Wafer aims at comparing some of the popular Web application
frameworks using a common application. The criteria for comparison
include support for localization, form validation, documentation, error
handling, tools, integration with other technologies, small devices, and so
on. At the time of writing, Wafer was evaluating only open source Web
application frameworks.

274 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 274

Applying Model Driven Development
in EJB Projects

Middle Driven Development (MDD) is becoming more and more popular
within the developer community lately because of its promise of increased
productivity over the traditional code-centric development approach. MDD is
a development methodology wherein a model is at the core of development. In
this context, model typically represents an entity in the problem domain and
applicable business logic that needs to be performed on this domain entity. For
example, in a typical order processing system, a customer model will represent
appropriate data attributes and business operations applicable to a customer
entity. Thus, if such an order processing system is developed using the MDD
paradigm, a given MDD tool will take the customer model as input and gen-
erate application code from it, thereby establishing a close link between the
model and its system implementation.

Here is an obvious question: “What is the difference between the modeling
tools such as Together or Rational Rose and MDD tools?” After all, model-
ing tools have been generating skeleton implementation code from models for
years.

Well, the difference is in how far the tool can take you with a model. Any
modeling tool these days can generate Java classes from a corresponding UML
class diagram. However, is that enough? No. Because even after the tool gen-
erates a Java class, we are still required to write code for utilizing persistence,
security, logging, transactions, and other such services of the underlying
EJB/JDO/JDBC/XYZ framework. Similarly, we still need to write code for
accessing other services, implemented as POJO, EJB, or Web services, from our
Java class.

On the other hand, an MDD tool will generate most of these relevant arti-
facts from a given model and also potentially adhere to the industry best prac-
tices of the underlying platform, say Java, J2EE, or .NET. Thus, MDD tools
translate the domain model to code not just based on technical specifications,
but also based on best practices and design patterns. For example, application
code generated by Compuware OptimalJ or open source AndroMDA MDD
tools can implement the core J2EE design patterns, such as Command, DAO,
and so on, with discretion from the architect, of course. Thus, MDD tools are
capable of generating highly functional and quality code.

Evidently tools play a crucial role in the MDD paradigm. We believe that a
natural evolution for modeling tools today would be toward supporting
MDD. Now, MDD tools can be categorized as follows:

EJB Best Practices 275

17_576828 ch11.qxd 11/3/04 11:42 AM Page 275

■■ Tools that follow standards. Tools such as Compuware OptimalJ, Infer-
Data Model Component Compiler (MCC), Interactive Objects ArcStyler,
and open source tools, such as AndroMDA and OpenMDX, and so on,
support Model Driven Architecture (MDA), an OMG vendor-neutral
standard of building platform-independent models for consumption by
MDD tools. MDA makes extensive use of UML and XMI (XML Meta-
Data Interchange) to achieve its goal of platform independence.

■■ Tools that do not follow standards. Tools such as IBM Rational Rapid
Developer (RRD) do not support any specific standard for MDD, but
rather follow their own paradigm. For example, RRD is based on pro-
prietary MDD methodology named Architectured Rapid Application
Development (ARAD).

Here are some suggestions for those considering MDD for EJB projects:

■■ Begin with a proof of concept. Start with developing a small applica-
tion using both traditional code-centric and MDD approaches to verify
whether MDD does in fact bring productivity gains to your team. Also
in our opinion, it is easier to apply the MDD approach to new applica-
tion development than to existing application development or mainte-
nance. This is because, at present not many tools provide a sound
strategy for migrating existing applications developed using a code-
centric approach to MDD.

■■ Consider using standards-based tools. Using tools that follow stan-
dards, such as MDA, protects you from vendor lock-in. A healthy
ecosystem of tools around a given standard enables migration of plat-
form-independent domain models from one tool to another in future.

■■ Consider MDD tool integration with an existing infrastructure.
Consider how well your candidate MDD tool integrates with the exist-
ing platform infrastructure products used in your shop. For instance, if
using JBoss, an obvious question should be whether MDD would gen-
erate packaging and deployment artifacts specific to JBoss.

Similarly, not all MDD tools (for example, OpenMDX) provide model-
ing facilities. As a result, you will have to make sure that the MDD tool
you choose integrates with your existing modeling tool.

■■ Leverage existing research. The Middleware Company has done exten-
sive research on MDD methodology and published reports comparing
traditional code-centric application development with MDD. They have
also compared two prevalent MDD tools—OptimalJ and RRD—in
terms of how they support MDD. Our suggestion is to leverage this
research in your decision-making. These reports are available for free at
middlewareresearch.com/endeavors/031126MDDCOMP/endeavor.jsp.

276 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 276

Applying Extreme Programming in EJB Projects

Extreme Programming (XP) is a software engineering discipline whose core
practices revolve around an underlying assumption: Change in requirements
and hence software design will inevitably occur during the course of software
development. As almost all software development methodology pundits
agree, XP’s underlying assumption is not far from reality. After all, how many
projects have you worked on where the design was frozen before writing a
single line of code so that it never had to change? None.

This pragmatic approach that XP takes makes it extremely alluring to archi-
tects and development team leaders. There are almost a dozen practices
defined by the original thinker of XP, Kent Beck. However, we do not think
that you need to understand and implement all of them in your EJB projects as
long as you follow a couple of core practices strictly.

One of the great advantages of using XP is the availability of a wide variety
of tools that can be used for functions ranging from unit testing XP code to
managing XP projects to continually integrating components developed
using XP methodology. Even better, most of these tools are highly
functional, time tested, and open source.

In our opinion, here is how the core principles of XP should be followed in
EJB projects:

■■ Iterative development. In iterative development, the development
team is given a certain target to meet per iteration. These iterations can
last one week, two weeks, or more; whatever seems reasonable to code
your requirements. Each such successful iteration will lead the system
toward its final form. You will need to divide your EJB projects into
such iterations. What has worked very well for us in the past is subdi-
viding a given iteration into three subphases.

■■ EJB subphase. This is when we develop, build, and deploy the EJB—
session beans, message-driven beans, or entity beans—on development
systems.

■■ Testing subphase. This is when we build the unit test clients that fol-
low simple test cases such as checking the getters/setters, mocking the
calls to beans, checking whether the data in the database gets
added/updated/deleted properly. Various strategies for unit testing
EJB are discussed in the best practice section titled “How to Test EJB.”

■■ User subphase. In this phase, we present the work we have done in the
given iteration to the actual users. These users might be people from
other business units who in turn will be using your application, or from
your customer. The clients define various acceptance tests that they

EJB Best Practices 277

17_576828 ch11.qxd 11/3/04 11:42 AM Page 277

would use in this subphase to make sure that their requirements,
defined during the iteration planning, are met.

An important factor for the success of iterative development is setting
and meeting deadlines. To meet deadlines, you should refrain from
adding new functionality in the middle of the iteration. The idea is to
keep your iterations short and yet meaningful.

■■ Continuous integration. Continuous integration is about keeping vari-
ous application components in sync with each other so that the system
is fully integrated most of the time. The motivation behind this practice
is to avoid integration nightmares, which usually arise when you take a
piecemeal approach to application development and do not stop to
check that various pieces work with each other. Frequently checking
that the different parts of application fit nicely leads to fewer surprises
during the testing subphase. Continuous integration is achieved by typ-
ically building the system at least once a day; however, the exact period
between consequent builds will mostly depend on how long your itera-
tion is. But the idea is not to defer integration of application compo-
nents until last moment.

■■ Refactoring. Refactoring is a process of continuously improving the
design of existing code without affecting the code behavior. Refactoring
usually involves the restructuring of code so as to remove the redundant
code, reduce coupling in the code, introduce better naming conventions
in the code, or organize the code more cohesively and consistently.

An example of a good refactoring candidate would be an EJB application
where one EJB, say SavingsBean, has a method named calculateInterest()
that accepts parameters in this order: accountId and interestRate. While
another EJB, say MortgageBean, has a method named calculateMortgage()
that accepts parameters in this order: interestRate and accountId. Here, one
of the bean methods takes the accountId parameter first; whereas the
other bean method takes interestRate first. This is a clear example of
inconsistency in code design and hence, a good candidate for refactoring.

Thus, each cycle of refactoring transforms your code into a more evolved
structure. A good practice to follow is to keep the changes during refac-
toring small and have multiple refactoring cycles. Each refactoring cycle
should be followed with continuous integration and then testing to
ensure that your code evolution has not introduced any new bugs.

Martin Fowler’s book Refactoring: Improving the Design of Existing Code
(ISBN: 0201485672) is a good resource in that it discusses various tech-
niques for code refactoring such that the underlying behavior is
retained. Also http://industriallogic.com/xp/refactoring/catalog.html
maintains a catalog of patterns to be used during code design to

278 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 278

achieve maximum refactoring. Most of the J2EE/EJB IDEs these days
support refactoring transformations of code. Some tools such as Eclipse
also enable you to preview the changes resulting from a refactoring
action before actually carrying them out. They also can let you know
the potential problems refactoring might lead to in the functioning of
your code.

■■ Test-driven development. XP focuses largely on testing and thereby
requires obtaining feedback from customers at various logical points
(end of iteration cycles) in the development life cycle. Also XP style test-
driven development encourages doing a lot of unit testing of new or
modified code. A typical XP project will maintain a set of unit test cases
that a developer will run whenever new or modified code is released.
Quite a lot of emphasis is put on the automation of these tests to make
XP even more efficient. We talk about EJB testing best practices in the
next section.

XP development, thus, is lightweight and flexible as compared to more for-
mal development methodologies such as Rational Unified Process or even
some of the obsolete development models such as the waterfall model. We
think that applying XP to your EJB projects can provide good benefits regard-
less of the project complexity given that core principles of XP are followed
strictly.

Testing EJB

Of the three types of testing—code testing, regression and functional testing,
and load testing—we will focus on the techniques for code testing using unit
tests because that is an area where you can automate a lot and thereby make
code testing easier and more efficient. Code testing is about ensuring that the
given code behaves the way a developer intended it to behave; a code unit test
is a piece of code that checks the behavior of the target code. Whereas code
unit testing leads to acceptance of a piece of code, functional unit testing leads
to acceptance of a subsystem of application. The quality assurance team does
functional testing at the use-case level, and it is often composed of customers.

EJB Unit Testing
You can write code unit tests for your EJB to see if your beans are doing the
right things. For example a code unit test for a BMP account entity bean can
determine whether the bean’s ejbCreate() method is inserting the account data
in the database properly. Similarly, a code unit test for a mortgage session bean
might check whether its calculateMortgage() method is calculating the mort-
gage payment right. Thus, a code unit test is always about testing the piece of

EJB Best Practices 279

17_576828 ch11.qxd 11/3/04 11:42 AM Page 279

code and its localized behavior. Another important reason to unit test your EJB
code is that it helps you catch the inconsistencies and difficulties in using the
EJB interfaces early on.

The tricky thing about unit testing EJB code is that it cannot be tested as you
would test a plain Java class. An EJB composed of three Java classes has to be
tested in a holistic manner; for example, you have to deploy the EJB first and
then write a client that can talk to the EJB. This means that our unit tests must
encompass deployment and probably redeployment of EJB. The good news is
that we can automate deployment. Another consideration while creating EJB
code unit tests is about whether to use a test client that sits within the container
versus outside the container. Also testing EJB as a standalone component
might not make much sense in certain scenarios. For example, consider a
design in which a stateless session bean is acting as a façade to other session
beans and entity beans. In that case, you should also deploy these other beans
in order to unit test the façade stateless session beans. Similarly for entity
beans that have relationships with other entity beans, you have to ready all the
relationship beans to unit test the original entity bean.

You will need to deploy and redeploy various beans during the testing
process. Deploying EJB is a tedious step; it requires a lot of parameters to be
specified. Hence, it is best to automate the deployment process for your beans.
Pretty much all EJB servers provide command line tools for deploying EJB.
You can use these tools in combination with Ant scripts to automate the
deployment. You can also automate redeployment as a two-step process:
undeploy the existing EJB and deploy the newer version again.

Use Frameworks for EJB Unit Testing
Using a framework will greatly help reduce the effort involved in unit testing.
Let us see some of the commonly used frameworks for EJB unit testing.

The JUnit Framework

For instance, a unit test framework such as JUnit will make it easier to create
unit tests by extending unit test cases from the framework base classes. JUnit
also provides the facility to create a test suite made up of tests that you want to
run. Hence, you can combine several unit tests in a test suite to enable regres-
sion testing. Graphical test runners based on Swing are made available by
JUnit. Test runners are responsible for running JUnit tests and collecting, sum-
marizing, and formatting their results.

JUnit also integrates with Ant so that you can run various tests as part of the
build process. For this you will have to insert the <junit> Ant task in the Ant
script. The <junit> Ant task can also create a file consisting of the status of each
test. This integration with Ant is very useful because you can bundle not just
the test cases but also the configuration needed to run them as part of your Ant

280 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 280

scripts. Another benefit of using JUnit and Ant together is that it enables the
generation of HTML test reports by using the <junitreport> task. This task uses
XSLT technology to transform XML test results to HTML.

JUnit is a widely adopted framework with great support tools. It integrates
with IDEs such as Eclipse, Netbeans, Oracle JDeveloper, IntelliJ IDEA, Borland
JBuilder, and so on. Also, several modeling tools such as Borland TogetherJ
support the generation of test cases based on JUnit framework.

Another test framework of interest could be Apache Cactus. Cactus is an
extension of JUnit and it specifically caters to testing enterprise Java applica-
tions. You can unit test EJB using classic JUnit framework itself; however, you
should use Cactus if your EJB clients also run in a J2EE environment, as is the
case when servlets or JSP use your beans. This is a requirement for more than
half of the EJB applications and Cactus comes in handy for testing such appli-
cations because it unit tests these client J2EE components as well, apart from
EJB. With Cactus you get an end-to-end framework for unit testing EJB appli-
cations with a Web front end. Cactus allows for writing three types of test case
classes based on the ServletTestCase, JspTestCase, and FilterTestCase classes also
known as redirectors. Hence, your test case classes will extend any one of
these, depending on which client model you use, and get a home reference to
your EJB, create an instance, call the method on it, and assert the test results.

Like the <junit> Ant task, the <cactus> Ant task provides Cactus integration
with Ant. In fact, <cactus> extends the <junit> task to enable in-container test-
ing. It deploys the WAR/EAR file containing Cactus classes and related
deployment information into the target container, starts the container if it is
not started, and runs the Cactus tests. It supports most of the Web and EJB con-
tainers including Apache Tomcat, JBoss, Orion, Resin, WebLogic. Also if your
container is not supported explicitly by Cactus, then you can use a generic
Cactus container, which lets you specify Ant targets to be executed to start up
and shut down your container.

Mock Object Frameworks

Using Mock objects could be another approach to unit testing EJB. A mock is a
dummy placeholder object instead of a real object such that

■■ It acts as a false implementation of an interface or a class mimicking the
external behavior of their true implementation.

■■ It observes how other objects interact with its methods and compares
this with preset expectations. If a discrepancy occurs, the mock object
interrupts the test and reports about it.

Expectations, a terminology often used in the mock object world, consist of a
set of conditions that we want our code to meet. For example, we might expect
our code to close a database connection after using it. A mock object can be told

EJB Best Practices 281

17_576828 ch11.qxd 11/3/04 11:42 AM Page 281

to expect conditions such as these so that it can let us know when our expecta-
tions are not met.

You should use mock objects when unit testing complex logic that has
dependencies on other objects and you want to test the interaction among
these objects. The mock object will show you whether the tested code calls the
right methods on the mocked object with the correct parameters. There are a
number of mock object based unit testing frameworks such as MockObjects.
There are also quite a few mock object code generation utilities such as Mock-
Maker and MockDoclet. Both these code generation tools rely on the doclet
tags embedded within the Javadocs of the class being mocked, which are
referred to as target objects. These doclet tags are read during the preprocessing
in order to generate mocks. It is a good idea to use mock object code genera-
tion utilities when the target object has a frequently changing API. Another
genre of mock object code generation consists of utilities such as EasyMock
and jMock (previously Dynamocks). Both of them use the dynamic proxy
approach to generate mock objects. Hence, you can generate mock objects only
for target objects that implement interfaces using these utilities unless you
apply patches to enable mock object code generation for target objects that
do not implement interfaces. Hence, mocking objects is a good solution to
unit testing although it cannot and should not be used for integration tests
since during integration tests you are supposed to test your entire application
end to end.

Thus, by using such frameworks developers can test their EJB code and
make design changes, if necessary, before the code moves to QA.

Implementing Client-Side Callback
Functionality in EJB

Imagine a scenario wherein an EJB has to place a callback to the client. How
would you implement this scenario? There is no provision for implementing
client-side callback in the EJB standard. As a result, developers find them-
selves in a tough spot when faced with this requirement. The three viable
strategies for implementing client-side callbacks in EJB are presented in the
following sections. Note that all these strategies have their own pros and cons
and should be applied under specific situations.

JMS
In this strategy, the client uses JMS temporary destinations (queue or topic,
depending on your need) to receive callback notifications from EJB server

282 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 282

components. The reason we want to a use temporary JMS destination for each
client is because we do not want multiple clients popping messages from the
same JMS destination; we want EJB server components to have unique ReplyTo
addresses for all our clients.

Before calling a given method on EJB, the client will create a temporary JMS
destination from which it will later receive messages. The client passes the
JNDI name of the temporary JMS destination to the bean during the method
call. The client starts listening, on a separate thread, to the temporary destina-
tion that it created earlier. On the EJB side, the bean will send a JMS message
when it needs to call back the client. The client JMS listener receives the mes-
sage and notifies the application upon receipt. Finally, the client deletes the
temporary destination and closes the JMS connection.

As far as we know, this is the simplest way to achieve client-side callback
functionality in EJB today. However, creating a temporary destination for each
client does consume resources. You should do enough load testing to ensure
that this model scales up to your needs.

Remote Method Invocation
This strategy is particularly useful with application clients. The idea here is to
create RMI remote object on the client side that implements the java.rmi.Remote
interface and registers it with the EJB. After registering this remote object, the
client can continue doing its work, until the server calls a method on the regis-
tered RMI Remote object.

Implementing this strategy is fairly straightforward. You will need to pro-
vide the callback object stubs to the EJB.

Web Service
This strategy is useful in order to make callbacks happen across the firewalls or
when the client is a J2EE Web application. Here, the client implements a JAX-
RPC service endpoint to which the EJB will send a SOAP message in case of a
callback. The bean will use Dynamic Invocation Interface (DII) to keep the call-
back Web Service client code generic. On the client side, you can use either a
document model or RPC model for implementing such a callback Web Service.

One of the major drawbacks associated with this strategy is the lack of reliabil-
ity. The SOAP message sent by the bean might never reach the client-side callback
Web Service, because SOAP over HTTP is inherently unreliable and the industry
is still working toward defining the semantics of reliable SOAP over HTTP. We
will eventually get there once OASIS finalizes the Web Services Reliable Messag-
ing standard (oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm).

EJB Best Practices 283

17_576828 ch11.qxd 11/3/04 11:42 AM Page 283

Choosing Between Servlets and Stateless
Session Beans as Service Endpoints

J2EE Web services are based on three main technologies: JAX-RPC, servlet, and
stateless session beans. As you know by now, a J2EE Web Service endpoint can
be implemented either as a stateless session bean or as a servlet. So then, which
component model should you use for your Web Services? A servlet or stateless
session bean? Here are some guidelines that should help you in choosing
between the two.

Use a servlet as Web Service endpoint if:

■■ The business logic of the service is within a Web tier, because in this
case the endpoint and Web Service’s business implementation will
reside in the same tier.

■■ You need a lightweight Web Service container viz. servlet container.

■■ You need to execute some logic that resides on the Web tier before
invoking Web Services.

■■ You do not mind writing logic for synchronizing multithreaded access
to your service. This is required since the servlet container does not
synchronize concurrent requests to the servlet instance and hence, in
this case, to your Web Service endpoint.

Use a stateless session bean as Web Service endpoint if:

■■ The business logic of the service is within an EJB tier, because in this
case both the endpoint and the Web Service’s business implementation
will reside in the same tier.

■■ You need the Web Service implementation to avail the transaction and
component-level security services from the container.

■■ Before invoking Web Services, you need to execute some logic that
resides on the EJB tier.

■■ You want the container to take care of synchronizing concurrent access
to your service.

Considering the Use of Aspect-Oriented
Programming Techniques in EJB Projects

There has been a lot of discussion lately about using aspect-oriented program-
ming or AOP with EJB. Here are some of the concepts that are worth under-
standing about AOP before we continue our discussion on when you should
use AOP in EJB projects.

284 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 284

Aspect-Oriented Programming
AOP techniques are not new. They have been around for close to a decade; in
fact, Microsoft Transaction Server is one of the early implementations that
employed AOP techniques followed by EJB servers.

So what is AOP? Obviously, aspect forms the core of AOP. Aspects are reusable
services that are quintessentially crosscutting to your application. In the context
of a business application, services that provide user authentication, user
authorization, logging of access to the system, and persistence of application
data are examples of crosscutting services or concerns for a business applica-
tion developer—concerns because a developer cannot write robust applications
without taking care of them. Hence, AOP can be defined as a programming
platform that facilitates the development of aspects to mitigate concerns so that
aspects can be reused by all the living objects within a given environment. Note
the emphasis placed on reuse here.

With this in mind, come back to the EJB world and think about whether it
uses AOP techniques or not—of course it does. All the services that our beans
get are aspects; for example, persistence, life cycle management, transaction
management, security, and dozens of other things are concerns that we, the
business application developers, care about. EJB containers implement these
crosscutting concerns and provide reusable aspects so that all the beans
deployed within the container can offload these concerns on the container
aspects. So yes, it is very much an aspects-oriented implementation.

However, here is the caveat: The EJB programming model does not allow
you to develop new aspects to take care of concerns that are not supported by
the EJB container, not today at least. Therefore EJB, and J2EE for that matter, is
not an AOP platform even though EJB technology uses AOP techniques.

When to Use AOP in EJB Applications
In order to use AOP in EJB, you will need to use tools such as AspectJ, Spring
AOP, or tools provided by your application server. Quite a few application
server vendors such as JBoss Group and IBM already support or have declared
the intent to support AOP in their products. The only thing you have to be
wary of when going the AOP route is that standard Java platform does not
provide inherent support in terms of APIs and compilers for AOP, and that
you are embedding AOP in your application at the risk of losing portability.

We present some of the scenarios here to consider use of AOP with EJB.

Support Custom Concerns

The EJB container does provide implementation of some of the very common
infrastructure concerns such as transaction management, security, persistence,
and so on. However, EJB designers have kept the implementation of these

EJB Best Practices 285

17_576828 ch11.qxd 11/3/04 11:42 AM Page 285

aspects transparent to the EJB developers. Meaning, developers cannot
customize the behavior of aspects beyond what deployment descriptor con-
figuration parameters allow nor can they create new aspects using EJB pro-
gramming model. As a result, if you want to support a concern that is
crosscutting across your application components but is not provided by the
EJB container, then you need more than EJB can provide, and should use AOP
for developing aspects to address your concerns.

Supply Aspects to the World Outside the EJB Container

Almost all of us have worked in EJB projects where we had to use POJOs in
order to get around constraints imposed by the EJB standard—for example, to
do things like access file systems or read/write static fields. We might also end
up reusing these POJOs outside the EJB container, for example, in a Web appli-
cation or a Swing application. In this scenario, it might be better to write
reusable aspects to address concerns relevant to your POJOs. For example,
consider a POJO that reads and writes to a file. Here you might need to log the
timestamp of the last updating of the file. In which case, you would create an
aspect to address the logging concern. This way you can use the Logging
aspect no matter whether your POJO is being used within an EJB container or
within a Web container or in a vanilla Java Swing application.

286 Chapter 11

IS AOP DIFFERENT THAN OOP?

We see this question many times and the simple answer to it is—yes. One of
the common traits of both OOP and AOP platforms is their support for
reusability. However, OOP instills reusability via inheritance. This means that in
order to reuse the behavior encapsulated in an object, say A, some object B will
have to inherit A. Inheritance is the key word here. B is able to reuse A’s
behavior only if it expects to build a long-lasting relationship with A, such as a
parent-child relationship. This works well if B does not mind A’s sub-imposed
behavior as a side effect of reuse and direct effect of inheritance.

However, OOP does not work when behavior needs to be reused
horizontally, owing to the behavior’s crosscutting nature. Now why would you
need to reuse behavior horizontally? Because you do not want your business
object, for example a ShoppingCart, to inherit the behavior pertaining to
transactions, since these behaviors are unrelated; you do not want an apple to
inherit grape-like qualities; rather you want to mix apples and grapes to
prepare a margarita drink. This is where AOP comes into picture.

AOP and OOP are not competing but complementary technologies. Consider,
for example, an EJB server where crosscutting aspects are provided to your
object-oriented beans. In conclusion, OOP and AOP co-exist.

17_576828 ch11.qxd 11/3/04 11:42 AM Page 286

A word of caution: Do not use aspects for the sake of it. Especially, do not
replace EJB services with your aspects, unless you are sure of what you are
doing. After all, EJB vendors have pre-written these aspects to keep you out
of implementing them mainly because implementing them is a humungous
task. And finally, do not think that AOP is going to replace OOP!

Reflection, Dynamic Proxy, and EJB

When you call EJB, you write code that essentially takes the binding informa-
tion of the EJB home object in JNDI, gets the home object, creates an EJB object,
and finally invokes methods on an EJB object. This style of invocation is usu-
ally referred to as static invocation where the information about the interface
and methods to invoke on its object are known at the compile time. Although
there are advantages to other styles of invocation models, such as dynamic
proxy and dynamic invocation interface (DII), EJB programming APIs support
only static invocation.

In the dynamic proxy approach, a proxy class implements a list of interfaces
specified by the client at runtime. Hence, this approach provides a type-safe
invocation on interfaces wherein proxy is generated dynamically during
runtime rather than at compile time. Any method invocation on an instance of
a dynamic proxy object, for example, the java.lang.reflect.Proxy object, is dis-
patched to a single method, invoke(), in the instance’s invocation handler
object; invoke() accepts method information via the java.lang.reflect.Method
object as well as method arguments via an object array. Dynamic proxy invo-
cation is slightly different than reflective invocation in that the former pro-
vides a generic API for implementing methods of a class manufactured at
runtime; whereas the latter provides a generic API for dynamic invocation of
already implemented methods. Combining dynamic proxies with reflective
invocation leads to a powerful generic object that is capable of intercepting
methods from the clients on any server object.

Hence, you may want to use dynamic proxies for EJB method invocation in
order to:

■■ Dynamically invoke methods on EJB in scenarios where the client does
not have a priori knowledge of interfaces implemented by EJB.

■■ Write interceptors that can provide additional services during invoca-
tion such as security services, logging services, and so on.

EJB Best Practices 287

17_576828 ch11.qxd 11/3/04 11:42 AM Page 287

Before making a decision to invoke your EJB using dynamic proxies, always
remember that reflective invocation is slower than direct method invocation
even with all the reflection-oriented performance enhancements in JDK 1.4.
Besides this, debugging dynamic proxy stack trace is generally trickier than
static invocation stack.

Deploying EJB Applications to Various
Application Servers

Deploying EJB applications can be trickier than you think especially when you
are trying to package EJB applications to be deployed on multiple application
servers. Multiple application server deployment is a common requirement for
commercial applications written using the EJB framework. In spite of the stan-
dardization of most of the EJB application metadata in the form of deployment
descriptors, a lot of deployment information still remains in application server
specific deployment descriptors. A good example of this is the metadata for
mapping CMP data attributes to database schema, which is normally kept in a
deployment descriptor specific to the target application server.

288 Chapter 11

ATTRIBUTE-ORIENTED PROGRAMMING

Attribute-oriented programming is a technique that revolves around the notion
of using attributes aka metadata aka annotations within the source to instruct
the underlying framework to perform a certain action upon encountering an
attribute while parsing the source. This “action” might be about generating
programming artifacts—for example, skeleton code for EJB home, remote and
bean classes—or might be about providing crosscutting functionality—for
example, security or logging—at a certain juncture in the source.

Two interesting JSR efforts in this area are JSR 175 and JSR 181. JSR 175
defines the Java programming language syntax for supplying metadata
information for classes, interfaces, methods, and fields, as well as an API that
can be used by tools and libraries to access the metadata information within
the source and act on it. JSR 181 defines metadata/annotations that can be
used to simplify development of Java Web Services.

EJB 3.0 (for J2EE 1.5 platform) is planning on using metadata to greatly
simplify the EJB development and deployment kind of similar to the way the
JBoss IDE uses XDoclet today for generating EJB code from a single source.

17_576828 ch11.qxd 11/3/04 11:42 AM Page 288

Thus, in situations where you are required to automate deployment of your
EJB applications on multiple application servers, your obvious choice should
be to use the open source XDoclet framework. XDoclet is a powerful, attribute-
oriented, open source code generation engine. Using XDoclet, a developer can
generate practically anything—XML descriptors, such as deployment descrip-
tors, source code and so on—by inserting attributes (metadata) within the
JavaDoc for their source. For instance, while generating code for EJB, it can
generate code for value classes, primary key classes, a struts action form based
on Entity EJB, and home and remote interfaces. Finally, when the XDoclet
engine parses the source file it generates the code necessary for supporting the
semantics of attributes. Note that apart from generating code for standard
frameworks such as EJB, Servlet, JDO and others, XDoclet is also capable of
generating code for non-standard but popular frameworks such as Hibernate,
Castor, and Struts.

EJB Best Practices 289

THE J2EE DEPLOYMENT API

The J2EE Deployment API (JSR-88) aims to address the problem of J2EE
application deployment on multiple J2EE application servers rather
interestingly. It defines an API, and the deployment of the API, which should be
implemented by all application servers so that tools can use this API to send
J2EE application deployment and undeployment requests to the application
server. The Deployment API standard is part of J2EE 1.4 platform. Therefore, all
J2EE 1.4 application servers will have to implement such a Deployment service.

This facility provides the utmost benefit to tools vendors. Tool vendors would
not have to write proprietary plug-ins for automating deployment tasks for
application servers they support. This will increase productivity and lessen
product development cost for tools vendors. It benefits the application
developers as well. They no longer have to worry about their IDE’s integration
with their application server. They can take it for granted.

So then does the J2EE Deployment API eliminate the need for XDoclet-like
frameworks? Not, exactly. If you are in the business of selling packaged
applications, your setup application has to be able to deploy J2EE components
to the customer’s application server naturally without using tools. In this case
you have two options: either build your own client that uses J2EE deployment
service of your customer’s application server, or simply use XDoclet. Obviously
using XDoclet and the like in such scenarios will provide an easier solution for
automated deployment than using the J2EE Deployment API will, simply
because the former comes in handy; whereas you will have to write a client for
the latter.

17_576828 ch11.qxd 11/3/04 11:42 AM Page 289

XDoclet can generate server-specific deployment descriptors, apart from
standard deployment descriptors (ejb-jar.xml), for all major application
servers including JBoss, IBM WebSphere, BEA WebLogic, Sun Java System
Application Server, Pramati, etc., with the help of their respective attributes.
For example, @jboss.persistence datasource java:comp/env/jdbc/employeeDB
specifies the JNDI name used to look up the data source. Also, integration of
XDoclet with Ant through ejbdoclet tasks makes it an even more powerful
framework for deployments.

Debugging EJB

As EJB technology is evolving quickly, the containers are evolving as well. The
containers or their tools often have small oddities. In addition, users may
introduce bugs that are difficult to debug. How do you debug with EJB?

Unfortunately, true debugging is a problem with EJB. Because your beans
run under the hood of a container, you’d have to load the container itself into a
debugger. But for some containers, this is impossible because you don’t have
access to the container’s source code, or the source code has been obfuscated.
For these situations, you may need to use the tried-and-true debugging method
of logging.

An even more serious debugging problem occurs if exceptions are being
thrown from the EJB container, rather than from your beans. This can happen
for a number of reasons:

■■ Your EJB container’s generated classes are incorrect, because your
interfaces, classes, or deployment descriptor haven’t fully complied
with the EJB specification. Your EJB container’s tools should ship with
compliance checkers to help resolve this. But know that not everything
can be checked. Often because of user error, your deployment descrip-
tor will not match your interfaces. This type of problem is extremely
difficult to target, especially if your container tools crash!

■■ Your EJB container has a real bug. This is a definite possibility that you
must be prepared to encounter. In the future, however, this should not
happen very often because EJB containers that comply with J2EE must
test their implementations against the Sun Microsystems J2EE Compati-
bility Toolkit (J2EE TCK).

■■ A user error occurs within the EJB container. Probably the most frus-
trating part of an application is doing the database work. Punctuation
errors or misspellings are tough to debug when performing JDBC. This
is because your JDBC queries are not compiled—they are interpreted at
runtime, so you don’t get the nifty things like type checking that the
Java language gives you. You are basically at the mercy of the JDBC dri-
ver. It may or may not give you useful error description. For example,

290 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 290

let’s say that you’re modeling a product, and you use the word desc
rather than description to describe your products. Unfortunately, the
keyword desc is a SQL reserved keyword. This means that your JDBC
driver would throw an exception when trying to execute any database
updates that involved the word desc. These exceptions might be cryptic
at best, depending on your JDBC driver. And when you try to figure
out why JDBC code is acting up, you will run into a roadblock: With
container-managed persistence, the JDBC code won’t be available
because your bean does not perform its own data access! What do you
do in this situation?

When you’re faced with grim situations like these, contacting your EJB
vendor is probably not going to be very helpful. If you are operating with a
deadline, it may be too late by the time your vendor comes up with a solution.
If you could only somehow get access to the JDBC code, you could try the
query yourself using the database’s tools.

You can try several options here:

■■ Some EJB containers support IDE debugging environments, allowing
you to step through your code in real time to pinpoint problems. This is
something you should look for when choosing a container.

■■ Check your database’s log file to view a snapshot of what is really hap-
pening. This is especially useful when you are using CMP.

■■ Use a JDBC driver wrapper that logs all SQL statements such as P6Spy
driver from Provision6, Inc.

■■ Your EJB container tools may have an option to keep generated Java files,
rather than to delete them when compiling them into classes. For exam-
ple, you can do this with BEA WebLogic with the keepgenerated option to
its EJB compiler tool. This is analogous to the way you can use the keep-
generated option to keep generated proxies with Java RMI’s rmic compiler.

■■ As a last resort, you may have to decompile the offending classes to see
what’s going on. A good decompiler is Jad by Pavel Kouznetsov (see the
book’s accompanying Web site wiley.com/compbooks/roman for a link).
Of course, decompiling may be illegal, depending on your container’s
license agreement.

Inheritance and Code Reuse in EJB

Our next best practice addresses the challenge of developing reusable compo-
nents. This may be important, for example, if you’re developing beans to be
reused by other business units within your organization or if you are shipping

EJB Best Practices 291

17_576828 ch11.qxd 11/3/04 11:42 AM Page 291

a product assembled as EJB components and your customers want to cus-
tomize your product. There can be many such situations.

First, let’s do a reality check—don’t believe anyone who tells you that enter-
prise beans are reusable by definition because that is not true, at least not today.
You need to design your beans correctly if you want them to be reusable. You
need to consider the different applications, domains, and users of your enter-
prise beans, and you need to develop your beans with as much flexibility as
possible. Developing a truly reusable set of beans will likely require many iter-
ations of feedback from customers using your beans in real-world situations.

Roughly speaking, bean reusability can fall into three different levels:

■■ Reuse as given. The application assembler uses the acquired bean as is
to build an application. The bean functionality cannot be tailored to fit
the application. Most projects will have a difficult time reusing these
components because of their inflexibility.

■■ Reuse by customization. The application assembler configures the
acquired bean by modifying the bean properties to fit the specific needs
of the application. Bean customization typically occurs during deploy-
ment time. To allow for a more flexible maintenance environment, some
bean providers allow runtime bean customization.

■■ Reuse by extension (subclass). This is the kind of reuse that is not pos-
sible, not in a straightforward way, in EJB simply because EJB does not
support component-level inheritance. By component-level inheritance,
we mean extending EJB component A to enable its reuse by another EJB
component B. This level of reusability is generally more powerful but
not available in EJB. Hence, you will have to use a technique to enable
reuse by extension of EJB components—put all the bean logic in a POJO
and make your bean class inherit this POJO. However, this hack does
not present a good solution for EJB reuse by extension in the case of
entity beans because it does not take into consideration complexities
around reuse of entity beans such as, what the relationship between the
primary keys of the two entities would look like when one entity inher-
its another. The good news is EJB 3.0 seems to address these issues
around entity reuse at the component level. Check out its early draft
specification at http://java.sun.com/products/ejb/docs.html.

The more reusability levels that a bean can provide, the more useful a bean
becomes. By leveraging pre-built beans, organizations can potentially lessen
the development time of building enterprise applications.

Many organizations have tried—and failed—to truly reuse components.
Because of this, it is a perfectly valid strategy to not attempt true reuse at all.
Rather, you can shoot for a copy-and-paste reuse strategy, which means to make
the source code for components available in a registry to other team members
or other teams. They can take your components’ code and change them as

292 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 292

necessary to fit their business problem. While this may not be true reuse, it still
offers some benefits. The Middleware Company offers a service to help orga-
nizations re-architect their applications in this manner.

Writing Singletons in EJB

A singleton is a very useful design pattern in software engineering. In a nutshell,
a singleton is a single instantiation of a class with one global point of access.
You would normally create a singleton in Java by using the static keyword
when defining a class. However, one restriction of EJB is that you cannot use
static fields in your beans. This precludes the use of the singleton design pat-
tern. But if you still have to use a singleton, then here are a couple of strategies:

■■ Limit the pool size. If your EJB product lets you finely tune the EJB bean
instance pool, then you can limit the size of the bean instances to 1, by
setting both the initial and maximum size to 1. This is not truly a single-
ton, although it simulates singleton behavior, because although the con-
tainer guarantees that at any given point in time there would only be one
instance of bean in the pool, it does not guarantee that it would always be
the same bean instance in the pool. The container might destroy the bean
instance if it remains inactive for a certain period of time.

■■ Use RMI-IIOP and JNDI. You can use JNDI to store arbitrary objects to
simulate the singleton pattern. If all your objects know of a single, well-
known place in a JNDI tree where a particular object is stored, they can
effectively treat the object as a single instance. You can perform this by
binding an RMI-IIOP stub to a JNDI tree. Any client code that accessed
the JNDI tree would get a copy of that remote stub, and each copy
would point back to the same RMI-IIOP server object. The downside to
this pattern is you are leaving the EJB sandbox and downgrading to
vanilla RMI-IIOP, and thus you lose all the services provided by EJB.

When to Use XML with EJB

XML is a popular buzzword these days, and so we should discuss the appropri-
ateness of XML in an EJB deployment. XML is useful in the following scenarios:

■■ For data-driven integration. If you have a large number of legacy sys-
tems, or even if you have one big hairy legacy system, you’ll need a
way to view the data that you send and receive from the legacy system.
XML can help you here. Rather than sending and receiving data in pro-
prietary structures that the legacy system might understand, you can
invent an XML façade to the legacy systems. The façade takes XML

EJB Best Practices 293

17_576828 ch11.qxd 11/3/04 11:42 AM Page 293

input from your EJB components and maps that XML to the proprietary
structures that the legacy system supports. When the legacy system
returns data to your EJB application, the XML façade transforms the
legacy data into XML data that your EJB application can understand.

■■ As a document persistence mechanism. If you are persisting large doc-
uments (news reports, articles, books, and so on), representing those
documents using XML may be appropriate. This will help to translate
the XML documents into various markups supported by client devices.

■■ As a Web Service interface. As described in Chapter 5, EJB components
can also be accessed as a Web Service, in which case XML becomes the
on-the-wire data format sent between Web Services.

The one important scenario that XML is not useful for is as an on-the-wire
format for communication between EJB components.

The idea is that rather than application components sending proprietary
data to each other, components could interoperate by passing XML documents
as parameters. Because the data is formatted in XML, each component could
inspect the XML document to determine what data it received.

Although several J2EE-based workflow solutions use this approach, XML is
often inappropriate for EJB-EJB communications because of performance.
Parsing XML documents takes time, and sending XML documents over the
wire takes even longer. For high-performance enterprise applications, using
XML at runtime for routine operations is costly. The performance barrier is
slowly becoming less important, however, as XML parsers become higher per-
forming and as people begin to use several techniques, such as XML compres-
sion, before sending XML documents over the wire. However, it still remains
the bottleneck in many systems.

Another important reason not to use XML is because it’s often simply not
needed. Assuming that a single organization writes all your EJB applications,
there is less need for data mapping between these various systems, since you
control the object model.

When to Use Messaging Versus RMI-IIOP

Another hot topic when designing an EJB object model is choosing when (and
when not) to use messaging, rather than RMI-IIOP.

The following advantages of messaging provide reasons why you might
want to use it:

■■ Database performance. If you are going to perform relational database
work, such as persisting an order to a database, it may be advantageous
to use messaging. Sending a message to a secondary message queue to
be processed later relieves stress on your primary database during peak
hours. In the wee hours of the morning, when site traffic is low, you can

294 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 294

process messages off the message queue and insert the orders into the
database. Note that this works only if the user doesn’t need immediate
confirmation that his operation was a success. It would not work, for
example, when checking the validity of a credit card.

■■ Quick responses. A client may not want to block and wait for a response
that it knows does not exist. For methods that return void, the only possi-
ble return values are nothing or an exception. If a client never expects to
receive an exception, why should it block for a response? Messaging
allows clients to process other items when they would otherwise be
blocking for the method to return.

■■ Smoother load balancing. In Chapter 9, we discuss how message-
driven beans distribute load more smoothly than session or entity beans
do. With session and entity beans, a load-balancing algorithm makes an
educated guess about which server is the least burdened. With messag-
ing, the server that is the least burdened will ask for a message and get
the message for processing. This also aids in upgrading your systems in
terms of capacity because all you need to do is detect when your queue
size reaches a threshold. When the queue size reaches threshold value, it
indicates that the number of consumers is not enough to meet the mes-
saging load and that you need to add new machines.

■■ Request prioritization. Asynchronous servers can queue, prioritize,
and process messages in a different order than they the in which they
arrive into the system. Some messaging systems allow message queues
to be prioritized to order messages based upon business rules. For
example, in a military battle tank, if all requests for the system sent to a
centralized dispatch queue are made asynchronously, disaster could
result if a fire control message was queued up behind 100 communica-
tion messages that had to be processed first. In a military system, it
would be advantageous to process any fire control and safety messages
before communication messages. A prioritized queue would allow for
the reordering of messages on the queue to account for the urgency of
fire control in a battle tank.

■■ Rapid integration of disparate systems. Many legacy systems are
based on message-oriented middleware and can easily interact with
your J2EE system through messaging. Messaging provides a rapid
development environment for systems that have distributed nodes that
perform business processing and must communicate with one another.

■■ Loosely coupled systems. Messaging enables loose coupling between
applications. Applications do not need to know about each other at
compile time. This empowers you to have dynamic consumption of appli-
cations and services, which may be useful in a rapidly changing, service-
oriented business environment.

EJB Best Practices 295

17_576828 ch11.qxd 11/3/04 11:42 AM Page 295

■■ Geographically disperse systems. Messaging is very useful when you
have applications communicating over the Internet or a wide-area net-
work. The network is slow and unreliable, and RMI-IIOP is not
intended for such broad-range communications. Messaging along
with guaranteed message delivery adds an element of safety to your
transactions.

■■ Parallel processing. Messaging is a way to perform pseudo-threading
in an EJB deployment. You can launch a series of messages and con-
tinue processing, which is the distributed equivalent of launching
threads.

■■ Reliability. Messaging can be used even if a server is down. System-
level problems (such as a database crashes) typically do not affect the
success of the operation, because when you’re using guaranteed message
delivery the message remains on the queue until the system-level prob-
lem is resolved. Even if the message queue fails, message producers can
spool messages and send them when the queue comes back up (called
store and forward). By combining guaranteed message delivery with
store-and-forward, the system will not lose any requests unless a
complete system failure happens at all tiers (extremely unlikely).

■■ Many-to-many communications. If you have several parties communi-
cating together, messaging is appropriate since it enables many produc-
ers and many consumers to collaborate, whereas RMI-IIOP is a
single-source, single-sink request model.

The following are scenarios in which you might not want to use messaging:

■■ When you’re not sure if the operation will succeed. RMI-IIOP systems
can throw exceptions, whereas message-driven beans cannot.

■■ When you need a return result. RMI-IIOP systems can return a result
immediately because the request is executed immediately. Not so for
messaging. You can return results eventually with messaging, but it’s
clunky—you need to send a separate return message and have the
original client listen for it.

■■ When you need an operation to be part of a larger transaction. When
you put a message onto a destination, the receiving message-driven
bean does not act upon that message until a future transaction. This is
inappropriate when you need the operation to be part of a single,
atomic transaction that involves other operations. For example, if
you’re performing a bank account transfer, it would be a bad idea to
deposit money into one bank account using RMI-IIOP and then with-
draw money using messaging, because the deposit and withdrawal
operations will not occur as part of a single transaction and hence, the
failure in the latter will not roll back the former.

296 Chapter 11

17_576828 ch11.qxd 11/3/04 11:42 AM Page 296

■■ When you need to propagate the client’s security identity to the
server. Since messaging does not propagate the client’s security identity
to the receiving message-driven bean, you cannot easily secure your
business operations.

■■ When you are concerned about request performance. Messaging is
inherently slower than RMI-IIOP because there’s a middleman (the
JMS destination) sitting between the sender and the receiver.

■■ When you want a strongly-typed, OO system. You send messages
using a messaging API such as JMS. This is a flat API and is not object-
oriented. If you want to perform different operations, the server needs
to crack open the message or filter it somehow. In comparison, RMI-
IIOP allows you to call different business methods depending on the
business operation you want to perform. This is much more intuitive.
It’s also easier to perform compile-time semantic checking.

■■ When you want a tighter, more straightforward system. Synchronous
development tends to be more straightforward than messaging is. You
have great freedom when sending data types, and the amount of code
you need to write is minimal compared to messaging. Debugging is
also much more straightforward. When using services that are com-
pletely synchronous, each client thread of control has a single execution
path that can be traced from the client to the server and vice versa. The
effort to trace any bugs in the system is thus minimal.

Summary

We covered so many best practices in this chapter—and we aren’t even half
done with best practices yet! We will talk about persistence best practices in
Chapter 16 and performance-related best practices and tuning tips in Chapter
18. Also, we have woven the discussion of best practices related to integration
to and from the EJB world in the next chapter. So there is a lot more to come.

EJB Best Practices 297

17_576828 ch11.qxd 11/3/04 11:42 AM Page 297

17_576828 ch11.qxd 11/3/04 11:42 AM Page 298

299

Many middleware services are needed for secure, scalable, and reliable server-
side development. This includes resource pooling services, security services,
remoting services, persistence services, and more.

A key service required for robust server-side development is transactions.
Transactions, when used properly, can make your mission-critical operations
run predictably in an enterprise environment. Transactions are an advanced
programming paradigm that enables you to write robust code. Transactions
are also very useful constructs when performing persistent operations such as
updates to a database.

In the past, transactions have been difficult to use because developers
needed to code directly to a transaction API. With EJB, you can gain the bene-
fits of transactions without writing any transaction code.

In this chapter, we’ll discuss some of the problems that transactions solve.
We’ll also discuss how transactions work and show how they’re used in EJB.
Because transactions are at the very core of EJB and are somewhat difficult to
understand, we’ll provide extensive background on the subject. To explain
transactions properly, we’ll occasionally get a bit theoretical. If the theory pre-
sented in this chapter piques your interest, many tomes written on transac-
tions are available for further reading. See the book’s accompanying Web site,
www.wiley.com/compbooks/roman, for links to more information.

Transactions

C H A P T E R

12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 299

Motivation for Transactions

We begin our discussion with a few motivational problems that transactions
address.

Atomic Operations
Imagine that you would like to perform multiple discrete operations yet have
them execute as one contiguous, large, atomic operation. Take the classic bank
account example. When you transfer money from one bank account to
another, you want to withdraw funds from one account and deposit those
funds into the other account. Ideally, both operations will succeed. But if an
error occurs, you would like both operations to always fail; otherwise, you’ll
have incorrect funds in one of the accounts. You never want one operation to
succeed and the other to fail, because both operations are part of a single
atomic transaction.

One simplistic way to handle this is to perform exception handling. You
could use exceptions to write a banking module to transfer funds from one
account to another, as in the following pseudo-code:

try {

// Withdraw funds from account 1

}

catch (Exception e) {

// If an error occurred, do not proceed.

return;

}

try {

// Otherwise, deposit funds into account 2

}

catch (Exception e) {

// If an error occurred, do not proceed,

// and redeposit the funds back into account 1.

return;

}

This code tries to withdraw funds from account 1. If a problem occurs, the
application exits and no permanent operations occur. Otherwise, we try to
deposit the funds into account 2. If a problem occurs here, we redeposit the
money back into account 1 and exit the application.

300 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 300

There are many problems with this approach:

■■ The code is bulky and unwieldy.

■■ We need to consider every possible problem that might occur at every
step and code error-handling routines to consider how to roll back our
changes.

■■ Error handling gets out of control if we perform more complex processes
than a simple withdrawal and deposit. It is easy to imagine, for example,
a 10-step process that updates several financial records. We’d need to
code error-handling routines for each step. In the case of a problem, we
need to code facilities to undo each operation. This gets tricky and error-
prone to write.

■■ Testing this code is yet another challenge. You would have to simulate
logical problems as well as failures at many different levels.

Ideally, we would like a way to perform both operations in a single, large,
atomic operation, with a guarantee that both operations, either always succeed
or always fail.

Network or Machine Failure
Let’s extend our classic bank account example and assume our bank account
logic is distributed across a multitier deployment. This may be necessary to
achieve necessary scalability, and modularization. In a multitier deployment,
any client code that wants to use our bank account application must do so
across the network via a remote method invocation (see Figure 12.1).

Figure 12.1 A distributed banking application.

Bank Logic
Implementation

Bank
Application
(with GUI)

Tier Boundary

Transactions 301

18_576828 ch12.qxd 11/3/04 11:43 AM Page 301

Distributing our application across the network introduces failure and reli-
ability concerns. For example, what happens if the network crashes during a
banking operation? Typically, an exception (such as a Java RMI RemoteExcep-
tion) is generated and thrown back to the client code—but this exception is
quite ambiguous. The network may have failed before money was withdrawn
from an account. It’s also possible that the network failed after we withdrew
the money. There’s no way to distinguish between these two cases—all the
client code sees is a network failure exception. Thus, we can never know for
sure how much money is in the bank account.

The network may not be the only source of problems. In dealing with bank
account data, we’re dealing with persistent information residing in a database.
It’s entirely possible that the database itself could crash. The machine on
which the database is deployed could also crash. If a crash occurs during a
database write, the database could be in an inconsistent, corrupted state.

None of these situations is acceptable for a mission-critical enterprise appli-
cation. Big iron systems, such as mainframes or mid-frames, do offer preven-
tive measures, such as system component redundancy and hot swapping of
failed components to handle system crashes more graciously. But in reality,
nothing is perfect. Machines, processes, or networks will always fail. There
needs to be a recovery process to handle these crashes. Simple exception han-
dling such as RemoteException is not sufficient for enterprise-class deployments.

Multiple Users Sharing Data
In any enterprise-level distributed system, you will see the familiar pattern of
multiple clients connecting to multiple application servers, with those appli-
cation servers maintaining some persistent data in a database. Let’s assume
these application servers all share the same database, as in Figure 12.2. Because
each server is tied to the same database image, servers could potentially be
modifying the same set of data records within that database.

For example, you might have written a tool to maintain your company’s cat-
alog of products in a database. Your catalog may contain product information
that spans more than one database record. Information about a single product
could span several database records or even tables.

Several people in your organization may need to use your tool simultane-
ously. But if two users modify the same product data simultaneously, their
operations may become interleaved. Therefore, your database may contain
product data that’s been partially supplied by one user and partially supplied
by another user. This is essentially corrupted data, and it is not acceptable in
any serious deployment. The wrong data in a bank account could result in loss
of millions of dollars to a bank or the bank’s customers.

Thus, there needs to be a mechanism to deal with multiple users concur-
rently modifying data. We must guarantee data integrity even when many
users concurrently update the data.

302 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 302

Figure 12.2 Application servers tied to a single database.

Benefits of Transactions

The problems raised in the previous sections can lead to catastrophic errors.
You can avoid these problems by properly using transactions.

A transaction is a series of operations that appear to execute as one large,
atomic operation. Transactions guarantee an all-or-nothing value proposition:
Either all of your operations will succeed, or none of them will. Transactions
account for network or machine failure in a graceful, reliable way. Transac-
tions allow multiple users to share the same data and guarantee that any set
of data they update will be completely and wholly written, with no interleav-
ing of updates from other clients.

By using transactions properly, you can force multiuser interactions with
databases (or other resources) to occur independently. For example, two
clients reading and writing from the same database will be mutually exclusive

Application
Server

Application
Server

Application
Server

Database

Client Code Client Code Client CodeClient Code

Table

Transactions 303

18_576828 ch12.qxd 11/3/04 11:43 AM Page 303

if transactions are properly used. The database system automatically performs
the necessary concurrency control (that is, locking) on the database to keep
client threads from affecting each other.

Transactions offer far more than simply letting simultaneous users use the
same persistent stores. By having your operations run within a transaction,
you are effectively performing an advanced form of concurrency control and
exception handling.

The ACID Properties
When you properly use transactions, your operations will always execute with
a suite of four guarantees. These four guarantees are well known as the ACID
properties of transactions. The word ACID stands for atomicity, consistency, iso-
lation, and durability. The following list explains each property.

304 Chapter 12

TRANSACTION VOCABULARY

Before we get into the specifics of transactions, let’s establish a vocabulary.
There are several types of participants in a transaction: transactional objects,
transaction managers, resources, and resource managers. Let’s take a look at
each of these parties in more detail.

A transactional object (or transactional component) is an application
component, such as a banking component, that is involved in a transaction.
This could be an enterprise bean, a Microsoft .NET–managed component, a
CORBA component, and so on. These components perform operations that
need to execute in a robust fashion, like database interactions.

A transaction manager is responsible for managing the transactional
operations of the transactional components. It manages the entire overhead of
a transaction, running behind the scenes to coordinate things (similar to the
way a conductor coordinates a symphony).

A resource is a persistent storage from which you read or write. A resource
could be a database, a message queue, or other storage.

A resource manager manages a resource. An example of a resource manager
is a driver for a relational database, object database, message queue, or other
store. Resource managers are responsible for managing all state that is
permanent. The most popular interface for resource managers is the X/Open XA
resource manager interface. Most database drivers support this interface.
Because X/Open XA is the de facto standard for resource managers, a
deployment with heterogeneous XA resource managers from different vendors
can interoperate.

18_576828 ch12.qxd 11/3/04 11:43 AM Page 304

■■ Atomicity guarantees that many operations are bundled together and
appear as one contiguous unit of work. In our banking example, when
you transfer money from one bank account to another, you want to add
funds to one account and remove funds from the other account, and you
want both operations to occur or neither operation to occur. Atomicity
guarantees that operations performed within a transaction undergo an
all-or-nothing paradigm—either all the database updates are performed,
or nothing happens if an error occurs at any time. Many different parties
can participate in a transaction, such as an enterprise bean, a CORBA
object, a servlet, and a database driver. These transaction participants
can force the transaction to result in nothing due to any malfunction. This
is similar to a voting scheme: Each transaction participant votes on
whether the transaction should be successful, and if any of the partici-
pants votes no, the transaction fails. If a transaction fails, all the partial
database updates are automatically undone. In this way, you can think
of transactions as a robust way of performing error handling.

■■ Consistency guarantees that a transaction leaves the system’s state to
be consistent after a transaction completes. What is a consistent system
state? A bank system state could be consistent if the rule bank account
balances must always be positive is always followed. This is an example of
an invariant set of rules that define a consistent system state. During
the course of a transaction, these rules may be violated, resulting in a
temporarily inconsistent state. For example, your enterprise bean com-
ponent may temporarily make your account balance negative during a
withdrawal. When the transaction completes, the state is consistent
once again; that is, your bean never leaves your account at a negative
balance. And even though your state can be made inconsistent tem-
porarily, this is not a problem. Remember that transactions execute
atomically as one contiguous unit of work (from the atomicity property
discussed previously). Thus, to a third party, it appears that the sys-
tem’s state is always consistent. Atomicity helps enforce that the system
always appears to be consistent.

■■ Isolation protects concurrently executing transactions without seeing
each other’s incomplete results. Isolation allows multiple transactions to
read or write to a database without knowing about each other because
each transaction is isolated from the others. This is useful for multiple
clients modifying a database at once. It appears to each client that he or
she is the only client modifying the database at that time. The transac-
tion system achieves isolation by using low-level synchronization proto-
cols on the underlying database data. This synchronization isolates the
work of one transaction from that of another. During a transaction, locks

Transactions 305

18_576828 ch12.qxd 11/3/04 11:43 AM Page 305

on data are automatically assigned as necessary. If one transaction holds
a lock on data, the lock prevents other concurrent transactions from
interacting with that data until the lock is released. For example, if you
write bank account data to a database, the transaction may obtain locks
on the bank account record or table. The locks guarantee that, while the
transaction is occurring, no other concurrent updates can interfere. This
enables many users to modify the same set of database records simulta-
neously without concern for interleaving of database operations.

■■ Durability guarantees that updates to managed resources, such as data-
base records, survive failures. Some examples of failures are machines
crashing, networks crashing, hard disks crashing, or power failures.
Recoverable resources keep a transactional log for exactly this purpose.
If the resource crashes, the permanent data can be reconstructed by
reapplying the steps in the log.

Transactional Models

Now that you’ve seen the transaction value proposition, let’s explore how
transactions work. We begin by taking a look at transactional models, which are
the different ways you can perform transactions.

There are many different models for performing transactions. Each model
adds its own complexity and features to your transactions. The two most pop-
ular models are flat transactions and nested transactions.

To use a particular transaction model, your underlying transaction service
must support it. And unfortunately, not all of the vendors who crafted the
EJB specification currently implement nested transactions in their products.
Hence, Enterprise JavaBeans mandate flat transactions but do not support
nested transactions. Note that this may change in the future based on
industry demands. In the interim, however, J2EE Activity Service, discussed
in a later section, can lend a way of implementing nested transactions in
an EJB application.

Flat Transactions
A flat transaction is the simplest transactional model to understand. A flat trans-
action is a series of operations that are performed atomically as a single unit of
work. After a flat transaction begins, your application can perform any number
of operations. Some may be persistent operations, and some may not. When
you decide to end the transaction, there is always a binary result: either success
or failure. A successful transaction is committed, while a failed transaction is

306 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 306

aborted. When a transaction is committed, all persistent operations become per-
manent changes; that is, all updates to resources, such as databases, are made
durable into permanent storage only if the transaction ends with a commit. If the
transaction is aborted, none of the resource updates are made durable, and thus
all changes are rolled back. When a transaction aborts, all persistent operations
that your application may have performed are automatically undone by the
underlying system. Your application can also be notified in case of an abort, so
that your application can undo in-memory changes that occurred during the
transaction.

This is the all-or-nothing proposition we described preciously. The flat trans-
action process is outlined in Figure 12.3.

A transaction might abort for many reasons. Many components can be
involved in a transaction, and any one component could suffer a problem that
would cause an abort. These problems include the following:

■■ Invalid parameters passed to one of the components. For instance, a
banking component may be called with a null argument when it was
expecting a bank account ID string.

■■ An invariant system state was violated. For example, if an ongoing
transactional operation can cause the bank account to reach a negative
balance, your banking component can force the transaction to abort,
undoing all associated bank account operations.

■■ Hardware or software failure. If the database that your component is
using crashes, the transaction is rolled back and all permanent changes
are undone. Similarly, if there is a software failure (such as a JVM crash)
the transaction is rolled back.

Figure 12.3 The flat transaction.

Transaction
OccurringH

Begin Transaction

Initial State
(No Transaction Occurring)

H
Final State
(Transaction Rolled Back)

If All Goes Well, Commit Transaction

H

Final State
(Transaction Succeeded)

If Problem Occurs, Abort Transaction

Transactions 307

18_576828 ch12.qxd 11/3/04 11:43 AM Page 307

Any of these problems can cause a transaction to abort. But when an abort
occurs, how is the transactional state rolled back? That is the topic of the next
section.

How Transactional State Is Rolled Back

Let’s assume you’re performing a flat transaction that includes operations on
physical, permanent resources, such as databases. After the transaction begins,
one of your business components requests a connection to a database. This
database connection is automatically enlisted in the transaction in which your
component is involved. Next, your component performs some persistent oper-
ations, such as database updates. But when this happens, your database’s
resource manager does not permanently apply the updates to the database—
your persistent operations are not yet durable and permanent. The resource
manager waits until a commit statement has been issued. A commit is issued
only when the transaction is complete, meaning when all your business com-
ponents have finished performing all of the operations under that transaction.
If the resource is told to commit, it persists the data permanently. If the trans-
action aborts, the data is not persisted at all.

The take-away point from this discussion is that your business components
typically do not perform any rollback of permanent state; if there’s an abort, the
resource (such as a database) does not make your database updates perma-
nent. Your components don’t have any undo logic for permanent data inside of
them; rather, the underlying system does it for you behind the scenes. Your
components control the transaction and tell the transaction to abort, but the
persistent state rollback is performed for you automatically. Thus, when your
business components perform operations under a transaction, each compo-
nent should perform all persistent operations assuming that the transaction
will complete properly.

Now that you’ve seen flat transactions, let’s take a quick look at nested
transactions.

Nested Transactions
We begin our discussion of nested transactions with a motivational example.
Let’s say you need to write an application that can plan trips for a travel
agency. You need to code your application to plan trips around the world, and
your application must purchase the necessary travel tickets for the trip. Con-
sider that your application performs the following operations:

1. Your application purchases a train ticket from Boston, USA, to New
York, USA.

2. Your application purchases a plane ticket from New York, USA, to
London, England.

308 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 308

3. Your application purchases a balloon ride ticket from London, England,
to Paris, France.

4. Your application finds out that there are no outgoing flights from France.

This is the famous trip-planning problem. If this sequence of bookings were
performed under a flat transaction, your application would have only one
option: to roll back the transaction. Thus, because there are no outgoing flights
from France, your application has lost all of its bookings! But it may be possi-
ble to use another means of transportation out of France, allowing you to sal-
vage the train ticket, plane ticket, and balloon ride. Thus, a flat transaction is
insufficient. The all-or-nothing proposition is shooting us in the foot, and we
need a more comprehensive transactional model.

A nested transaction solves this problem. A nested transaction enables you to
embed atomic units of work within other units of work. The unit of work that
is nested within another unit of work can roll back without forcing the entire
transaction to roll back. Therefore the larger unit can attempt to retry the
embedded unit of work. If the embedded unit can be made to succeed, the
larger unit can succeed. If the embedded unit of work cannot be made to work,
it will ultimately force the entire unit to fail.

You can think of a nested transaction as a tree of transactions, all spawning
off one root- or top-level transaction. The root transaction is the main transaction:
In our trip-planning example, the root transaction is the overall process of
booking tickets around the world. Every other transaction in the tree is called
a subtransaction. The subtransactions can be flat or nested transactions (see
Figure 12.4).

Figure 12.4 The nested transaction.

Transaction
OccurringH

Begin Transaction

Initial State
(No Transaction Occurring)

H
Final State
(Transaction Rolled Back)

If All Goes Well, Commit Transaction

H

Final State
(Transaction Succeeded)

If Problem Occurs, Abort Transaction

Perform One or More
Smaller-Grained Transactions

The smaller-grained
transactions can be retried
without affecting the main
transaction.

Transactions 309

18_576828 ch12.qxd 11/3/04 11:43 AM Page 309

What’s special about nested transactions is that subtransactions can inde-
pendently roll back without affecting higher transactions in the tree. That’s a
very powerful idea, and it solves our trip-planning problem: If each individual
booking is a nested transaction, we can roll back any one booking without can-
celing all our other reservations. But in the end, if the nested transaction
cannot be committed, the entire transaction will fail.

Other Transactional Models
This concludes our discussion of transactional models. There are other models
as well, such as chained transactions and sagas, but we will not address these
subjects here because the EJB specification does not support them. And
because the EJB specification does not currently mandate support for nested
transactions, for the rest of this chapter we’ll assume that our transactions
are flat.

Enlisting in Transactions with Enterprise JavaBeans

Let’s apply what we’ve learned so far about transactions to the EJB world.
Enterprise beans can be transactional in nature. This means they can fully

leverage the ACID properties to perform reliable, robust server-side opera-
tions. Thus, enterprise beans are ideal modules for performing mission-critical
tasks.

Underlying Transaction System Abstraction
In EJB, your code never gets directly involved with the low-level transaction
system. Your enterprise beans never interact with a transaction manager or a
resource manager. You write your application logic at a much higher level,
without regard for the specific underlying transaction system. The low-level
transaction system is totally abstracted out by the EJB container, which runs
behind the scenes. Your bean components are responsible for simply voting on
whether a transaction should commit or abort. If things run smoothly, you
should commit; otherwise, abort.

Declarative, Programmatic, and
Client-Initiated Transactions
Throughout this chapter, we’ve said that once a transaction begins, it ends
with either commit or abort. The key piece of information we’re lacking is who
begins a transaction, who issues either a commit or abort, and when each of

310 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 310

these steps occurs. This is called demarcating transactional boundaries. You can
demarcate transactions programmatically, declaratively, or client-initiated.

Programmatic Transactions

Most existing systems demarcate transactional boundaries programmatically.
When using programmatic transactions, you are responsible for programming
transaction logic into your application code. That is, you are responsible for
issuing a begin statement and either a commit or an abort statement.

For example, an EJB banking application might have an enterprise bean
that acts as a bank teller. A teller bean would expose a method to transfer
funds from one bank account to another. With programmatic transactions, the
teller bean is responsible for issuing a begin statement to start the transaction,
performing the transfer of funds, and issuing either a commit or abort state-
ment. This is the traditional way to perform transactions, and it is shown in
Figure 12.5.

Figure 12.5 Beans with programmatic transactions.

Teller Bean Transaction
Service

3: Call begin()

4: Perform Business Operations

5: Call commit() or abort()

Client Code

1: Call Method

EJB Container/Server

Teller EJB
Object

2: Delegate

Transactions 311

18_576828 ch12.qxd 11/3/04 11:43 AM Page 311

Declarative Transactions

Declarative transactions allow for components to automatically be enlisted in
transactions. That is, your enterprise beans never explicitly issue a begin, commit,
or abort statement. The EJB container performs it for you.

Let’s take our bank teller example again, and assume some client code has
called our teller bean to transfer funds from one account to another. With
declarative transactions, the EJB container intercepts the request and starts a
transaction automatically on behalf of your bean. That is, the container issues
the begin statement to the underlying transaction system to start the trans-
action. The container then delegates the invocation to your enterprise bean,
which performs operations in the scope of that transaction. Your bean can do
anything it wants to, such as perform logic, write to a database, send an asyn-
chronous message, or call other enterprise beans. If a problem occurs, the bean
can signal to the container that the transaction must abort. When the bean
is done, it returns control to the container. The container then issues either a

commit or abort statement to the underlying transaction system, depending on
whether a problem occurred. This is a very simple model, and it is shown in
Figure 12.6.

Figure 12.6 Beans with declarative transactions.

Teller Bean

2: Call begin()

4: Perform Business Operations

5: Call commit() or abort()

Client Code

1: Call Method

EJB Container/Server

3: Delegate

Transaction
Service

Teller EJB
Object

312 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 312

EJB declarative transactions add huge value to your deployments because
your beans may not need to interact with any transaction API. In essence, your
bean code and your client are not even really aware of transactions happening
around them.

So how do you instruct the container about whether your bean is using
declarative or programmatic transactions? EJB enables you to specify how
your enterprise bean is enrolled in a transaction through the deployment
descriptor, as follows:

<?xml version=”1.0” encoding=”UTF-8”?>

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”

version=”2.1”>

<enterprise-beans>

<session>

<ejb-name>Hello</ejb-name>

<home>examples.HelloHome</home>

<remote>examples.Hello</remote>

<ejb-class>examples.HelloBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

The preceding deployment descriptor chooses container-managed (declara-
tive) transactions. If instead of Container we chose Bean, then we would use
bean-managed (programmatic) transactions.

Client-Initiated Transactions

The final way to perform transactions is to write code to start and end the
transaction from the client code outside of your bean. For example, if you have
a servlet, JSP tag library, application, applet, CORBA client, or other enterprise
bean as a client of your beans, you can begin and end the transaction in that
client. This is shown in Figure 12.7.

Note that the enterprise bean the client calls would still need to be written to
use either programmatic or declarative transactions.

Transactions 313

18_576828 ch12.qxd 11/3/04 11:43 AM Page 313

Figure 12.7 Beans with client-initiated transactions.

Choosing a Transaction Style
One question that students often ask in our EJB training classes is “Should I
use declarative, programmatic, or client-controlled transactions?”

The benefit of programmatic transactions is that your bean has full control
over transactional boundaries. For instance, you can use programmatic trans-
actions to run a series of mini-transactions within a bean method. In compari-
son, with declarative or client-initiated transactions, your entire bean method
must either run under a transaction or not run under a transaction.

The benefit of declarative transactions is that they are simpler. You don’t
need to write transactional logic into your bean class, which saves coding time
and enables you to tune transactions without having access to source code.
Also, by having transactions automatically start up and end, you keep client
code from misusing your beans. If you’re a component vendor, this will reduce
a great number of headaches down the line.

Teller Bean

1: Call begin()

4: Perform Business Operations

5: Call commit() or abort()

2: Call Method

EJB Container/Server

3: Delegate

Transaction
Service

Client Code

Teller EJB
Object

314 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 314

To understand the benefit of client-controlled transactions, consider the fol-
lowing scenario in which we don’t use client-controlled transactions. Imagine
that a non-transactional remote client calls an enterprise bean that performs its
own transactions (either programmatically or declaratively). The bean suc-
ceeds in the transaction, but the network or application server crashes before
the result is returned to a remote client. The remote client would receive a Java
RMI RemoteException indicating a network error, but would not know whether
the transaction that took place in the enterprise bean was a success or a failure.
The remote client would then have to write code to check the state of the
resources to find out whether they were updated successfully by the transac-
tion. This code places an additional burden on the application developer.

Transactions 315

TRANSACTIONS AND ENTITY BEANS

Perhaps one of the most misunderstood concepts in EJB is how transactions
relate to entity beans. Let’s explore this concept.

When you call an entity bean in a transaction, the first action that happens is
the entity bean needs to load database data through the ejbLoad() method,
which acquires locks in the database and ensures the entity bean cache is
consistent. Then one or more business methods are called. When the
transaction is committed, the entity bean’s ejbStore() method is called, which
writes all updates to the database and releases the locks. A transaction should
thus span the ejbLoad() business methods, and the final ejbStore(), so that if
any one of those operations fail, they all fail.

If we were to use bean-managed transactions, we would write code to
perform begin() and commit() methods inside our bean (perhaps around the
JDBC code). Perhaps we would start the transaction in ejbLoad(), and then
commit the transaction in ejbStore(). The problem, though, is that you do not
call your own ejbLoad() or ejbStore() methods—the container does. The bean
cannot enforce that these methods happen in this order, if at all. Therefore if
you started a transaction in ejbLoad(), the transaction may never complete.

Because of this, bean-managed transactions are illegal for entity beans.
Entity beans must use declarative transactions. Session beans or message-
driven beans can use bean-managed transactions because a session bean can
load database data, perform operations on that data, and then store that data;
all in a single method call, and thus is in direct control over the transaction.

A corollary of this discussion is that entity beans do not load and store their
data on every method call; rather, they load and store their data on every
transaction. If your entity beans are not performing well, it could be because a
transaction is happening on each method call, and thus a database read/write
is happening on every get/set method. The solution is to make sure your
transactions begin earlier and end later, perhaps encompassing many entity
bean method calls. By properly controlling the duration of your transactions
with transaction attributes (as we will see later in this chapter), you can control
when database reads and writes happen with entity beans.

18_576828 ch12.qxd 11/3/04 11:43 AM Page 315

With client-controlled transactions, you do not need to worry about this sce-
nario, because the transaction is defined in the client code. If anything goes
wrong, the client will know about it. The downside to client-controlled trans-
actions is that for distributed applications, the chances of client-initiated trans-
action rollbacks are more due to the fact that the transaction is occurring over
a network and hence, network failures can cause the transaction to roll back
more often. Because of this, use client-transactions sparingly—especially if the
client is far away.

316 Chapter 12

TRANSACTIONS AND JMS MESSAGE-DRIVEN BEANS

When using JMS message-driven beans, your choice of transaction style has a
big impact on your bean. Only the Required and NotSupported transaction
attributes can be applied to JMS message-driven bean listener method
onMessage().

If you use container-managed transactions, your JMS message-driven bean
will read a message off the destination in the same transaction as it performs
its business logic. If something goes wrong, the transaction will roll back and
the message acknowledgment will occur.

If you use bean-managed transactions, the transaction begins and ends
after your JMS message-driven bean receives the message. You can then use
deployment descriptor acknowledgment modes to instruct the container about
when to acknowledge messages (see Chapter 9).

If you don’t support transactions at all, the container will acknowledge the
message at some later time, perhaps when your bean’s method completes. The
timing is not guaranteed, however.

So which style do you use? If you don’t use container-managed transactions,
you can’t cause the JMS messages to remain on the original destination if
something goes wrong, because your bean has no way to indicate a problem.

In general, we recommend using container-managed transactions with JMS
message-driven beans. If you want to perform many smaller transactions,
consider breaking up your JMS message-driven bean into several other beans,
with each bean having a granularity of a single transaction.

Note that there is a huge caveat with using container-managed transactions
with JMS message-driven beans in a certain scenario. Let’s say you have an EJB
component (any type of component) that sends and then receives a message
all within one big container-managed transaction. In this case, the send
operation will never get its message on the queue, because the transaction
doesn’t commit until after the receive operation ends. Thus, you’ll be waiting
for the receive operation to complete forever. This is called the infinite block
problem, also known as the halting problem in computer science.

An easy solution to this problem is after sending the request message, you
can call commit() on the JMS Session, which is your JMS transaction helper
object. This causes the outgoing message buffer to be flushed. Hence, the
receive operation does not have to wait forever for the transaction to commit
to get a message.

18_576828 ch12.qxd 11/3/04 11:43 AM Page 316

Container-Managed Transactions

Let’s now assume that we are using container-managed transactions and
understand how to implement them. Although we’re not writing any code
that starts and stops transactions, we still need to provide instructions to the
container for how we’d like our transactions to operate. For example, how can
we choose whether a bean always runs in a transaction, or whether a bean
never runs in a transaction?

A transaction attribute is a setting that you give to a bean to control how your
bean is enlisted in container-managed transactions. You can specify a different
transaction attribute on each bean in your system, no matter how many beans
are working together.

The transactional attribute is a required part of each bean’s deployment
descriptor. The container knows how transactions should be handled with a
bean by reading that bean’s transaction attribute from its deployment descrip-
tor. Note that you can specify transaction attributes for entire beans or for indi-
vidual bean methods. If both are specified, then method-level attributes take
precedence. See Source 12.1 for transaction attributes within a deployment
descriptor.

<assembly-descriptor>

<!--

This demonstrates setting a transaction attribute

on every method on the bean class.

-->

<container-transaction>

<method>

<ejb-name>Employee</ejb-name>

<method-name>*</method-name>

</method>

<!--

Transaction attribute. Can be “NotSupported”,

“Supports”, “Required”, “RequiresNew”,

“Mandatory”, or “Never”.

-->

<trans-attribute>Required</trans-attribute>

</container-transaction>

<!--

You can also set transaction attributes on individual methods.

-->

Source 12.1 Declaring transaction attributes in the deployment descriptor. (continued)

Transactions 317

18_576828 ch12.qxd 11/3/04 11:43 AM Page 317

<container-transaction>

<method>

<ejb-name>Employee</ejb-name>

<method-name>setName</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

<!--

You can even set different transaction attributes on

methods with the same name that take different parameters.

-->

<container-transaction>

<method>

<ejb-name>Employee</ejb-name>

<method-name>setName</method-name>

<method-param>String</method-param>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

Source 12.1 (continued)

You must specify transaction attributes on all business methods for your
beans. Furthermore, with entity beans you must specify transaction attributes
that cover home interface methods, because the home interface creation meth-
ods insert database data and thus need to be transactional.

EJB Transaction Attribute Values
Every enterprise bean must have a transaction attribute setting. The following
subsections explain the possible values for the transaction attribute in the
deployment descriptor.

318 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 318

Required

You should use the Required mode if you want your bean to always run in a
transaction. If a transaction is already running, your bean joins in on that
transaction. If no transaction is running, the EJB container starts one for you.

For example, say you write a credit card component that performs opera-
tions on credit cards, such as charging a credit card or refunding money on a
credit card. Let’s assume you ship the component with the Required transaction
attribute. You then sell that component to two customers.

■■ Customer 1 deploys our component in its customer service center,
using the component to refund money when an angry customer calls.
The customer writes some code to call your bean as necessary. When
the client code calls your bean, the container automatically starts a
transaction by calling begin and then delegating the call to your bean.
When your method completes, the container issues either a commit or
abort statement, depending on whether a problem occurred.

■■ Customer 2 uses our billing component as part of a complete workflow
solution. The customer wants to use the credit card component to
charge a user’s credit card when a user purchases a product from a Web
site. The customer then wants to submit an order to manufacture that

Transactions 319

TRANSACTIONS AND J2EE CONNECTORS

The J2EE Connector Architecture defines a standard contract between Resource
Adapters (RA) and application servers such that RA can leverage the container
services for supporting transactions. This standard contract enables an
application server to provide the infrastructure and runtime environment for
transaction management of RA components. RA can support either a local
transaction, which is managed internally by the resource manager, or it can
support a distributed transaction, whose coordination does involve external
transaction managers. If RA that supports local transactions, the client
component, such as an EJB, will have to acquire the common client interface
API object, such as javax.resource.cci.LocalTransaction or an equivalent from
the resource adapter to demarcate the transactions. If RA supports distributed
transactions, the container will automatically enlist the client in the transaction
context, if the client wants to work within a distributed transaction.

J2EE Connector Architecture 1.5 supports the inflow of transactions from
Enterprise Information System (EIS) to the J2EE environment. This is a powerful
addition because it enables the J2EE applications to participate in transactions
initiated by backend EIS. For example, you can make your stateless session
bean participate in a transaction that was initiated in the Tuxedo environment,
given that the underlying RA supports this contract. Chapter 17 explains J2EE
Connector Architecture in more details.

18_576828 ch12.qxd 11/3/04 11:43 AM Page 319

product, which is handled by a separate component. Thus, the cus-
tomer has two separate components running but both of them run
under the same transaction. If the credit card cannot be charged, the
customer doesn’t want the order to be submitted. If the order cannot be
submitted, the customer doesn’t want the credit card charged. There-
fore the customer produces his or her own workflow bean, which first
calls our credit card–charging bean and then calls the bean to generate a
manufacturing order. The workflow bean is deployed with Required, so
a transaction automatically starts up. Because your credit card bean is
also deployed with Required, you join that transaction, rather than start
your own transaction. If the order submission component is also
deployed with Required, it joins the transaction as well. The container
commits or aborts the transaction when the workflow bean is done.

Thus, Required is a flexible transaction attribute that enables you to start
your own transaction or join existing ones, depending on the scenario.

RequiresNew

You should use the RequiresNew attribute if you always want a new transaction
to begin when your bean is called. If a transaction is already under way when
your bean is called, that transaction is suspended during the bean invocation.
The container then launches a new transaction and delegates the call to the
bean. The bean performs its operations and eventually completes. The con-
tainer then commits or aborts the transaction and finally resumes the old
transaction. Of course, if no transaction is running when your bean is called,
there is nothing to suspend or resume.

RequiresNew is useful if your bean needs the ACID properties of transactions
but wants to run as a single unit of work without allowing other external logic
to also run in the transaction.

Supports

When a bean is called with Supports, it runs in a transaction only if the client
had one running already. If the client does not have a transaction, the bean
runs with no transaction at all.

Supports is similar in nature to Required, with the one exception: Required
enforces that a new transaction is started if one is not running already. Because
Supports will sometimes not run within a transaction, you should be careful
when using this attribute. Mission-critical operations should be encapsulated
with a stricter transaction attribute (like Required).

320 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 320

Mandatory

Mandatory mandates that a transaction must be already running when your bean
method is called. If a transaction isn’t running, the javax.ejb.TransactionRe-
quiredException exception is thrown back to the caller (or javax.ejb.Tranasction-
RequiredLocalException if the client is local).

Mandatory is a safe transaction attribute to use. It guarantees that your bean
should run in a transaction. There is no way your bean can be called if a trans-
action isn’t already running. However, Mandatory relies on a third party to
start the transaction before your bean is called. The container will not auto-
matically start a transaction; rather, an exception is thrown back to the caller.
This is the chief difference between Mandatory and Supports. Mandatory is use-
ful if your component is designed to run within a larger system, such as a
workflow system, where your bean is only part of a larger suite of operations,
and you want to mandate that the larger operations start a transaction before
calling your bean.

NotSupported

If you set your bean to use NotSupported, then your bean cannot be involved in
a transaction at all. For example, assume we have two enterprise beans, A and
B. Let’s assume bean A begins a transaction and then calls bean B. If bean B is
using the NotSupported attribute, the transaction that A started is suspended.
None of B’s operations are transactional, such as reads/writes to databases.
When B completes, A’s transaction is resumed.

You should use NotSupported if you are certain that your bean operations do
not need the ACID properties. This should be used only if your beans are
performing non–mission-critical operations, where you are not worried about
isolating your bean’s operations from other concurrent operations. An exam-
ple here is an enterprise bean that performs rough reporting. If you have an
e-commerce Web site, you might write a bean that routinely reports a rough
average number of e-commerce purchases per hour by scanning a database.
Because this is a low-priority operation and you don’t need exact figures,
NotSupported is an ideal, low-overhead mode to use.

Never

The Never transaction attribute means that your bean cannot be involved in a
transaction. Furthermore, if the client calls your bean in a transaction, the con-
tainer throws an exception back to the client (java.rmi.RemoteException if
remote, javax.ejb.EJBException if local).

Transactions 321

18_576828 ch12.qxd 11/3/04 11:43 AM Page 321

This transaction attribute is useful when you want to make sure all clients that
call your bean do not use transactions. This can help reduce errors in client code,
because a client will not be able to call your bean erroneously in a transaction and
expect your bean to participate in the ACID properties with other transaction
participants. If you are developing a system that is not transactional in nature and
would like to enforce that behavior, consider using the Never attribute.

Transaction Attribute Summary

Table 12.1 is a summary of the effects of each transaction attribute. In the chart,
T1 and T2 are two different transactions. T1 is a transaction passed with the
client request, and T2 is a secondary transaction initiated by the container.

Table 12.1 is important because you can use this information to control the
length of your transaction. For example, let’s say you want to perform a trans-
fer between two bank accounts. To achieve this, you might have a bank teller
session bean that calls into two bank account entity beans. If you deploy all
three of these beans with the Required transaction attribute, they will all be
involved in a single transaction, as shown in Figure 12.8.

In this example, assume all three beans are deployed with the Required
attribute. Notice that

■■ Transactions always begin and end in the same place. In this case, the
Teller EJB object.

■■ Both Account beans automatically enlist in the Teller’s transaction.
Thus, we have created a transaction spanning three beans by merely
using transaction attributes.

Table 12.1 The Effects of Transaction Attributes

TRANSACTION CLIENT’S BEAN’S
ATTRIBUTE TRANSACTION TRANSACTION

Required none T2
T1 T1

RequiresNew none T2
T1 T2

Supports none none
T1 T1

Mandatory none error
T1 T1

NotSupported none none
T1 none

Never none none
T1 error

322 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 322

Figure 12.8 Using transaction attributes to control a transaction’s length.

Finally, you should note that not all transaction attributes are available for
use on all beans. Table 12.2 shows which are permissible.

Here is a brief explanation of why certain transaction attributes are disal-
lowed. Entity beans and stateful session beans with SessionSynchronization
must use transactions. The reason is that both of these types of beans are inher-
ently transactional in nature. Entity beans perform database updates, and
stateful session beans with SessionSynchronization (which we describe later in
this chapter) are also transactional. Therefore you normally can’t use the fol-
lowing attributes: Never, NotSupported, Supports. Note that the EJB specifica-
tion does allow for containers to optionally support these attributes for stateful
session beans and entity beans—but only if you’re using non-transactional
data stores—and with the warning that if you use this, your beans will not be
portable, and you may find that you receive inconsistent results.

A client does not call a message-driven bean directly; rather, message-driven
beans read messages off a message queue in transactions separate from the
client’s transaction. There is no client, and therefore transaction attributes that
deal with the notion of a client’s transaction make no sense for message-driven
beans—namely Never, Supports, RequiresNew, and Mandatory.

2: Call begin()

8: Call commit() or
abort()

1: Call
Method

EJB Container/Server

Teller EJB
Object

Teller EJB
Object

3: Delegate

4: withdraw()

6: deposit()

5: Delegate

7: Delegate

Client Code

Account #1
EJB Object

Account #2
EJB Object

Account #1
Bean

Transaction
Service

Account #2
Bean

Teller
Bean

In this example,
assume all three beans
are deployed with the
Required attribute.

Notice:
• Transactions always
 begin and end in the
 same place, in this
 case, the Teller EJB
 object.
• Both Account beans
 automatically enlist
 in the Teller's
 transaction spanning
 three beans by merely
 using transaction
 attributes.

Transactions 323

18_576828 ch12.qxd 11/3/04 11:43 AM Page 323

Table 12.2 Permissible Transaction Attributes for Each Bean Type

STATEFUL
SESSION BEAN

STATELESS IMPLEMENTING MESSAGE-
TRANSACTION SESSION SESSION ENTITY DRIVEN
ATTRIBUTE BEAN SYNCHRONIZATION BEAN BEAN

Required Yes Yes Yes Yes

RequiresNew Yes Yes Yes No

Mandatory Yes Yes Yes No

Supports Yes No No No

NotSupported Yes No No Yes

Never Yes No No No

Programmatic Transactions in EJB

Next let’s discuss how you can control transactions programmatically in EJB.
Programmatic transactions allow for more advanced transaction control than
declarative transactions do, but they are trickier to use. To control transaction
boundaries yourself, you must use the Java Transaction API (JTA). We begin
by taking a look at how the JTA was established.

CORBA Object Transaction Service
When we described the ACID properties earlier in this chapter, we mentioned
that many parties, such as an enterprise bean and a database driver, could par-
ticipate in a transaction. This is really an extension to the basic ACID proper-
ties, and it’s the primary reason that Object Management Group (OMG)
developed a standardized Object Transaction Service (OTS) as an optional
CORBA service. OTS improved on earlier transaction systems that didn’t sup-
port multiple parties participating in a transaction.

OTS is a suite of well-defined interfaces that specify how transactions can
run behind the scenes—interfaces that the transaction manager, resource man-
ager, and transactional objects use to collaborate. OTS is decomposed into two
parts: CosTransactions and CosTSPortability.

■■ The CosTransactions interfaces are the basic interfaces that transac-
tional objects or components, resources, resource managers, and trans-
action managers use to interoperate. These interfaces ensure that any
combination of these parties is possible.

324 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 324

■■ The CosTSPortability interface offers a portable way to perform trans-
actions with many participants.

The inner workings of OTS are not relevant to the development of enterprise
beans. As an EJB programmer, you need to think only about writing your
application, not about low-level transaction services. This is how EJB achieves
rapid application development; you can write a distributed server-side appli-
cation without understanding complex middleware APIs. EJB shields you
from transaction services, such as OTS.

The Java Transaction Service
The Java community realized that you, as an application developer, should not
care about most of OTS. Only system-level vendors need to be concerned with
the inner workings of OTS. Part of OTS is very applicable to you, however,
because it enables you to demarcate transaction boundaries programmatically.
Hence, Sun has split up OTS into two sub-APIs: the Java Transaction Service
(JTS) and the Java Transaction API (JTA).

The Java Transaction Service (JTS) is a Java mapping of CORBA OTS for system-
level vendors. JTS defines the interfaces used by transaction managers and
resource managers behind the scenes. It is used to enable transaction interoper-
ability across various vendor products. It also defines various objects passed
around and used by transaction managers and resource managers. As an appli-
cation programmer, you should not care about most of OTS, and you should
not care about JTS at all. What you should care about is the Java Transaction
API (JTA).

The Java Transaction API
The Java Transaction API (JTA) is a transaction API used by component and
application developers. You can use the JTA in your client and bean code to
programmatically control transactional boundaries. The JTA package is a stan-
dard Java extension, so the package is automatically downloaded if needed.

You can do very useful things with the JTA, such as start a transaction inside
your bean, call other beans that also are involved in a transaction, and control
whether things commit or abort. Non-EJB applications can use the JTA as
well—the client code that calls your beans can use the JTA to control transac-
tion boundaries in a workflow scenario, where the client code is calling multi-
ple beans and wants each bean to participate in one transaction.

JTA consists of two sets of interfaces: one for X/Open XA resource managers
(which we don’t need to worry about) and one that we will use to support
programmatic transaction control. The interface you use to programmatically
control transactions is javax.transaction.UserTransaction.

Transactions 325

18_576828 ch12.qxd 11/3/04 11:43 AM Page 325

javax.transaction.UserTransaction

The javax.transaction.UserTransaction interface enables you to programmati-
cally control transactions. Here is what the javax.transaction.UserTransaction
interface looks like:

public interface javax.transaction.UserTransaction {

public void begin();

public void commit();

public int getStatus();

public void rollback();

public void setRollbackOnly();

public void setTransactionTimeout(int);

}

As you can see, six methods are exposed by the UserTransaction interface.
Three of them—begin, commit, and rollback—are used to begin a new transac-
tion, commit a transaction permanently, and roll back a transaction in case
some problem occurred, respectively. The JTA methods are in Table 12.3.

Table 12.3 The javax.transaction.UserTransaction Methods for Transactional Boundary
Interaction

METHOD DESCRIPTION

begin() Begins a new transaction. This transaction
becomes associated with the current thread.

commit() Runs the two-phase commit protocol on an
existing transaction associated with the current
thread. Each resource manager will make its
updates durable.

getStatus() Retrieves the status of the transaction associated
with this thread.

rollback() Forces a rollback of the transaction associated with
the current thread.

setRollbackOnly() Calls this to force the current transaction to roll
back. This will eventually force the transaction to
abort.

setTransactionTimeout(int) The transaction timeout is the maximum amount
of time that a transaction can run before it’s
aborted. This is useful to avoid deadlock situations,
when precious resources are being held by a
transaction that is currently running.

326 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 326

JTA also defines a number of constants that indicate the current status of a
transaction. You might see these constants when you call the UserTransaction
.getStatus() method:

public interface javax.transaction.Status {

public static final int STATUS_ACTIVE;

public static final int STATUS_NO_TRANSACTION;

public static final int STATUS_MARKED_ROLLBACK;

public static final int STATUS_PREPARING;

public static final int STATUS_PREPARED;

public static final int STATUS_COMMITTING;

public static final int STATUS_COMMITTED;

public static final int STATUS_ROLLING_BACK;

public static final int STATUS_ROLLEDBACK;

public static final int STATUS_UNKNOWN;

}

Table 12.4 explains the values of those constants.

Table 12.4 The javax.transaction.Status Constants for Transactional Status

CONSTANT MEANING

STATUS_ACTIVE A transaction is currently happening and is
active.

STATUS_NO_TRANSACTION No transaction is currently happening.

STATUS_MARKED_ROLLBACK The current transaction will eventually abort
because it’s been marked for rollback. This
could be because some party called
UserTransaction.setRollbackOnly().

STATUS_PREPARING The current transaction is preparing to be
committed (during Phase One of the two-phase
commit protocol).

STATUS_PREPARED The current transaction has been prepared to
be committed (Phase One is complete).

STATUS_COMMITTING The current transaction is in the process of
being committed right now (during Phase Two).

STATUS_COMMITTED The current transaction has been committed
(Phase Two is complete).

STATUS_ROLLING_BACK The current transaction is in the process of
rolling back.

STATUS_ROLLEDBACK The current transaction has been rolled back.

STATUS_UNKNOWN The status of the current transaction cannot be
determined.

Transactions 327

18_576828 ch12.qxd 11/3/04 11:43 AM Page 327

Declarative versus Programmatic Transactions Example
We now show you how to write an enterprise bean in two equivalent ways:
using programmatic (or bean-managed) transactions and using declarative (or
container-managed) transactions. To illustrate this, we’ll use a bank account
example. This example has a method called deposit() that deposits funds into
an account. We’ll make this method transactional.

The following code illustrates a deposit method using declarative transactions:

/**

* Deposits amt into account.

*/

public void deposit(double amt) throws AccountException {

System.out.println(“deposit(“ + amt + “) called.”);

balance += amt;

}

A bean using the preceding method relies on the EJB container to demarcate
transactional boundaries. Therefore, the bean’s deployment descriptor should
use a transaction attribute that provides this (such as Required, Mandatory, or
RequiresNew). We showed the code for such a deployment descriptor earlier in
this chapter.

The following code illustrates the same method using programmatic trans-
actions:

/**

* Deposits amt into account.

*/

public void deposit(double amt) throws AccountException {

javax.transaction.UserTransaction userTran = null;

try {

System.out.println(“deposit(“ + amt + “) called.”);

userTran = ctx.getUserTransaction();

userTran.begin();

balance += amt;

userTran.commit();

}

catch (Exception e) {

if (userTran != null) userTran.rollback();

throw new AccountException(“Deposit failed because of “ +

e.toString());

}

}

328 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 328

Transactions 329

DOOMED TRANSACTIONS

Dooming a transaction means to force a transaction to abort. You may need to
doom a transaction if something goes wrong, such as a database being
unavailable or the client sending you bad parameters.

If you’re performing programmatic or client-initiated transactions, you are
calling the begin() and commit() methods. You can easily doom a transaction
by calling rollback() on the JTA, rather than commit(). But how can you doom a
transaction if you are participating in a transaction that someone else started?
This can occur in one of two cases:

◆ Your transaction participant is an EJB component using declarative trans-
actions. The container then starts and ends transactions on your behalf.
To instruct the container to abort the transaction, your first instinct might
be to throw an exception and expect the container to abort the transac-
tion. But this approach will not work in all cases, because if you are
throwing your own custom exception classes, the container has no way
of knowing whether the exception is critical enough to indicate a failed
transaction and will not abort the transaction. The best way to doom a
transaction from a bean with container-managed transactions is to call
setRollbackOnly() on your EJB context object, which we introduced in
Chapter 3.

◆ Your transaction participant is not an EJB component, such as a Java ob-
ject. You can doom a transaction by looking up the UserTransaction ob-
ject in JNDI and calling its setRollbackOnly() method, as shown in the
code listed in the section Transactions from Client Code.

Dooming transactions brings up an interesting side discussion. Imagine you
have 10 beans in a chain executing in the same transaction, and bean 2 decides
to doom the transaction by calling setRollbackOnly(). Why should beans 3
through 10 perform their work if the transaction is doomed to failure anyway?
After all, those beans might be performing CPU- or database-intensive
operations, and this work will all be wasted when the transaction aborts. The
solution is that your beans can detect doomed transactions and avoid
performing work when a doomed transaction exists. You can detect doomed
transactions as follows:

◆ Container-managed transactional beans can detect doomed transactions
by calling the getRollbackOnly() method on the EJB context object. If this
method returns true, the transaction is doomed.

◆ Other participants, such as bean-managed transactional beans, can get
hold of the UserTransaction object from the JNDI and call its getStatus()
method.

You should write code to detect doomed transactions if you expect a good
number of transactions to roll back and are performing intensive operations.

18_576828 ch12.qxd 11/3/04 11:43 AM Page 329

Here, we are controlling the transactional boundaries explicitly in code. We
first retrieve the JTA from our bean’s EJB context object. Then, rather than rely-
ing on the EJB container to begin and commit transactions, we perform these
steps ourselves. A bean using the preceding method should be deployed with
the deployment descriptor, transaction-type of Bean, because the bean is per-
forming its own transaction boundary demarcation.

Take a look at the size difference between the two sets of source code. Bean-
managed transactions clutter your source code because you need to write to a
transaction API. Container-managed transactions enable you to write applica-
tion code elegantly and externalize all transaction logic to the container. This is
analogous to the way we saw entity beans with container-managed persis-
tence as much smaller than those with bean-managed persistence in Chapter 8.

When using programmatic transactions, always try to complete your
transactions in the same method in which you began them. Doing otherwise
results in spaghetti code where it is difficult to track the transactions; the
performance decreases because the transaction is held open longer, and the
behavior of your system may be odd. See the EJB specification for more
details about what the container will do if your transaction is left open.

Transactions from Client Code

The last way you can control transactions is from client code (with the word
client here meaning anything that calls your beans, even other enterprise
beans). You use the Java Transaction API (JTA) to control transactions from
client code.

To control transactions from client code, you must look up the JTA
UserTransaction interface with the Java Naming and Directory Interface (JNDI).
JNDI is a generic lookup facility for looking up resources across a network,
and it is fully described in Appendix A. The following code illustrates looking
up the JTA UserTransaction interface from client code using JNDI:

try {

/*

* 1: Set environment up. You must set the JNDI Initial

* Context factory, the Provider URL, and any login

* names or passwords necessary to access JNDI. See

* your application server product’s documentation for

* details on their particular JNDI settings.

*/

java.util.Properties env = ...

/*

330 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 330

* 2: Get the JNDI initial context

*/

Context ctx = new InitialContext(env);

/*

* 3: Look up the JTA UserTransaction interface

* via JNDI. The container is required to

* make the JTA available at the location

* java:comp/UserTransaction.

*/

userTran = (javax.transaction.UserTransaction)

ctx.lookup(“java:comp/UserTransaction”);

/*

* 4: Execute the transaction

*/

userTran.begin();

// perform business operations

userTran.commit();

}

catch (Exception e) {

// deal with any exceptions, including ones

// indicating an abort.

}

When you demarcate transactional boundaries in client code, you should be
very careful. Always strive to keep your transactions as short in duration as
possible. Longer-lived transactions result in multiuser performance grinding
to a halt. If you need a long transaction (that lasts for minutes, hours, or days)
use a distributed locking mechanism, such as the CORBA locking service.
Unfortunately, no distributed locking service equivalent currently exists in the
Java 2 Platform, Enterprise Edition. However, J2EE Activity Service standard,
discussed in a later section, can be used to create an HLS that supports long-
running transactions.

Transactional Isolation

Now that you’ve seen how to enlist enterprise beans in transactions, let’s dis-
cuss the I in ACID: isolation. Isolation is the guarantee that concurrent users are
isolated from one another, even if they are touching the same database data.
Isolation is important to understand because it does not come for free. As we’ll
see, you can control how isolated your transactions are from one another.
Choosing the right level of isolation is critical for the robustness and scalabil-
ity of your deployment.

Transactions 331

18_576828 ch12.qxd 11/3/04 11:43 AM Page 331

The underlying transaction system achieves isolation by performing concur-
rency control behind the scenes. We elaborate on this concept in the following
section.

The Need for Concurrency Control
Let’s begin our isolation discussion with a motivational example. Imagine
there are two instances of the same component executing concurrently, per-
haps in two different processes or two different threads. Let’s assume that the
component wants to update a shared database using a database API such as
JDBC or SQL/J. Each of the instances of the component performs the follow-
ing steps:

1. Read an integer X from a database.

2. Add 10 to X.

3. Write the new value of X to the database.

If each these three steps executes together in an atomic operation, every-
thing is fine. Neither instance can interfere with the other instance’s opera-
tions. Remember, though, that the thread-scheduling algorithm being used in
the background does not guarantee this. If two instances are executing these
three operations, the operations could be interleaved. The following order of
operations is possible:

1. Instance A reads integer X from the database. The database now con-
tains X = 0.

2. Instance B reads integer X from the database. The database now con-
tains X = 0.

3. Instance A adds 10 to its copy of X and persists it to the database. The
database now contains X = 10.

4. Instance B adds 10 to its copy of X and persists it to the database. The
database now contains X = 10.

What happened here? Due to the interleaving of database operations,
instance B is working with a stale copy of X: The copy before instance A per-
formed a write. Thus, instance A’s operations have been lost! This famous
problem is known as a lost update. It is a very serious situation—instance B has
been working with stale data and has overwritten instance A’s write. How can
transactions avoid this scenario?

The solution to this problem is to use locking on the database to prevent the
two components from reading data. By locking the data your transaction is
using, you guarantee that your transaction and only your transaction has
access to that data until you release that lock. This prevents interleaving of sen-
sitive data operations.

332 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 332

In our scenario, if our component acquired an exclusive lock before the
transaction began and released that lock after the transaction, then no inter-
leaving would be possible.

1. Request a lock on X.

2. Read an integer X from a database.

3. Add 10 to X.

4. Write the new value of X to the database.

5. Release the lock on X.

If another component ran concurrently with ours, that component would
have to wait until we relinquished our lock, which would give that component
our fresh copy of X. We explore locking further in the Isolation and Locking
sidebar.

Isolation and EJB
As an EJB component developer, you can control how isolated your transac-
tions are from one another. You can enforce strict isolation or allow relaxed iso-
lation. If you have very strict isolation, you can rest assured that each
concurrent transaction will be isolated from all other transactions. But some-
times enforcing strict isolation is a hindrance rather than a benefit. Because iso-
lation is achieved by acquiring locks on underlying resources, the locks can
result in unacceptable performance degradation.

Thus, you need to be smart about how much isolation you really need. Iso-
lation levels give you a choice over how much isolation you want and allow
you to specify concurrency control at a very high level. If you specify a very
strict isolation level, then your transactions will be perfectly isolated from one
another, at the expense of performance. If you specify a very loose isolation
level, your transactions will not be isolated, but you will achieve higher con-
current transaction performance.

There are four transaction isolation levels:

■■ The READ UNCOMMITTED mode does not offer any isolation guar-
antees but offers the highest performance.

■■ The READ COMMITTED mode solves the dirty read problem.

■■ The REPEATABLE READ mode solves the previous problem as well as
the unrepeatable read problem.

■■ The SERIALIZABLE mode solves the previous problems as well as the
phantom problem.

Transactions 333

ISOLATION AND LOCKING

During a transaction, a number of locks are acquired on the resource being
updated. These locks are used to ensure isolation: Multiple clients all updating
the same data set cannot interfere with each other. The locks are implicitly
retrieved when you interact with resource managers—you do not have to worry
about obtaining them yourself.

By intelligently acquiring locks on the resource being used, transactions
guarantee a special property: serializability. Serializability means that a suite of
concurrently executing transactions behaves as if the transactions were
executing one after another (non-concurrently). This is guaranteed no matter
how scheduling of the transactions is performed.

The problem with locking is that it physically locks out other concurrent
transactions from performing their database updates until you release your
locks. This can lead to major performance problems. In addition, a deadlock
scenario (not specific to databases, by the way) can arise. Deadlock causes the
entire system to screech to a dead stop. An example of deadlock occurs when
two concurrent transactions are both waiting for each other to release a lock.

To improve performance, transactions distinguish between two main types of
locks: read locks and write locks. Read locks are nonexclusive, in that any
number of concurrent transactions can acquire a read lock. In comparison, write
locks are exclusive—only one transaction can hold a write lock at any time.

Locking exists in many circles: databases, Version Control Systems, and the
Java language itself (through the synchronized keyword). The problems
experienced in locking are common to all arenas. EJB abstracts concurrency
control away from application developers via isolation levels.

If you would like more details about locking and transactions, check out
Principles of Databases Systems by Jeffrey D. Ullman (Computer Science Press,
1980). This classic, theoretical book on databases forms the basis for many
database systems today.

18_576828 ch12.qxd 11/3/04 11:43 AM Page 333

It’s important to understand why dirty reads, unrepeatable reads, and phantoms
occur, or you won’t be able to use transactions properly in EJB. This section
gives you the information you need to make an intelligent isolation level
choice when programming with transactions.

The Dirty Read Problem
A dirty read occurs when your application reads data from a database that has
not been committed to permanent storage yet. Consider two instances of the
same component performing the following:

1. You read integer X from the database. The database now contains X = 0.

2. You add 10 to X and save it to the database. The database now contains
X = 10. You have not issued a commit statement yet, however, so your
database update has not been made permanent.

3. Another application reads integer X from the database. The value it
reads in is X = 10.

4. You abort your transaction, which restores the database to X = 0.

5. The other application adds 10 to X and saves it to the database. The
database now contains X = 20.

The problem here is the other application reads your update before you
committed. Because you aborted, the database data has erroneously been set
to 20; your database update has been added in despite the abort! This problem
of reading uncommitted data is a dirty read. (The word dirty occurs in many
areas of computer science, such as caching algorithms. A dirty cache is a cache
that is out of sync with the main source.)

READ UNCOMMITTED

Dirty reads can occur if you use the weakest isolation level, called READ
UNCOMMITTED. With this isolation level, if your transaction is executing con-
currently with another transaction, and the other transaction writes some data
to the database without committing, your transaction will read that data in. This
occurs regardless of the isolation level being used by the other transaction.

READ UNCOMMITTED experiences the other transactional problems as
well: unrepeatable reads and phantoms. We’ll describe those problems in the
pages to come.

334 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 334

When to Use READ UNCOMMITTED

This isolation level is dangerous to use in mission-critical systems with shared
data being updated by concurrent transactions. It is inappropriate to use this
mode in sensitive calculations, such as in a debit/credit banking transaction.
For those scenarios, it’s better to go with one of the stricter isolation levels we
detail later.

This level is most appropriate if you know beforehand that an instance of
your component will be running only when there are no other concurrent
transactions. Because there are no other transactions to be isolated from, this
isolation level is adequate. But for most applications that use transactions,
this isolation level is insufficient.

The advantage of this isolation level is performance. The underlying trans-
action system doesn’t have to acquire any locks on shared data in this mode.
This reduces the amount of time that you need to wait before executing, and it
also reduces the time concurrent transactions waste waiting for you to finish.

READ COMMITTED

The READ COMMITTED isolation level is very similar to READ UNCOM-
MITTED. The chief difference is that your code will read committed data only
when running in READ COMMITTED mode. When you execute with this iso-
lation level, you will not read data that has been written but is uncommitted.
This isolation level thus solves the dirty read problem.

Note that this isolation level does not protect against the more advanced
transactional problems, such as unrepeatable reads and phantoms.

When to Use READ COMMITTED

This isolation level offers a step up in robustness from the READ UNCOM-
MITTED mode. You aren’t going to be reading in data that has just been writ-
ten but is uncommitted, which means that any data you read is going to be
consistent data.

One great use for this mode is for programs that read data from a database
to report values of the data. Because reporting tools aren’t in general mission-
critical, taking a snapshot of committed data in a database makes sense.

When you run in READ COMMITTED mode, the underlying concurrency
control system needs to acquire additional locking. This makes performance
slower than with READ UNCOMMITTED. READ COMMITTED is the default
isolation level for most databases, such as Oracle or Microsoft SQL Server.

Transactions 335

18_576828 ch12.qxd 11/3/04 11:43 AM Page 335

The Unrepeatable Read Problem
Our next concurrency control problem is an Unrepeatable Read. Unrepeatable
reads occur when a component reads some data from a database, but upon
rereading the data, the data has been changed. This can arise when another
concurrently executing transaction modifies the data being read. For example:

1. You read a data set X from the database.

2. Another application overwrites data set X with new values.

3. You reread the data set X from the database. The values have magically
changed.

Again, by using transactional locks to lock out those other transactions from
modifying the data, we can guarantee that unrepeatable reads will never occur.

REPEATABLE READ

REPEATABLE READ guarantees yet another property on top of READ COM-
MITTED: Whenever you read committed data from a database, you will be
able to reread the same data again at a later time, and the data will have the
same values as the first time. Hence, your database reads are repeatable. In con-
trast, if you are using the READ COMMITTED mode or a weaker mode,
another concurrent transaction may commit data between your reads.

When to Use REPEATABLE READ

Use REPEATABLE READ when you need to update one or more data elements
in a resource, such as one or more records in a relational database. You want to
read each of the rows that you’re modifying and then be able to update each
row, knowing that none of the rows are being modified by other concurrent
transactions. If you choose to reread any of the rows at any time later in the
transaction, you’d be guaranteed that the rows still have the same data that
they did at the beginning of the transaction.

The Phantom Problem
Finally, we have the phantom problem. A phantom is a new set of data that
magically appears in a database between two read operations. For example:

1. Your application queries the database using some criteria and retrieves
a data set.

2. Another application inserts new data that would satisfy your query.

3. You perform the query again, and new sets of data have magically
appeared.

336 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 336

The difference between the unrepeatable read problem and the phantom
problem is that unrepeatable reads occur when existing data is changed,
whereas phantoms occur when new data that didn’t exist before is inserted.
For example, if your transaction reads a relational record, and a concurrent
transaction commits a new record to the database, a new phantom record
appears that wasn’t there before.

SERIALIZABLE

You can easily avoid phantoms (as well as the other problems described ear-
lier) by using the strictest isolation level: SERIALIZABLE. SERIALIZABLE
guarantees that transactions execute serially with respect to each other, and it
enforces the isolation ACID property to its fullest. This means that each trans-
action truly appears to be independent of the others.

When to Use SERIALIZABLE

Use SERIALIZABLE for mission-critical systems that absolutely must have
perfect transactional isolation. You are guaranteed that no data will be read
that has been uncommitted. You’ll be able to reread the same data again and
again. And mysterious committed data will not show up in your database
while you’re operating due to concurrent transactions.

Use this isolation level with care because serializability does have its cost. If
all of your operations execute in SERIALIZABLE mode, you will quickly see
how fast your database performance grinds to a halt. (A personal note:
Because transactional errors can be very difficult to detect, due to scheduling
of processes, variable throughput, and other issues, we subscribe to the view
that it’s better to be safe than sorry.)

Transaction Isolation Summary
The various isolation levels and their effects are summarized in Table 12.5.

Table 12.5 The Isolation Levels

ISOLATION DIRTY UNREPEATABLE PHANTOM
LEVEL READS? READS? READS?

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

Transactions 337

18_576828 ch12.qxd 11/3/04 11:43 AM Page 337

Isolation and EJB
Now that you understand isolation in theory, let’s see how to set up isolation
in an EJB environment.

■■ If your bean is managing transactions, you specify isolation levels
with your resource manager API (such as JDBC). For example, you
could call java.sql.Connection.SetTransactionIsolation().

■■ If your container is managing transactions, there is no way to specify
isolation levels in the deployment descriptor. You need to either use
resource manager APIs (such as JDBC) or rely on your container’s tools
or database’s tools to specify isolation.

If you’re using different resource managers within a single transaction, each
resource manager can have a different isolation level, yet all run together
under a single transaction. Note that any particular resource manager running
under a transaction usually requires a single isolation level for the duration of
that transaction. This new model has some drawbacks as well, as described in
the “Isolation Portability Issues” sidebar.

338 Chapter 12

ISOLATION PORTABILITY ISSUES

Unfortunately, there is no way to specify isolation for container-managed
transactional beans in a portable way—you are reliant on container and
database tools. This means if you have written an application, you cannot ship
that application with built-in isolation. The deployer now needs to know about
transaction isolation when he uses the container’s tools, and the deployer
might not know a whole lot about your application’s transactional behavior.
This approach is also somewhat error-prone, because the bean provider and
application assembler need to communicate isolation requirements informally
to the deployer, rather than specifying it declaratively in the deployment
descriptor.

When we queried Sun on this matter, Mark Hapner, coauthor of the EJB
specification, provided this response: “Isolation was removed because the
vendor community found that implementing isolation at the component level
was too difficult. Some felt that isolation at the transaction level was the
proper solution; however, no consensus was reached on specific replacement
semantics.”

“This is a difficult problem that unfortunately has no clear solution at this
time...The best strategy is to develop EJBs that are as tolerant of isolation
differences as possible. This is the typical technique used by many optimistic
concurrency libraries that have been layered over JDBC and ODBC.”

18_576828 ch12.qxd 11/3/04 11:43 AM Page 338

Pessimistic and Optimistic Concurrency Control
The two basic object concurrency control strategies that EJBs may follow, pes-
simistic and optimistic, are summarized in Table 12.6. Pessimistic concurrency
control is the algorithm we’ve been assuming throughout this chapter—you
acquire a lock for the data for the duration of the transaction, ensuring that
nobody messes with your data.

With optimistic concurrency control, your EJB component does not hold the
lock for the duration of the transaction. Instead, you hope everything will be
okay. Then if the database detects a collision, the transaction rolls back. The
basic assumption behind optimistic concurrency is that because it is unlikely
that separate users will access the same object simultaneously, it is better to
handle the occasional collision than to limit the request-handling throughput
of your system.

Table 12.6 Comparing Pessimistic and Optimistic Concurrency Control Strategies

STRATEGY ADVANTAGES DISADVANTAGES

Pessimistic—Your EJB locks the • Brute force approach • Does not scale well
source data for the entire time • Provides reliable because it blocks
it needs the data, not allowing access to data simultaneous access
anything greater (at least • Suitable for small to common
anything greater than read/view scale systems resources
access) to potentially update the • Suitable for systems
data systems until it completes simultaneous access
its transaction. where concurrent

access is rare

Optimistic—Your EJB implements • Suitable for large • Requires complex
a strategy to detect whether a system code to be written
system change has occurred to • Suitable for systems to support collision
the source data between the time requiring significant detection and
it was read and the time it now concurrent access handling
needs to be updated. Locks are
placed on the data only for the
small periods of time the EJB
interacts with the database

Transactions 339

18_576828 ch12.qxd 11/3/04 11:43 AM Page 339

Distributed Transactions

Now that we’ve concluded our discussion of isolation levels, we’ll shift gears
and talk about distributed transactions, which are transactions spanning multi-
ple tiers of deployments with several transaction participants.

The most basic flat transaction occurs with a single application server tied to
a single database. Depending on the functionality of your application server’s
transaction service, you may be able to perform distributed flat transactions as
well. Distributed flat transactions obey the same rules as simple flat transac-
tions: If one component on one machine aborts the transaction, the entire
transaction is aborted. But with distributed flat transactions, you can have
many different types of resources coordinating in a single transaction across
the network. Here are some possible cases for which you may need distributed
flat transactions.

■■ You have multiple application servers coordinating in the same transac-
tion.

■■ You have updates to different databases in the same transaction.

■■ You are trying to perform a database update and send or receive a JMS
message from a message queue in the same transaction.

■■ You are connecting to a legacy system as well as one or more other
types of storage (such as databases, message queues, or other legacy
systems) in the same transaction.

Each of these scenarios requires multiple processes or machines to collabo-
rate, potentially across a network, to solve a business problem. Distributed flat
transactions allow multiple transaction participants, written by different vendors,
to collaborate under one transactional hood.

Durability and the Two-Phase Commit Protocol
One important ACID property is durability. Durability guarantees that all
resource updates that are committed are made permanent. Durability is easy
to implement if you have just one storage into which you are persisting. But
what if multiple resource managers are involved? If one of your resources
undergoes a catastrophic failure, such as a database crash, you need to have a
recovery mechanism. How do transactions accomplish this?

One way would be to log all database operations before they actually
happen, allowing you to recover from a crash by consulting the log and reap-
plying the updates. This is exactly how transactions guarantee durability. To
accomplish this, transactions complete in two phases.

340 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 340

■■ Phase One begins by sending a before commit message to all resources
involved in the transaction. At this time, the resources involved in a
transaction have a final chance to abort the transaction. If any resource
involved decides to abort, the entire transaction is cancelled and no
resource updates are performed. Otherwise, the transaction proceeds on
course and cannot be stopped, unless a catastrophic failure occurs. To
prevent catastrophic failures, all resource updates are written to a trans-
actional log or journal. This journal is persistent, so it survives crashes
and can be consulted after a crash to reapply all resource updates.

■■ Phase Two occurs only if Phase One completed without an abort. At
this time, all of the resource managers, which can all be located and
controlled separately, perform the actual data updates.

The separation of transaction completion into two phases is called the two-
phase commit protocol or 2PC. The two-phase commit protocol is useful because
it allows for many transaction managers and resource managers to participate
in a transaction across a deployment. If any participant votes that the transac-
tion should abort, all participants must roll back.

In the distributed two-phase commit, there is one master transaction manager
called the distributed transaction coordinator. The transaction coordinator runs
the show and coordinates operations among the other transaction managers
across the network. The following steps occur in a distributed two-phase com-
mit transaction:

1. The transaction coordinator sends a prepare to commit message to each
transaction manager involved.

2. Each transaction manager may propagate this message to the resource
managers that are tied to that transaction manager.

3. Each transaction manager reports back to the transaction coordinator. If
everyone agrees to commit, the commit operation that’s about to happen
is logged in case of a crash.

4. Finally, the transaction coordinator tells each transaction manager to
commit. Each transaction manager in turn calls each resource manager,
which makes all resource updates permanent and durable. If anything
goes wrong, the log entry can be used to reapply this last step.

This process is shown in Figure 12.9.

Transactions 341

18_576828 ch12.qxd 11/3/04 11:43 AM Page 341

Figure 12.9 A distributed flat transaction using a two-phase commit protocol.

The Transactional Communications Protocol
and Transaction Contexts
A distributed two-phase commit transaction complicates matters, because the
transaction managers must all agree on a standard mechanism of communicat-
ing. Remember that each of the participants in a distributed transaction may
have been written by a different vendor, such as is the case in a deployment
with heterogeneous application servers. The communication mechanism used
is called the transactional communications protocol. An example of such a proto-
col is the Internet Inter-ORB Protocol (IIOP), which we describe in Appendix B.

The most important piece of information sent over the transactional com-
munications protocol is the transaction context. A transaction context is an object
that holds information about the system’s current transactional state. It is
passed around among parties involved in transactions. By querying the trans-
action context, you can gain insight into whether you’re in a transaction, what
stage of a transaction you are at, and other useful data. For any component to
be involved in a transaction, the current thread in which the component is exe-
cuting must have a transaction context associated with it.

Transaction
Coordinator

Transaction
Manager

Transaction
Manager

Transaction
Manager

Resource Manager

Resource Manager

1: Prepare to
Commit

Transaction Participants

4: Commit

2: Return

3: Log Result

5: Return

342 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 342

The EJB specification suggests, but does not require, that application server
vendors support on-the-wire transaction context interoperability. If an
application server does support interoperable transactions, EJB requires that it
leverage the transaction context propagation facilities built into CORBA Object
Transaction Service (OTS) and the Internet Inter-ORB Protocol (IIOP). Application
servers that use these technologies should be interoperable and run in a
distributed two-phase commit transaction.

Since the EJB specification does not require this level of interoperability,
application servers from different vendors cannot be guaranteed to work
together and participate in a distributed two-phase commit transaction,
because they may not be able to communicate in a standard way.

For most users, this is acceptable because a distributed two-phase commit
transaction has poor performance. And more to the point, most organizations
struggle enough as it is with a single application server vendor.

It’s important to understand which communications protocol your application
server uses. If you want to perform a distributed two-phase commit transaction,
the transaction participants must agree on a standard protocol.

Designing Transactional Conversations in EJB

In this chapter, we’ve seen that a transactional abort entails an automatic rollback
of database updates that were performed during the transaction. But database
updates are only half of the picture. Your application code needs to consider the
impacts of a failed transaction as well.

When a transaction aborts, your application code has several choices. You can
abort your business process and throw an exception back to the client, or you
can attempt to retry the transaction several times. But unfortunately, your applica-
tion cannot sit in a loop retrying transactions forever, as that would yield horrible
performance for concurrent threads of execution. If the transaction cannot eventu-
ally be made to succeed, you should consider aborting your business process.

For a stateless session bean, aborting a business process is a simple task—simply
throw an exception back to the client. But for a stateful session bean, things are a bit
trickier. Stateful session beans represent business processes that span multiple
method calls and hence have in-memory conversational state. Tossing away that
conversation and throwing an exception to the client could entail a significant
amount of lost work.

Fortunately, a well-designed stateful session bean can salvage its conversations
in the case of failed transactions. The key is to design your beans to be aware of
changes to conversational state and to be smart enough to undo any of those
changes if a transactional abort occurs.

Transactions 343

18_576828 ch12.qxd 11/3/04 11:43 AM Page 343

Because this process is highly application-specific, your application server
cannot automate this task for you. Your application server can aid you in deter-
mining when a transaction failed, enabling you to take application-specific
steps. If your session bean needs to be alerted to transaction status (like failed
transactions), your enterprise bean class can implement an optional interface
called javax.ejb.SessionSynchronization, shown in the following code:

public interface javax.ejb.SessionSynchronization

{

public void afterBegin();

public void beforeCompletion();

public void afterCompletion(boolean);

}

You should implement this interface in your enterprise bean class and define
your own implementations of each of these methods. The container will call
your methods automatically at the appropriate times during transactions, alert-
ing you to important transactional events. This adds to the existing arsenal of
alerts that your session beans receive already—life-cycle alerts via ejbCreate()
and ejbRemove(), passivation alerts via ejbActivate() and ejbPassivate(), and now
transactional alerts via afterBegin(), beforeCompletion(), and afterCompletion().

Here’s what each of the SessionSynchronization methods do:

■■ afterBegin() is called by the container directly after a transaction begins.

■■ beforeCompletion() is called by the container right before a transaction
completes.

■■ afterCompletion() is called by the container directly after a transaction
completes.

The key method that is most important for rolling back conversations is
afterCompletion(). The container calls your afterCompletion() method when a
transaction completes either in a commit or an abort. You can figure out
whether a commit or an abort happened by the Boolean parameter that gets
passed to you in afterCompletion(): True indicates a successful commit, false
indicates an abort. If an abort happened, you should roll back your conversa-
tional state to preserve your session bean’s conversation.

Here’s an example of afterCompletion() in action:

public class CountBean implements SessionBean, SessionSynchronization {

public int val;

public int oldVal;

public void ejbCreate(int val) {

this.val=val;

this.oldVal=val;

344 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 344

}

public void afterBegin() { oldVal = val;}

public void beforeCompletion() { }

public void afterCompletion(boolean b) { if (b == false) val = oldVal;

}

public int count() { return ++val; }

public void ejbRemove() { }

public void ejbActivate() { }

public void ejbPassivate() { }

public void setSessionContext(SessionContext ctx) { }

}

This is a new version of our count bean from Chapter 4. The conversational
state is val, an integer that increases incrementally whenever count() is called.
We also keep a backup copy of val, called oldVal, which we revert to in case of
a transactional rollback. Here is what’s going on:

1. When our bean is first initialized in ejbCreate(), or when a transaction
first begins in afterBegin(), val and oldVal are set to the same value.

2. One or more count() business methods are called, incrementing val.

3. If the transaction fails, the afterCompletion() method is called when the
transaction completes. If the transaction failed (that is, if a false value
was passed into afterCompletion()), we roll back our conversational state
by reverting back to oldVal.

Note that for this to work, we must make count() transactional in the deploy-
ment descriptor using transaction attributes that we described earlier in this
chapter.

SessionSynchronization is also useful when your stateful session bean caches
database data in memory during a transaction. You can use SessionSynchro-
nization to track when to cache and when not to cache data as follows.

■■ When the container calls afterBegin(), the transaction has just started.
You should read in any database data you want to cache in your state-
ful session bean.

■■ When the container calls beforeCompletion(), the transaction has ended.
Write out any database data you’ve cached.

You can implement SessionSynchronization only if you’re using a stateful
session bean with declarative (container-managed) transactions. If your
bean is using programmatic (bean-managed) transactions, you are already
in control of the transaction because you issue the begin(), commit(), and
abort() statements. Stateless session beans do not hold conversations and
hence do not need these callbacks.

Transactions 345

18_576828 ch12.qxd 11/3/04 11:43 AM Page 345

J2EE Transaction Service
and Extended Transactions

As we discussed earlier, J2EE provides good support for flat transactions, both
local and distributed. However, there are times when flat transactions might
not be the best model for transactions as in the trip-planning problem that we
saw earlier. In such situations, we need to extend the concept of ACID trans-
actions as is defined in J2EE to suit our requirements. That is where J2EE Activ-
ity Service and Extended Transactions standard come into picture.

J2EE Activity Service and the Extended Transactions specification (JSR 095)
defines a framework for developing and deploying extended transaction
models—such as nested transactions, long-running transactions, and so on—
that are not presently supported by the classic J2EE architecture. Its primary
purpose is to integrate a wide variety of transaction models with J2EE appli-
cation server such that these extended transaction services can be managed by
the application server and are portable across application servers.

The two main components in a J2EE activity service are:

■■ High-Level Service (HLS), which is an implementation of a specific unit
of work (UOW) model. An HLS sits in an application server, and much
like J2EE Resource Adapters (Connectors), can communicate with
application server through well-defined interfaces. Interfaces between
the HLS and J2EE application are specific to the HLS and are not
defined by the J2EE Activity Service specification.

■■ Activity service, which is the facilitator of communication between
HLS’ transaction context and other transaction contexts maintained by
Java Transaction Service. In fact, Activity service maintains the transac-
tion context of HLS on its behalf.

Figure 12.10 shows the pluggable HLS architecture.
Each HLS has to implement the javax.coordination.ServiceManager interface.

HLS also provides various signals that it supports via the implementation
SignalSet interface. ActivityCoordinator, implemented by the Activity service, gets
SignalSet via HLS ServiceManager. ActivityCoordinator is responsible for produc-
ing signals and distributes them to registered Actions. ActivityCoordinator also
distributes the resulting outcomes of these actions to the HLS via SignalSet. Thus,
SignalSet provides a finite state machine that produces signals and accepts out-
comes to those signals to influence state transitions. The semantics of HLS are
thus encapsulated mainly in SignalSet and Action implementations.

346 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 346

Figure 12.10 Pluggable HLS architecture.

Signals are events that are broadcast to interested parties, such as Actions.
Signals could indicate to the interested parties to start performing a certain
action in response, for example a rollback or a commit. Actions usually would
implement the logic of compensating an activity. The result of an Action is
encapsulated in Outcome object.

The specification itself is well written and provides good examples of imple-
menting extended transactions with the Activity service. The specification is in
its final stages. We believe that J2EE activity service will be made an integral
part of J2EE 1.5.

We believe that the application server vendors will provide support for other
transaction models, such as long-running transactions or nested transactions
as HLS. An average developer will be required to use the appropriate APIs
supported by the HLS to work with these extended transactions. The J2EE
activity service work can evolve further to support declarative extended
transactions to J2EE applications. That would be awesome!

UserActivity

Standard contract

ActivityCoordinator

Activity Service

Application Server

ServiceManager

SignalSet

Action

Service specific API

High-Level Service

Application Component
Implementation specific

Transactions 347

18_576828 ch12.qxd 11/3/04 11:43 AM Page 347

Summary

Whew! That’s a lot of data to digest. You may want to reread this chapter later
to make sure you’ve grasped all the concepts.

In this chapter, we discussed transactions and how they can make a server-
side deployment robust. We saw the virtues of transactions, which are called
the ACID properties. We looked at different transactional models, including
flat and nested transactions.

We then applied this transactional knowledge to EJB. We discussed how
declarative, programmatic, and client-initiated transactions are useful in EJB
and learned how to code with each model. We looked at transaction isolation
levels and understood the problems that each level solves. Finally, we covered
distributed transactions and the two-phase commit protocol, writing transac-
tional conversations. We ended with an introduction to J2EE Activity Service
and extended transactions.

Reading this chapter will prove well worth the effort, because now you have
a wealth of knowledge about the importance and usefulness of transactions in
EJB. You should definitely return to this chapter frequently when you’re creat-
ing transactional beans.

348 Chapter 12

18_576828 ch12.qxd 11/3/04 11:43 AM Page 348

349

This chapter introduces and explains EJB security in detail. Let’s start with a
fundamental observation: when building systems based on enterprise mid-
dleware, you typically want to integrate important business resources.
Because important also means critical, security can be one of the most impor-
tant aspects of your EJB application architecture. To build a secure system,
you need to make informed and balanced decisions about placing security
controls. Without understanding the fundamental risks in your application
and its environment, you won’t be able to make these decisions. Balancing
your decisions is important because security comes at a price, such as
increased cost or complexity, reduced performance, maintainability, or func-
tionality, and so on.

An introduction to important security concepts is given in the introductory
section. We will then take a look at Web application security in J2EE as a pre-
lude to introducing the two basic security approaches in EJB—declarative and
programmatic security. We provide information on security interoperability
aspects that are important for applications that span different EJB vendor’s
platforms and communicate across individual networks. Finally, we explain
the latest and greatest in security technology for Web Services.

Security

C H A P T E R

13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 349

Introduction

Security is often a nebulous thing. It can be difficult and costly, and dealing
with it is often avoided until very late in a project. In large-scale projects
involving enterprise middleware like EJB, however, the risks of a badly or alto-
gether unprotected infrastructure can be enormous. For example, loosing the
customer data in your enterprise database because someone drilled a hole into
the backend with an unprotected EJB application can put you out of business
very quickly.

Being secure means that no harmful events can happen to you and your
assets (data, processes, infrastructure, whatever). What makes security some-
times hard to grasp is that it spans a wide variety of technologies, such as net-
works, operating systems, databases, application servers, EJBs, and so on.
Moreover, security is not confined to information technology but also involves
physical controls like door locks and alarms. It also depends to a great degree
on appropriate human behavior, such as correct operations, proper monitor-
ing of systems, swift responses to alarms, and users not sharing passwords or
keys with others. Security books abound with anecdotes about successful
social engineering attacks, where attackers simply exploit people’s good will
and trust in others. To complete the story, it can sometimes be very hard to say
exactly (and completely) what must be considered secure or insecure. This last
issue is the domain of security policy design. In a broader sense, then, security
is the process that aims at securing systems rather than the idealized state of
absolute security itself.

One word of caution before we start getting into details: don’t roll your
own security systems! Don’t start designing new exciting crypto algorithms,
authentication protocols, or access control systems. This is a discipline that
takes years of experience, and you need to understand the faults and
sidetracks of the past in order to avoid repeating them. At best, it is a
waste of time and money. At worst, the false sense of security created by
homegrown technology will cloud up the enormous risks created by the
subtle or not so subtle design flaws in your protections.

For further reading on EJB and enterprise security with many more details
than we are able to cover in this one chapter, please refer to Bret Hartman et al.,
Enterprise Security with EJB and CORBA (2001; ISBN: 0471401315), published by
Wiley. For in-depth treatment of security as an engineering discipline, we rec-
ommend Ross Anderson’s Security Engineering (2001; ISBN 0471389226), also
published by Wiley.

350 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 350

Violations, Vulnerabilities, and Risk
Let’s quickly define a handful of terms that we need on the following pages.
Feel free to jump ahead and skip this and the following section if you are famil-
iar with these terms. The events that you would like to avoid are often called
security breaches or violations, for example an intruder reading files that you
would prefer to remain confidential. A security violation is possible if there are
no safeguards that protect against them, in other words no file system protec-
tion. Alternatively, violations are possible if the system has weaknesses that
allow users to circumvent security, for example, where a user can obtain
another user’s privileges and thus get access. Both these deficiencies are called
vulnerabilities, which can be exploited by those who find them. Another exam-
ple of a vulnerable system is one that has its default administrator password
unchanged after installation and is thus open to anyone who can read the
installation documentation, or a program using libraries that are ridden with
buffer overflow bugs.

Because the list of potential vulnerabilities is open-ended and increases with
every piece of hardware or software that is added to a system, complete pro-
tection is not a realistic goal. Also, it may be very expensive to protect even
against all known vulnerabilities. As there is no perfect security anyway, it has
become common practice to try to reduce the overall risks to an acceptable level
instead. To reduce risks, however, we first need to know them, meaning that
we need to perform a risk assessment before we can decide how much and what
needs to be done.

In the simplest definition, risk is a product of two factors: probability of the
occurrence of a violation, and the estimated damage caused by this event. This
may sound a bit like insurance business, and in fact it is very similar. The prob-
ability of occurrence is a function of your system’s vulnerabilities and the
attacker’s resources, and the potential damage is a function of the value of
your assets. In other words, if you have a complex system with weak protec-
tions and a resourceful enemy, then the probability of a successful attack is
high. Don’t let your hair turn gray yet; given our definition of risk, we may not
have to worry about this: if the system is just a gaming console that does not
represent any business value (and the resourceful attackers are students doing
an internship at your company) then the actual risk is low!

Controls
By eliminating or reducing the vulnerabilities in your systems, risks are
reduced, ideally down to zero. (The obvious other measure, reducing the
value of your assets, is not a desirable option in most cases.) This is done by
placing security controls in the right places.

Security 351

19_576828 ch13.qxd 11/3/04 11:43 AM Page 351

As we saw, it is important to understand the risks in a system before you
start setting up arbitrary controls. Without such an understanding, you may be
spending an enormous amount of time and resources protecting against
relatively harmless events that may not be more than a nuisance—while not
paying attention to the others that will ruin your company. For example, the
actual risk associated with an attacker observing the update() method calls in
an MVC pattern may not even warrant the use of SSL/TLS protection, with the
associated performance hit at connection setup time and the administrative
overhead of distributing credentials such as public key certificates.

The term control is generally translated to one or more of the following,
canonic security functions:

■■ Authentication. Verifying the authenticity of user information. In most
cases this means verifying that the other side is who it claims to be. The
authenticated entity is called principal. Authentication can mean checking
a provided user ID and password against a database, or it can involve
verifying a digital signature on a public key certificate to establish trust in
the holder of that key.

■■ Authorization. Controlling principals’ accesses to resources. This usu-
ally involves checking access privileges to find out who is authorized.

■■ Data integrity protection. Preventing or at least detecting modifications
of data. Data integrity mishaps can be prevented by controlling all
write accesses to that data. When data is communicated over an open
transport channel, such as a WLAN, access to that data cannot be pre-
vented at all times. In these cases, integrity protection usually means
applying a cryptographic hash and later recomputing that hash to
determine whether the data has been modified in transit.

352 Chapter 13

ATTACKER MODEL

As we saw, risk assessment should include a model of your potential adversary,
such as foreign intelligence services, determined criminals, or bored high-
school students. The motivation for defining who to defend against is that the
different levels of skills, determination, and resources that are associated with
the different model attackers shed a different light on the concept of
vulnerability. A password that is hard to crack for some people using their
limited attacker toolbox and computing resources may be very easy to crack for
others using off-line attacks with terabytes of precomputed passwords that are
indexed for faster lookup. A bored teenager will not be sufficiently motivated
to spend more than the weekend to analyze messages encrypted with even
low-grade cryptography, but a foreign intelligence service may be. Defining your
model attacker is a more precise way of estimating your vulnerabilities by
establishing additional context.

19_576828 ch13.qxd 11/3/04 11:43 AM Page 352

■■ Data confidentiality protection. Preventing unauthorized disclosure of
information. As with data integrity, data confidentiality can be protected
by controlling read access to data, or by encrypting the data on the wire so
that it can be read only by receivers with the correct cryptographic keys.

To conclude this introductory section before taking a dive into the security
technologies that are relevant for EJB, let’s take a minute to think about the secu-
rity of the EJB infrastructure itself. This chapter is about protecting applications
using EJB security, but this obviously hinges on the security of the system that
provides it, meaning your application server. We need not go as far as looking
for programming errors in the software; all the security that we are about to
introduce now can be turned off again just like that if administrator access is not
adequately controlled. This means that choosing a good password and protect-
ing it is a prerequisite for any higher-level security. Protecting the application
server is necessarily a product-specific task, and you should take the time to con-
sult your product documentation to find out what needs to be done.

In addition, consider the security of the services that the EJB container pro-
vides to applications and that may be externally accessible. Most importantly,
this means the Java Naming and Directory Service (JNDI). Can anyone other than
your expected clients connect to your container’s JNDI contexts, for example
by using RMI over IIOP (RMI/IIOP) applications? With most application
servers, this is possible by default. If there is no protection for the JNDI, then
your application may think it is retrieving a particular bean reference, but in
fact it is receiving an object reference to a carefully crafted man-in-the-middle
bean at hacker.org that was skillfully bound to the very name of the bean that
you expected to use. This bean can then intercept and inspect any application
traffic and may actually forward it to the appropriate server so that its exis-
tence can remain concealed for a while. Rebinding a name in JNDI is simple,
so you must make sure that only trusted clients may bind or rebind names.

Web Application Security

In J2EE applications with a Web tier, the first point of interaction with a client
is the Web container and the JSP files or servlets it hosts, as shown Figure 13.1.
Clients send Hypertext Transfer Protocol (HTTP) requests, and the servlets or
JSP files would call bean instances in the EJB containers using RMI-IIOP
or SOAP.

Web application security is not covered by the EJB specifications but
rather by the Java Servlet Specification and the J2EE Platform Specification version
1.4. The general security concepts used by J2EE for both servlets and EJB are
very similar, but if you are building complex Web applications, we recom-
mend that you consult the Java Servlet Specification that is available at
http://java.sun.com/products/servlet/.

Security 353

19_576828 ch13.qxd 11/3/04 11:43 AM Page 353

Figure 13.1 Web applications.

Authentication in Web Applications
Web applications are accessed by sending HTTP request messages to the
servlet container. The servlet specification does not define any additional
authentication mechanisms beyond the ones that are available in HTTP, so the
actual authentication is done by the general Web server component. These
mechanisms are as follows:

■■ HTTP Basic and Digest authentication. A user ID and password mech-
anism, where both the user name and password are transmitted in a
special header field of the HTTP request. With basic authentication, the
password is transmitted in base64 encoding, but unencrypted. This is
insecure and only appropriate in combination with SSL (HTTPS), or in
relatively trusted environments. With digest authentication, the pass-
word is transmitted in encrypted form. Digest authentication is not in
widespread use, and hence not required to be available in all products.

■■ Form-based authentication. Another form of user ID and password
authentication. The user information is sent in the request message
body as part of HTML form input data. Like basic authentication, this
data is unprotected unless additional mechanisms (HTTPS) are used.

■■ HTTPS Client authentication. A strong authentication mechanism
based on public key certificates exchanged in the Secure Socket Layer
(SSL/TLS) underneath HTTP. HTTPS client authentication requires
clients to provide a public key certificate in X.509 format. When client
authentication is required, the SSL layer performs a handshake proce-
dure as part of the connection establishment process. In this process, the
SSL layer will transmit the client’s public key certificate and use the cor-
responding private key to prove possession of the public key. These
keys may reside in a Java keystore file at the client.

Authentication requirements for Web applications can be specified in the Web
application’s deployment descriptor (the web.xml file) using the login-config ele-
ment. To require HTTP basic authentication for a servlet, the login-config element

JSP/Servlet

Web Container

Web Client
EJB

EJB Container

354 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 354

would look like this, where realm-name refers to an authentication realm (a set of
users) that is known to the servlet container:

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>basic-file</realm-name>

</login-config>

Other valid content for the login-config element is DIGEST, FORM, or
CLIENT-CERT, as in the following example:

<login-config>

<auth-method>CLIENT-CERT</auth-method>

<realm-name>basic-file</realm-name>

</login-config>

Authorization
There are two options for authorization checking for a J2EE Web application:

■■ Declarative security. The servlet container checks access to Web
resources based on access rules in deployment descriptors.

■■ Programmatic security. The servlet performs its own access checks
based on internal state, hard-coded access rules, and the authentication
information provided by the container. The security context API pro-
vided by the servlet container is similar to the one provided by EJB
containers, which we explain later in this section. Servlets can use the
isUserinRole and the getUserPrincipal methods to make authorization
decisions. Refer to the servlet specification for details.

To specify access rules declaratively, the servlet specification uses the security-
constraint element of the deployment descriptor, which defines constraints for a
collection of Web resources. Here is an example:

<security-constraint>

<web-resource-collection>

<web-resource-name>basic security test</web-resource-name>

<url-pattern>/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>staffmember</role-name>

</auth-constraint>

</security-constraint>

Security 355

19_576828 ch13.qxd 11/3/04 11:43 AM Page 355

The preceding descriptor snippet specifies that all HTTP requests that apply
to the URL pattern /*, in other words to all URLs in the Web application, are to
be constrained to the listed role staffmember, meaning only users that are
members of that role are allowed access. An auth-constraint with empty content
would be taken as denial. How users are mapped to roles is vendor-specific.
Typically, application servers will use an additional descriptor file with a role-
mapping element for this purpose.

Confidentiality and Integrity
Confidentiality and integrity protection for Web applications is based entirely
on secure transport, meaning on HTTPS. A Web application’s requirements are
again expressed in the deployment descriptor, as in the following example:

<security-constraint>

<web-resource-collection>

<web-resource-name>wholesale</web-resource-name>

<url-pattern>/acme/wholesale/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>CONTRACTOR</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

Here, the user-data-constraint contains a transport-guarantee element that
requires confidentiality protection from the transport layer. Other values for
the transport-guarantee are INTEGRAL and NONE, where NONE means that no
requirements exist. Note that CONFIDENTIAL implies INTEGRAL because
any encrypted data is implicitly protected against modifications: modified
encrypted data simply does not correctly decrypt on the receiver side.

The confidentiality and integrity protections for Web applications are rela-
tively coarse-grained in that there is no way for the deployment descriptor to
express requirements on the cryptographic strength of the protection through
the choice of SSL/TLS cipher suite. When you deploy a Web application, you
must trust the container that its provision of a CONFIDENTIAL transport is
confidential enough.

356 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 356

Understanding EJB Security

There are two security measures that clients must pass when you add security
to an EJB system: authentication and authorization. Authentication must be
performed before any EJB method is called. Authorization, on the other hand,
occurs at the beginning of each EJB method call.

Authentication in EJB
In earlier versions of EJB (1.0 and 1.1), there was no portable way to achieve
authentication. The specific way your client code became associated with a
security identity was left to the discretion of your application and your EJB con-
tainer. This meant each EJB container could handle authentication differently.

The good news is that since EJB 2.0, authentication is now portable and
robust. You can call authentication logic through the Java Authentication and
Authorization Service (JAAS), a separate J2EE API. Let’s now take a mini-tutorial
of JAAS and see how it can be used in an EJB environment.

JAAS Overview

JAAS is a portable interface that enables you to authenticate and authorize
users in Java. In a nutshell, it allows you to log into a system without knowing
about the underlying security system being used. Behind the scenes in JAAS,
the implementation (such as an application server) then determines if your
credentials are authentic. Moreover, JAAS enables you to write your own cus-
tomized authentication modules that can then be plugged in without the need
to change client code.

The power of JAAS lies in its ability to use almost any underlying security
system. Some application servers allow you to set up user names and pass-
words in the application server’s properties, which the application server
reads in at runtime. More advanced servers support complex integration with
existing security systems, such as a list of user names and passwords stored in
an LDAP server, database, or custom security system. Other systems support
certificate-based authentication. Regardless, the integration is performed
behind the scenes by the container and does not affect your application code.

There are two likely candidate scenarios when you may want to use JAAS
from your code, shown in Figure 13.2.

Security 357

19_576828 ch13.qxd 11/3/04 11:43 AM Page 357

Fi
gu

re
 1

3.
2

JA
AS

 o
ve

rv
ie

w
.

C
lie

nt
 -

 e
.g

. s
er

vl
et

, J
S

P,
 o

r
ap

pl
ic

ai
to

n
(y

ou
 w

rit
e

th
is

)

Lo
gi

nC
on

te
xt

(p
ro

vi
de

d
fo

r
yo

u)

1:
 n

ew
()

7:
 lo

gi
n(

)

C
on

fig
ur

at
io

n
(y

ou
 w

rit
e

th
is

)

O
ne

 o
r

m
or

e
Lo

gi
nM

od
ul

es
(y

ou
 w

rit
e

th
em

)

5:
 n

ew
()

6:
 in

iti
al

iz
e(

)
8:

 lo
gi

n(
)

10
: c

om
m

it(
)

or
 a

bo
rt

()

S
ub

je
ct

(p
ro

vi
de

d
fo

r
yo

u)

9:
 g

et
S

ub
je

ct
()

11
: r

et
ur

n
su

bj
ec

t

13
:

do
A

s(
su

bj
ec

t,
ac

tio
n)

A
ct

io
n

(y
ou

 w
rit

e
th

is
)

12
: n

ew
()

14
: r

un
()

2:
 n

ew
()

4:
 r

et
ur

n
lis

t o
f L

og
in

M
od

ul
es

J2
E

E
 S

er
ve

r

9:
 a

ut
he

nt
ic

at
e

us
in

g
pr

op
rie

ta
ry

 A
P

I

N
et

w
or

k

15
: p

er
fo

rm
 s

ec
ur

e
op

er
at

io
n

(s
uc

h
as

 c
al

lin
g

an
 E

JB
)

N
et

w
or

k

3:
 g

et
A

pp
C

on
fig

ur
at

io
nE

nt
ry

()

19_576828 ch13.qxd 11/3/04 11:43 AM Page 358

■■ When you have a standalone application connecting to a remote EJB
system, the user would supply credentials to the application (or per-
haps the application would retrieve the credentials from a file or other
system). The standalone application would then use the JAAS API to
authenticate the user prior to calling the EJB components residing
within the application server. The application server would verify the
user’s credentials. Once the user has been authenticated via JAAS, the
client can call EJB methods securely, and the user’s security identity
will be propagated to the server upon method invocations.

■■ When you have a Web browser client connecting to a servlet or JSP layer,
the Web browser user supplies credentials to a servlet/JSP layer, and the
servlet or JSP layer could use JAAS to authenticate the user. The Web
browser could supply the credentials in one of the four ways that we dis-
cussed in the section on Web application security. To recap, these were:

■■ Basic authentication

■■ Form-based authentication

■■ Digest authentication

■■ Certificate authentication

As with standalone applications, once the user has been authenticated via
JAAS, the client can call EJB methods securely, and the user’s security identity
will be propagated to the server upon method invocations.

The JAAS Architecture

JAAS has a flexible design, but can be surprisingly complicated for what you
think would be a simple function. We have distilled JAAS down into a simple
procedure to make it easier for you to understand.

Figure 13.3 shows the basics of a JAAS authentication procedure.
The JAAS authentication procedure breaks down as follows (follow along

with the picture as we review each step):

1. The client instantiates a new login context. This is a container-provided
class. It’s responsible for coordinating the authentication process.

2. The login context retrieves a configuration object. The configuration
object knows about the type of authentication you want to achieve by
consulting a configuration file that lists the login modules. For example,
your configuration object might know that you want to perform both
password-based authentication and certificate-based authentication.

3. The login context asks the configuration object for the list of authentica-
tion mechanisms to use (such as password-based and certificate-based).

Security 359

19_576828 ch13.qxd 11/3/04 11:43 AM Page 359

4. The configuration object returns a list of authentication mechanisms.
Each one is called a login module. A login module knows how to contact
a specific security provider and authenticate in some proprietary way.

5. The login context instantiates your login modules. You can have many
login modules if you want to authenticate across several different secu-
rity providers. In the example we’re about to show, we will use only
one login module, and it will know how to authenticate using a user
name and password combination to a J2EE server.

6. The login context initializes the login modules.

7. The client code tries to log in by calling the login() method on the login
context.

8. The login context delegates the login() call to the login modules, since
only the login modules know how to perform the actual authentication.

9. The login modules (written by you) authenticate you using a propri-
etary means. In the example we’re about to show, our user name and
password login module will perform a local authentication only that
always succeeds because the authentication data is not checked on the
client side at all. After the login succeeds, the login module is told to
commit(). It can also abort() if the login process fails. This is not a very
critical step to understand—read the JAAS docs if you’re curious to
understand more.

10. Authentication information is kept in a subject. You can use this subject
to perform secure operations or just have it sit in the context.

11. Your client code calls remote operations (such as in an EJB component)
and the logged-in security context is automatically propagated along
with the method call. If you are curious: for RMI/IIOP clients the
machinery to pass this context is based on the CSIv2 standard that we
will explain later in this chapter. The EJB server can now perform the
actual authentication using the authentication data that is passed in the
security context. The server can then perform authorization based on
the authenticated client identity.

What’s neat about JAAS is that the login modules are separate from the
configuration, which means you can chain together different login modules
in interesting combinations by specifying different configurations in the
local configuration file. Another thing to note in the sequence outlined
above is that the authentication may succeed on the client side, but fail on
the server side. If the password is incorrect, this will result in the server
rejecting the invocation with a NO_PERMISSION exception.

360 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 360

Figure 13.3 JAAS authentication in detail.

JAAS Sample Code

Let’s show a simple JAAS example. The code will authenticate and then call a
“Hello, World” method on a bean. If the password is right, then the invocation
succeeds. If not, then the server throws an exception. The example shows both
the use of the JAAS client API and how a custom LoginModule is plugged in.

The code is in Source 13.1 through 13.3 and is fairly self-documenting. By
reviewing Figure 13.3, this sample code, and the process we laid out earlier,
you should be able to get a feeling for what this code is doing.

package examples.security;

import java.util.*;

import javax.security.auth.*;

import javax.security.auth.login.*;

import javax.naming.*;

import javax.rmi.PortableRemoteObject;

Source 13.1 HelloClient.java (continued)

Client
(you write this)

LoginContext
(provided for you)

One or more
LoginModules
(you write this)

Configuration
(provided for you)

Subject
(provided for you)

Config file
(you write this)

J2EE Servernetwork

11:call business methods

2:getConfiguration()
3:getAppConfigurationEntry()

1:new()
7:login()

5:new()
6:initialize()
8:login()
9:commit()

10:add credentials

4:return list of LoginModules

Security 361

19_576828 ch13.qxd 11/3/04 11:43 AM Page 361

/**

* A client program that uses JAAS to authenticate

*/

public class HelloClient

{

public static void main(String[] args)

{

try

{

/* Authenticate via JAAS */

LoginContext loginContext =

new LoginContext(“HelloClient”, new CallbackHandler());

loginContext.login();

/* Get a bean */

Context ctx = new InitialContext(System.getProperties());

Object obj = ctx.lookup(“JAASHelloHome”);

HelloHome home =

(HelloHome)PortableRemoteObject.narrow(obj,

HelloHome.class);

Hello hello = home.create();

/* Call a business method, propagating the security context */

String result = hello.hello();

/* Print the return result from the business logic */

System.out.println(result);

}

catch (Exception e)

{

e.printStackTrace();

}

}

}

Source 13.1 HelloClient.java (continued)

package examples.security;

import java.util.*;

import java.io.IOException;

import javax.security.auth.*;

import javax.security.auth.callback.*;

import javax.security.auth.login.*;

Source 13.2 PasswordLoginModule.java

362 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 362

import javax.security.auth.spi.*;

import com.sun.enterprise.security.auth.login.PasswordCredential;

/**

* A login module that performs password authentication.

*

* The purpose of this class is to actually use a callback handler

* to collect authentication information and add it to the subject

*/

public class PasswordLoginModule

implements LoginModule

{

private Subject subject;

/** the callback handler is the mechanism to collect authentication

data */

private javax.security.auth.callback.CallbackHandler callbackHandler;

/** credentials: username and password */

private String username;

private char[] password;

/**

* Initializes us with a particular subject to which we will later

* add the collected password data.

*/

public void initialize(Subject subject,

javax.security.auth.callback.CallbackHandler

callbackHandler,

Map sharedState,

Map options)

{

this.subject = subject;

this.callbackHandler = callbackHandler;

}

/**

* Authenticate the user by prompting for a username and password.

* It is called when the client tries to login in.

*

* @return true in all cases since this <code>LoginModule</code>

* should not be ignored.

* @exception FailedLoginException if the authentication fails.

* @exception LoginException if this <code>LoginModule</code> is

unable to

Source 13.2 (continued)

Security 363

19_576828 ch13.qxd 11/3/04 11:43 AM Page 363

* perform the authentication.

*/

public boolean login()

throws LoginException

{

// prompt for a username and password

if (callbackHandler == null)

{

throw new LoginException(“Error: No CallbackHandler

available to collect authentication information”);

}

// set up a name callback and a password callback

Callback[] callbacks = new Callback[2];

callbacks[0] = new NameCallback(“username: “);

callbacks[1] = new PasswordCallback(“password: “, false);

try

{

// let handler handle these

callbackHandler.handle(callbacks);

// get authentication data

username = ((NameCallback)callbacks[0]).getName();

if(username == null)

{

throw new LoginException(“No user specified”);

}

char[] tmpPassword =

((PasswordCallback)callbacks[1]).getPassword();

if (tmpPassword == null)

{

// treat null password as an empty password

tmpPassword = new char[0];

}

password = new char[tmpPassword.length];

System.arraycopy(tmpPassword, 0, password, 0,

tmpPassword.length);

((PasswordCallback)callbacks[1]).clearPassword();

}

catch (java.io.IOException ioe)

{

throw new LoginException(ioe.toString());

}

catch (UnsupportedCallbackException uce)

{

Source 13.2 (continued)

364 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 364

throw new LoginException(“Error: No Callback available to

collect authentication data :” +

uce.getCallback().toString());

}

catch(Exception e)

{

e.printStackTrace();

}

// The client side login module will always succeed. The

// actual login will take place on the server side when the

// security context is passed.

return true;

}

/**

* This method is called if the overall authentication succeeds

* after potentially many login modules had their way. In our

* simple case, we always succeed. The important part here is

* adding the newly authenticated principal to the security

* context.

*

* @return true if this method executes properly

*/

public boolean commit()

throws LoginException

{

// add the user name and password as credentials to the

// security context, i.e., the Subject

PasswordCredential pc =

new PasswordCredential(username,

new String(password),

“fileRealm”);

subject.getPrivateCredentials().add(pc);

username = null;

password = null;

return true;

}

/**

* This method is called if the overall authentication failed

* (even if this particular login module succeeded). This cannot

* happen int our simple examples.

*

* @return true if this method executes properly

Source 13.2 (continued)

Security 365

19_576828 ch13.qxd 11/3/04 11:43 AM Page 365

*/

public boolean abort()

throws LoginException

{

return true;

}

/**

* Logout the user and clean up.

*

* @return true if this method executes properly

*/

public boolean logout()

throws LoginException

{

username = null;

password = null;

return true;

}

}

Source 13.2 (continued)

package examples.security;

import java.io.*;

import java.util.*;

import javax.security.auth.login.*;

import javax.security.auth.*;

import javax.security.auth.callback.*;

/**

* Implements the CallbackHandler that gathers uid/pw input from

* System.in.

*/

public class CallbackHandler

implements javax.security.auth.callback.CallbackHandler

{

/**

* @param callbacks an array of <code>Callback</code> objects

*

* @exception java.io.IOException

* @exception UnsupportedCallbackException if the

<code>callbacks</code>

* parameter contains unknown callback objects

*/

public void handle(Callback[] callbacks)

Source 13.3 CallbackHandler.java

366 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 366

throws IOException, UnsupportedCallbackException

{

for (int i = 0; i < callbacks.length; i++)

{

if (callbacks[i] instanceof NameCallback)

{

// prompt user for name

NameCallback nc = (NameCallback)callbacks[i];

System.out.print(nc.getPrompt());

String name =

(new BufferedReader(new

InputStreamReader(System.in))).readLine();

nc.setName(name);

}

else if (callbacks[i] instanceof PasswordCallback)

{

// prompt user for password

PasswordCallback pc = (PasswordCallback)callbacks[i];

System.out.print(pc.getPrompt());

String pwLine =

(new BufferedReader(new

InputStreamReader(System.in))).readLine();

pc.setPassword(pwLine.toCharArray());

}

else

{

throw new UnsupportedCallbackException(callbacks[i],

“Unrecognized Callback”);

}

}

}

}

Source 13.3 (continued)

Finally, here is the content of a client-side configuration file that specifies
that the PasswordLoginModule is used both as the default login module and for
applications that provide the name “HelloClient” as the parameter to the
LoginContext constructor.

certificate {

com.sun.enterprise.security.auth.login.ClientCertificateLoginModule

required debug=false;

};

default {

examples.security.PasswordLoginModule required debug=false;

Security 367

19_576828 ch13.qxd 11/3/04 11:43 AM Page 367

};

HelloClient {

examples.security.PasswordLoginModule required debug=false;

};

Authorization in EJB
After the client has been authenticated, it must pass an authorization test to
call methods on your beans. The EJB container enforces authorization by
defining security policies for your beans. Again, there are two ways to perform
authorization with EJB:

■■ With programmatic authorization, you hard-code security checks into
your bean code. Your business logic is interlaced with security checks.

■■ With declarative authorization, the container performs all authoriza-
tion checks for you. You declare how you’d like authorization to be
achieved through the deployment descriptor, and the container generates
all necessary security checks. You are effectively delegating authoriza-
tion to the EJB container.

Security Roles

Regardless of whether you’re performing programmatic or declarative autho-
rization, you need to understand the concept of security roles. A security role is
a collection of client identities. For a client to be authorized to perform an oper-
ation, its security identity must be in the correct security role for that opera-
tion. The EJB deployer is responsible for associating the identities with the
correct security roles after you write your beans.

The advantage to using security roles is that you do not hard-code specific
identities into your beans. This is necessary when you are developing beans
for deployment in a wide variety of security environments, because each envi-
ronment will have its own list of identities. This also enables you to modify
access control without recompiling your bean code.

Specifying security roles in EJB is application server-specific but should not
affect portability of your code. Table 13.1 shows some sample mappings.

Table 13.1 Sample Security Roles

SECURITY ROLE VALID IDENTITIES

employees EmployeeA, EmployeeB

managers ManagerA

administrators AdminA

368 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 368

Performing Programmatic Authorization

Let’s discuss how to authorize programmatically. Then we’ll see how to autho-
rize declaratively and compare the two approaches.

Step 1: Write the Programmatic Security Logic

To perform explicit security authorization checks in your enterprise beans, you
must first get information about who is calling your bean’s method. You can
get this information by querying the container through the EJB context object.
(Refer to Chapter 3 if you need to refresh your memory.)

The EJB context object has the following relevant security methods:

public interface javax.ejb.EJBContext

{

...

public java.security.Principal getCallerPrincipal();

public boolean isCallerInRole(String roleName);

...

}

isCallerInRole(String role) checks whether the current caller is in a particular
security role. When you call this method, you pass the security role that you
want the caller compared against. For example:

public class EmployeeManagementBean implements SessionBean {

private SessionContext ctx;

...

public void modifyEmployee(String employeeID)

throws SecurityException

{

/*

* If the caller is not in the ‘administrators’

* security role, throw an exception.

*/

if (!ctx.isCallerInRole(“administrators”)) {

throw new SecurityException(...);

}

// else, allow the administrator to modify the

// employee records

// ...

}

}

Security 369

19_576828 ch13.qxd 11/3/04 11:43 AM Page 369

The preceding code demonstrates how to perform different actions based on
the security role of the client. Only if the caller is in the administrators role
(defined in Table 13.1, and setup using your container’s tools) does the caller
have administrator access.

The other programmatic security method, getCallerPrincipal(), retrieves the
current caller’s security principal. You can use that principal for many pur-
poses, such as retrieving the caller’s distinguished name from it to use this
name in a database query. This might be handy if you’re storing your security
information in a database. Here is sample code that uses getCallerPrincipal():

import java.security.Principal;

...

public class EmployeeManagementBean implements SessionBean {

private SessionContext ctx;

...

public void modifyEmployee() {

Principal id = ctx.getCallerPrincipal();

String name = id.getName();

// Query a database based on the name

// to determine if the user is authorized

}

}

Step 2: Declare the Abstract Security Roles Your Bean Uses

Next you must declare all the security roles that your bean code uses, such as
an administrators role, in your deployment descriptor. This signals to others
(like application assemblers and deployers) that your bean makes the security
check isCallerInRole (administrators). This is important information for the
deployer, because he or she needs to fulfill that role, just like the deployer ful-
fills EJB references, as mentioned in Chapter 10. Source 13.4 demonstrates this.

. . .

<enterprise-beans>

<session>

<ejb-name>EmployeeManagement</ejb-name>

<home>examples.EmployeeManagementHome</home>

Source 13.4 Declaring a Bean’s required security roles.

370 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 370

. . .

<!--

This declares that our bean code relies on

the administrators role; we must declare it here

to inform the application assembler and deployer.

-->

<security-role-ref>

<description>

This security role should be assigned to the

administrators who are responsible for

modifying employees.

</description>

<role-name>administrators</role-name>

</security-role-ref>

. . .

</session>

. . .

</enterprise-beans>

. . .

Source 13.4 (continued)

Step 3: Map Abstract Roles to Actual Roles

Once you’ve written your bean, you can ship it, build it into an application, or
make it part of your company’s internal library of beans. The consumer of
your bean might be combining beans from all sorts of sources, and each source
may have declared security roles a bit differently. For example, we used the
string administrators in our previous bean, but another bean provider might
use the string sysadmins or have completely different security roles.

The deployer of your bean is responsible for generating the real security
roles that the final application will use (see Source 13.5).

Security 371

19_576828 ch13.qxd 11/3/04 11:43 AM Page 371

. . .

<enterprise-beans>

<session>

<ejb-name>EmployeeManagement</ejb-name>

<home>examples.EmployeeManagementHome</home>

...

<security-role-ref>

<description>

This security role should be assigned to the

administrators who are responsible for

modifying employees.

</description>

<role-name>administrators</role-name>

<!--

Here we link what we call “administrators” above, to

a real security-role, called “admins”, defined below

-->

<role-link>admins</role-link>

</security-role-ref>

. . .

</session>

<assembly-descriptor>

. . .

<!--

This is an example of a real security role.

-->

<security-role>

<description>

This role is for personnel authorized to perform

employee administration.

</description>

<role-name>admins</role-name>

Source 13.5 Mapping abstract roles to actual roles.

372 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 372

</security-role>

. . .

</assembly-descriptor>

</enterprise-beans>

. . .

Source 13.5 (continued)

Once you’ve completed your application, you can deploy it in a wide vari-
ety of scenarios. For example, if you write a banking application, you could
deploy that same application at different branches of that bank, because you
haven’t hard-coded any specific principals into your application. The deployer
of your application is responsible for mapping principals to the roles you’ve
declared using proprietary container APIs and tools.

Performing Declarative Authorization

Now that we’ve seen programmatic authorization, let’s move on to declarative
authorization. The primary difference between the two models is that with
declarative authorization, you declare your bean’s authorization requirements
in your deployment descriptor. The container enforces these requirements at
runtime.

Step 1: Declare Method Permissions

You first need to declare permissions on the bean methods that you want to
secure. The container takes these instructions and generates security checks in
your EJB objects and EJB home objects (see Source 13.6).

. . .

<assembly-descriptor>

. . .

<!--

You can set permissions on the entire bean.

Example: Allow role “administrators”

to call every method on the bean class.

-->

<method-permission>

Source 13.6 Declaring a bean’s security policies. (continued)

Security 373

19_576828 ch13.qxd 11/3/04 11:43 AM Page 373

<role-name>administrators</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<!--

You can set permissions on a method level.

Example: Allow role “managers” to call method

“modifySubordinate()” and “modifySelf()”.

-->

<method-permission>

<role-name>managers</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modifySubordinate</method-name>

</method>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modifySelf</method-name>

</method>

</method-permission>

<!--

If you have multiple methods with the same name

but that take different parameters, you can even set

permissions that distinguish between the two.

Example: allow role “employees” to call method

“modifySelf(String)” but not “modifySelf(Int)”

-->

<method-permission>

<role-name>employees</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modifySelf</method-name>

<method-params>String</method-params>

</method>

</method-permission>

<!--

This is the list of methods that we don’t want

ANYONE to call. Useful if you receive a bean

Source 13.6 (continued)

374 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 374

from someone with methods that you don’t need.

-->

<exclude-list>

<description>

We don’t have a 401k plan, so we don’t

support this method.

</description>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modify401kPlan</method-name>

<method-params>String</method-params>

</method>

</exclude-list>

. . .

</assembly-descriptor>

. . .

Source 13.6 (continued)

Once defined, the EJB container automatically performs these security checks
on your bean’s methods at runtime and throws a java.lang.SecurityException
exception back to the client code if the client identity is not authenticated or
authorized.

Step 2: Declare Security Roles

Declaring security roles is a process similar to programmatic security. We need
to define our security roles and (optionally) describe each so the deployer can
understand them (see Source 13.7).

<assembly-descriptor>

. . .

<security-role>

<description>

System administrators

</description>

<role-name>administrators</role-name>

</security-role>

<security-role>

<description>

Source 13.7 Declaring security roles for the deployer. (continued)

Security 375

19_576828 ch13.qxd 11/3/04 11:43 AM Page 375

Employees that manage a group

</description>

<role-name>managers</role-name>

</security-role>

<security-role>

<description>

Employees that don’t manage anyone

</description>

<role-name>employees</role-name>

</security-role>

. . .

</assembly-descriptor>

Source 13.7 (continued)

The deployer reads in Source 13.7 and, using the container’s tools, maps
these roles to principals, as shown in Table 13.1.

Declarative or Programmatic?

As with persistence and transactions, security is a middleware service that you
should strive to externalize from your beans. By using declarative security,
you decouple your beans’ business purpose from specific security policies,
thus enabling others to modify security rules without modifying bean code.
No security role strings are hard-coded in your bean logic, keeping your code
simple.

In the ideal world, we’d code all our beans with declarative security. But
unfortunately, the EJB specification does not provide adequate facilities for
this; specifically, there is no portable way to declaratively perform instance-
level authorization. This is best illustrated with an example.

Let’s say you have an enterprise bean that models a bank account. The caller
of the enterprise bean is a bank account manager who wants to withdraw or
deposit into that bank account. But this bank account manager is responsible
only for bank accounts with balances below $1,000, and we don’t want him
modifying bank accounts with larger balances. Declarative authorization has
no way to declare in your deployment descriptor that bank account managers
can modify only certain bean instances. You can specify security roles only on
the enterprise bean class, and those security rules apply for all instances of that
class. Thus, you would need to create separate methods for each security role,
as we did in Source 13.7. This gets hairy and makes your bean’s interface

376 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 376

dependent on security roles. For these situations, you should resort to pro-
grammatic security.

Security Propagation
Behind the scenes, all security checks are made possible due to security con-
texts. Security contexts encapsulate the current caller’s security state. You
never see security contexts in your application code, because the container
uses them behind the scenes. When you call a method in EJB, the container can
propagate your security information by implicitly passing your security con-
text within the stubs and skeletons.

For example, let’s say a client is authenticated and has associated security
credentials. That client calls bean A, which calls bean B. Should the client’s
security credentials be sent to bean B, or should bean B receive a different prin-
cipal? By controlling security context propagation, you can specify the exact
semantics of credentials streaming from method to method in a distributed
system.

You can control the way security information is propagated in your deploy-
ment descriptor. The following descriptor snippet takes the client’s credentials
and propagates them to all other beans you call:

...

<enterprise-beans>

...

<session>

<ejb-name>EmployeeManagement</ejb-name>

<home>examples.EmployeeManagementHome</home>

...

<security-identity>

<use-caller-identity/>

</security-identity>

...

</session>

...

</enterprise-beans>

In comparison, the following descriptor code ignores the client’s credentials
and propagates the role admins to all other beans you call:

...

<enterprise-beans>

...

<session>

<ejb-name>EmployeeManagement</ejb-name>

<home>examples.EmployeeManagementHome</home>

...

Security 377

19_576828 ch13.qxd 11/3/04 11:43 AM Page 377

<security-identity>

<run-as>

<role-name>admins</role-name>

</run-as>

</security-identity>

...

</session>

<assembly-descriptor>

. . .

<security-role>

<description>

This role is for personnel authorized

to perform employee administration.

</description>

<role-name>admins</role-name>

</security-role>

. . .

</assembly-descriptor>

</enterprise-beans>

The EJB container is responsible for intercepting all method calls and ensur-
ing that your bean is running in the propagation settings you specify. It does
this by generating code that executes at the point of interception (inside the
EJB objects and EJB home objects).

Secure Interoperability

Secure interoperability means that EJB containers from different vendors
cooperate in protecting EJB invocations that originate in one vendor’s product
and target EJBs in another. The most important functionality that EJB contain-
ers must agree on here is the authentication of principals on one end of the
invocation and the propagation of the principal information to the other. In
addition, there must be consensus about how confidentiality and integrity
protections should be applied on the wire.

For this to happen, any security information that needs to be exchanged
must be standardized. Otherwise, one vendor’s product would not be able to
understand the information sent by its colleague on the other end of the wire.

The general protocol that the EJB specification requires for interoperability is
RMI-IIOP. For the additional, security-related interoperability, the EJB specifi-
cation leverages two more protocols that were originally designed for CORBA:

■■ IIOP/SSL (IIOP over SSL) for authentication, integrity and confidentiality

■■ CSIv2 (Common Secure Interoperability version 2), for additional authenti-
cation capabilities and principal propagation.

378 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 378

You will probably not need to deal with the internal details of either
IIOP/SSL or CSIv2 directly in development, but if you are curious about what
is under the hood, then the rest of this section provides the background infor-
mation. Also, when you are responsible for managing large-scale EJB server
architectures that involve interoperating with external clients or servers, then
you should be aware of the trust relationships that must be established to
allow for principal delegation across platforms.

IIOP/SSL
The first part of interoperable security—integrity and confidentiality protec-
tions—is actually simple thanks to SSL/TLS, which takes care of all the details
of setting up secure transports between endpoints. For deployers, there is
nothing left to do but provide proper credentials that SSL/TLS can use during
its initial handshake. This is far from trivial, but since credentials are necessary
anyway, this adds little complexity.

Internally, the hosting EJB container’s CORBA Object Request Broker (ORB)
is equipped to insert SSL-level transport information into EJBObject and
EJBHome references. For IIOP/SSL, these references take the format of the
CORBA Interoperable Object References (IORs), and SSL/TLS-related informa-
tion is stored in the IOR as tagged components. The receiving container’s ORB
recognizes the IOR and its tagged components and hence knows how to let the
SSL/TLS layer open transport connections.

CSIv2
SSL/TLS is not a silver bullet for all your security problems. It does offer inter-
operable, standardized means for mutual authentication between communi-
cating peers, but it requires public key certificates in X.509 format to do this.
While this is a proven mechanism, it requires some form of certificate man-
agement infrastructure. Mapping other client authentication mechanisms,
such as Kerberos, is hard, and propagating principal information from clients
a few hosts up in the invocation chain is not supported at all. Moreover,
SSL/TLS is heavy-weight in the sense that the initial handshake required to set
up a secure transport adds a significant overhead. In some cases you may want
to authenticate a client but don’t actually care for the additional integrity and
confidentiality protection of SSL.

Common Secure Interoperability version 2 (CSIv2) was specified for CORBA by
the Object Management Group (OMG) in 1999 as a successor to earlier secure
interoperability protocols. CSIv2 was designed to be used together with trans-
port-level SSL security and to complement it. The Security Attribute Service (SAS)
protocol in CSIv2 defines additional client authentication functionality that is
independent of SSL/TLS and can be used with Kerberos or UserID/Password

Security 379

19_576828 ch13.qxd 11/3/04 11:43 AM Page 379

schemes. Target authentication is not supported in the SAS protocol, so if mutual
authentication is required, the SAS protocol must be combined with the trans-
port-level target authentication offered by SSL/TLS.

Additionally, the CSI protocol supports identity assertions as a means of prin-
cipal propagation. An identity assertion is sent by the calling client to tell the
receiver that it should not consider the client identity (which was established
on the transport layer or by the authentication process) for making authoriza-
tion decisions, but the asserted identity instead. An asserted identity is much
like a run-as statement or a set-uid bit in the UNIX file system—with one
important difference: it is the client who wants to define a different identity for
its own actions.

With identity assertions, a single method call may have as many as three dif-
ferent identities associated with it: the transport-level identity as established
by SSL, an additional client identity established through the SAS client authen-
tication, and the asserted identity. Note that any or all of these may be missing.
Figure 13.4 illustrates these layers.

What are these many identities good for? An asserted identity is useful
when the client is acting on behalf of another principal who should be held
responsible, especially when the client cannot re-use the principal’s credentials
to impersonate it when talking to the target. For example, the client may be a
remote servlet container (running in vendor X’s application server) calling an
EJB container (a product by vendor Y) on a different network, as shown in
Figure 13.5. The Web container did authenticate the Web user by using SSL
client authentication and established a principal identity. It cannot itself
authenticate as the principal to the EJB container, however. Because it does not
have access to the client’s required private keys, it can authenticate only itself.
However, access control and auditing should use the actual user ID, not the
servlet container’s identity, so the Web container needs to assert the client
identity.

Figure 13.4 Layers in CSIv2.

Client Authentication
Message Protection

Target Authentication

Client Authentication

Identity Assertion

Transport Layer
(SSL/TLS)

Client Authentication
Layer

Security Attribute
Layer

380 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 380

Figure 13.5 Identity assertion in a call chain.

Obviously, accepting an asserted identity that arrives in the security context
of a method call is a matter of trust. Trust here means trusting that the JSP files
and servlets did not cheat when inserting the identity assertion, and trusting
that an attacker did not penetrate the Web container host. Looking closer, we
find that this trust actually extends to all predecessors in the call chain, which
the target has no secure way of identifying. This is also called transitive trust.
The EJB specification simply states that identity assertions should be accepted
only from containers with predefined trust, which in most practical settings
means that containers authenticate each other using public key certificates on
the transport layer that were distributed beforehand. A receiving container can
then simply accept identities that the sending container asserts.

Note that the problem with transitive trust still exists: the whole trust chain
is only as strong as its weakest link. Effectively, this means that deployers
should take considerable care when exchanging public key certificates and
marking them as trustworthy.

Because no tight control of principal propagation can be enforced by the
technology alone, there must be organizational frameworks to support coop-
eration and trust establishment.

Web Services Security

You may be wondering why, after so much security coverage, there is a need for
an extra section on security for Web Services. The simple reason is that Web Ser-
vices are not just an implementation approach for stateless session beans: they

JSP/Servlet

Web Container

Web Client
Client Id

WebContainer‘s ID
Client Id

EJB Container‘s ID
WebContainer‘s ID
or Client ID

EJB

EJB Container

EJB

EJB Container

Security 381

19_576828 ch13.qxd 11/3/04 11:43 AM Page 381

need to interoperate with other, potentially non-EJB Web Services, say, in the
.NET world. It follows that there must again be secure interoperability.

The standards that we mention here are not yet part of the EJB or J2EE spec-
ifications. However, Java Specification Requests (JSRs) are under way for all of
them so that standardized Java APIs are expected to become available as part
of the next version of EJB. Most modern application servers already come
equipped with some Web Services security mechanisms and pre-standard
APIs to the functionality described here. The remainder of this section is
intended to provide you with an overview of the relevant standards and con-
cepts so that you will be able to use them successfully.

The basic security functionality that must be provided in a standardized
fashion should by now sound familiar to you: authentication, authorization,
integrity, and confidentiality. Interestingly, the Web Services security stan-
dards go well beyond the traditional approaches in a number of respects. The
most important goal that the technologies we are about to meet aim for is true
end-to-end security for the messages sent to and received from Web Services,
such as SOAP messages.

End-to-End Security
Let’s consider the scenario where a client uses a Web Service, which behind the
scenes delegates some of the functionality to other Web Services, which may
do the same with still other services. The original client has no way of know-
ing who will see which parts of the original request message, nor does it know
who will actually create which parts of the result. (See Figure 13.6.)

Figure 13.6 End-to-end security.

Web Service

EJB Container

Web Client
SOAP

Web Service

Web Service

Web Service

Web Service

382 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 382

This functional abstraction is fundamental for making large-scale architec-
tures possible, but from a security standpoint it means that you have to trust a
potentially unlimited number of unknown parties to play fair. This may be
okay within your own local network where you trust all servers and services,
including their administrators, but it is certainly not acceptable in cross-
enterprise applications with third- and fourth-party involvement. You don’t
want records of the hardware that you order to be compiled (and the records
potentially disclosed), and you don’t want the project schedules and design
studies that you exchange with a business partner getting fiddled with.

This is where end-to-end security comes into play. It means control over the
security of your messages from the point at which you send them until they
reach their final destination, regardless of the number and kind of intermedi-
aries that may get a chance to see your messages. Contrast this with the notion
of transitive trust in EJB that we had to accept earlier: with transitive trust,
anybody that your partner trusts is implicitly trusted by you, too. Regardless
of whether you actually trust them or you even know they exist.

End-to-end security is not possible with a point-to-point technology like
SSL/TLS. It is possible to build a long channel out of several short ones, but
each hop in such a chain of connections terminates one SSL/TLS connection
and starts a new one. When SOAP messages and other EJB requests travel
through multiple intermediate hops before they reach their final target, the
messages are protected between hops, but unprotected within each hop. All you
can do with point-to-point security is trust that the software in those hops
doesn’t read or modify your messages where it shouldn’t.

Enter two security standards that can protect XML documents (and thus
also SOAP messages) independently of the transport layer and in true end-to-
end fashion: XML Digital Signature and XML Encryption.

XML Digital Signature and XML Encryption
The names of these two standards certainly imply heavy-duty cryptography
but don’t worry: there are no new algorithms or protocols that we need to dis-
cuss here. Both standards rely on traditional cryptography and don’t add any
of their own. In fact, these two standards, issued by the World Wide Web
Consortium (W3C), simply define XML syntax for encrypted or signed data.
The data that is either signed or encrypted can be anything, including of
course XML content, but it may also be other documents, or even arbitrary
binary data.

As an example, consider the following SOAP message that contains a mes-
sage body with a single, encrypted data element, the operation. The binary,
encrypted data content of the inner CipherValue has been base64-encoded, the
outer EncryptedData element describes the encryption algorithm (triple DES)

Security 383

19_576828 ch13.qxd 11/3/04 11:43 AM Page 383

that was used to create the CipherValue. Note that the receiver must know the
symmetric key that was used to encrypt the message, otherwise he won’t be
able to decrypt it. We’ll discuss in the next section how information about
the key (or even the key itself) can be sent in the message.

<soapenv:Envelope

xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”>

<soapenv:Header>

....

</soapenv:Header>

<soapenv:Body>

<EncryptedData xmlns=”http://www.w3.org/2001/04/xmlenc#”

Id=”#xdn_id0” Type=”http://www.w3.org/2001/04/xmlenc#Element”>

<EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#tripledes-cbc”/>

<CipherData>

<CipherValue>Vy58P2KaKedALCyZt23Hoi7TSK8ZiZvygWorXUX

Q56EmS1z5LVp8frzQvivk2iIrrYQI8DSbIG+ywfNnZfoVC0QiTbWE29

HztGTRUhAE2f/VbRzpMisxe2+/Xc7EZXfurZOVFNR2NjW+Ayiuqd

W5OxkZi7la6tmQefFFYUSAzsUA6p0nabXOVsNCds8Y7pdZXeJtH+

lnMpfSCFNbS7R4GhFsZBjNL5Hxqb1vUZlgwcP9Lh6ua1yqi2DgUKvtI1/p

thPNA/QYj3VfEZzk1sit/A==</CipherValue>

</CipherData>

</EncryptedData>

</soapenv:Body>

</soapenv:Envelope>

XML digital signatures can cover data that is completely external to the
transmitted document. For example, it may be a signature value over the con-
tent of a remote Web site or over a Microsoft Word document in a knowledge
base somewhere. An XML message may even contain a signature over parts of
itself. The added value here is that this signature data can now be transported
within XML documents without having the receiver’s XML parser complain
about unexpected, non-XML data. To give you an impression, here’s an exam-
ple of an XML digital signature that was taken from another SOAP message.

<Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>

<SignedInfo>

<CanonicalizationMethod

Algorithm=”http://www.w3.org/TR/2001/REC-xml-c14n-20010315”/>

<SignatureMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#rsa-sha1”/>

<Reference>

<Transforms>

<Transform Algorithm=”http://www.w3.org/TR/1999/REC-xpath-19991116”>

<XPath

384 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 384

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>ancestor-or-

self::soap:Envelope[1] and ancestor-or-self::soap:Body[1]</XPath>

</Transform>

<Transform Algorithm=”http://www.w3.org/TR/2001/REC-xml-c14n-20010315”/>

</Transforms>

<DigestMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#sha1”/>

<DigestValue>/VYLngXLqJP//BWhmGxVysqlrxw=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>J+L8HqI7Q+/u0zuDWZeg5zKkiHRvQqCMZlFkmGn8x+x8KPNqu/j

RpbEvacA1MjIIY00snVIti2yIgDHtfhNTQDa5GludCINbT5sEYeGYjVQwv8nFtwCMX+EmDXig/

E2JHbQEDT4E02/1MrMV7Mk2cUorqk7bHuEG4wwIGdzqEIk=

</SignatureValue>

<KeyInfo>

<X509Data>

<X509Certificate>...</X509Certificate>

</X509Data>

</KeyInfo>

</Signature>

The Signature element has three main elements: the SignedInfo that describes
the signed data, the SignatureValue (a base64 encoding of an encrypted hash
value), and the KeyInfo, that describes which key was used to create the signa-
ture. The SignedInfo describes the data that is signed. In this case, it is a SOAP
message header body, which is referred to using an XML path expression
(XPath). This data was then transformed using a canonicalization algorithm
before actually applying the signature algorithm (RSA-SHA1) to the message
digest, which was computed using the SHA1 hash algorithm. Canonicaliza-
tion is necessary for all XML content before signing because XML documents
may undergo a number of changes (such as adding or removing whitespace in
some places) during transport or other processing that do not change the doc-
ument structure or content and thus should not cause the signature to break.
To allow for these XML modifications, the sender first constructs the canonical
form of an XML document and only then applies the signature. The receiver
also first constructs the canonical form of the document he just received and
then compares the outcome of another signature computation with the signa-
ture value that was received.

The two standards discussed in this section support some very important
security features:

■■ With XML Digital Signature and XML encryption it is possible to send
encrypted XML documents through untrusted channels. Only legiti-
mate receivers that possess the necessary cryptographic keys will be
able to decrypt the encrypted parts, and any in-transit modifications of
signed parts of the message will be detected by the recipients.

Security 385

19_576828 ch13.qxd 11/3/04 11:43 AM Page 385

■■ With transport-independent protections it is now possible to persist
the signature, meaning that we can store the signature with the mes-
sage, for example as a signed receipt. This is not possible with
SSL/TLS: as soon as the message leaves the secure transport, the
signature is gone, so SSL/TLS is not a good tool for application-level
cryptography.

■■ With the granularity of XML digital signature and XML encryption it
is possible to encrypt or sign only selected parts of a message. With
SSL/TLS, in contrast, messages were always signed and/or encrypted
completely. It would not be possible to create a controlled document-
based workflow where some parts of a message are designed for
modifications by processors at different stages in the workflow,
whereas others would remain locked.

SAML
The acronym SAML means Security Assertion Markup Language and is an open
standard ratified by the OASIS consortium. OASIS is short for Organisation for
the Advancement of Structured Information Standards and is a large industry con-
sortium comparable to the OMG. OASIS is also responsible for WS-Security
(see the following section). The two main application areas for SAML are inter-
operability between security products and single sign-on (SSO). SAML has
two main parts: the XML syntax for security assertions, and a simple
request/response protocol for requesting assertions from SAML authorities.
We only cover the assertion syntax here.

Assertion is another word for a security token. Assertions are used by entities
that need security information in order to enforce security. In SAML speak,
these entities are Policy Enforcement Points. The creator or issuer of a SAML
assertion is called a SAML authority. Obviously, there is no need for SAML if
the enforcement point creates all security tokens internally and for its own use
and therefore does not need any external information. But if the enforcer is not
in a position to authenticate the actual caller of a request and still needs to
make an authorization decision, then a SAML assertion made earlier by an
authentication service would help a lot. Sounds a lot like principal propaga-
tion, doesn’t it? Yes, you may think of SAML as the CSIv2 of the Web Services
world.

Now for a quick summary of the remaining SAML concepts: a SAML asser-
tion expresses statements by the issuer about the subject of the assertion, such
as “Subject S is authenticated (by me),” or “Subject S is authorized for actions
A and B (by me),” or even “Subject S has attribute R,” where R may be a role
membership. Here is an example of an authentication assertion:

386 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 386

<Assertion xmlns=”urn:oasis:names:tc:SAML:1.0:assertion”

MajorVersion=”1” MinorVersion=”0” AssertionID=”4711”

Issuer=”MySecuritySoftware”

IssueInstant=”2003-08-19T14:54:43”>

<Conditions NotBefore=”2003-08-19T14:54:43”

NotOnOrAfter=”2003-08-19T15:04:43”/>

<AuthenticationStatement

AuthenticationMethod=”urn:oasis:names:tc:SAML:1.0:am:unspecified”

AuthenticationInstant=”2003-08-19T14:54:43”>

<Subject>

<NameIdentifier>Bart</NameIdentifier>

</Subject>

</AuthenticationStatement>

</Assertion>

The main part of the assertion is the AuthenticationStatement element, which
states that someone named Bart was authenticated at a specific point in time
using an unspecified mechanism. The outer Assertion element comprises
further details, such as a validity condition (NotBefore and NotOnOrAfter),
information about the issuer and issue instant, an assertion ID, and the SAML
version used.

These assertions are not just made by anybody, but by authorities that some-
one inspecting an assertion would trust. In the previous assertion, all we know
about the issuer is that she calls herself MySecuritySoftware. In an untrusted
environment, an assertion would normally be digitally signed by the author-
ity so that trust in the assertion can be established. In the example, this step
was skipped to reduce overhead because, presumably, the enforcement point
axiomatically trusts the issuer, and forgery of assertions was not assumed to be
possible.

WS-Security
WS-Security is another specification ratified by the OASIS consortium. It
describes how encryption and signatures should be used on SOAP messages
to enable end-to-end security, and defines a SOAP security header element.
Moreover, it defines a couple of security tokens, such as a user name and pass-
word token, an X.509 token, and a binary token format that can be used to
transmit Kerberos tickets. As a standard it is comparatively short and straight-
forward, at least when compared to the EJB specification or CORBA.

The new security header was defined because the authors of the specifica-
tion knew that message-oriented, end-to-end security cannot rely on sessions
between peers along the way. The security header was therefore designed to
contain the complete security information about the message in the message.
In other words, the message is its own security context!

Security 387

19_576828 ch13.qxd 11/3/04 11:43 AM Page 387

Here is an example of a SOAP message with this new WS-Security header
element. In fact, this example contains the security information necessary to
decrypt the encrypted message shown in the previous section, an encrypted
key (a session key). Note how the EncryptedKey element’s child ReferenceList
refers to the encrypted data in the SOAP body using a URI reference to the Id
attribute:

<soapenv:Envelope>

<soapenv:Header>

<wsse:Security xmlns:wsse=”http://www.docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd”>

<EncryptedKey xmlns=”http://www.w3.org/2001/04/xmlenc#”>

<EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p”/>

<KeyInfo/>

<CipherData>

<CipherValue>jQEtmEsQ9CUUT0CuUM6yKKcpBbGV4psNdYN2o+eaXyAc2D1JM3Zz0xHqKoR

URwy2y13nGv3qzrjbPO55uyTn0KBG6jZRoFi6zsAdw1bJc0qBzDE3ca5LuLTKZ/PEqvtIptm

gQefv80bgXXQjmFTuyOEkOxLLv6uoobDxb29Lkf0=</CipherValue>

</CipherData>

<ReferenceList>

<DataReference URI=”#xdn_id0”/>

</ReferenceList>

</EncryptedKey>

</wsse:Security>

</soapenv:Header>

<soapenv:Body>

<EncryptedData Id=”#xdn_id0”>

....

Figure 13.7 illustrates how the different standards can be combined to send
a SAML assertion, which is an authentication assertion, with a SOAP message.
The SOAP header contains a WS-Security header, which in turn contains the
SAML assertion. To prevent any modifications while in transit and to bind the
assertion to the message, an XML digital signature is used, which is also
contained in the security header. This signature not only guarantees integrity,
it also serves to authenticate the SAML assertion in the context of the mes-
sage: without such a signature, the assertion could have been obtained by
someone eavesdropping on the message traffic and then attached to his or her
own messages.

388 Chapter 13

19_576828 ch13.qxd 11/3/04 11:43 AM Page 388

Figure 13.7 Standards in concert.

Summary

For all practical purposes, security should be seen as a trade-off between risks
and cost. This chapter has described the most important security standards rel-
evant in the EJB world, including the J2EE view on Web Application security.
You have encountered both declarative and programmatic security in EJB, and
the security interoperability protocol CSIv2. Moreover, we have presented
some important standards in the Web Services security world that will turn
into standardized APIs in the near future.

SAML

XML DSig

WS-S
<SOAP:Envelope>

</SOAP:Envelope>

<wsse:Security>

<SOAP:Header>

<SOAP:Body wsu:Id="x">

</SOAP:Body >

</SOAP:Header>

Signature

Assertion
</wsse:Security>

Security 389

19_576828 ch13.qxd 11/3/04 11:43 AM Page 389

19_576828 ch13.qxd 11/3/04 11:43 AM Page 390

391

All these years, what was lacking in the Enterprise JavaBeans standard was a
decent scheduling mechanism. EJB 2.1 addresses this requirement by intro-
ducing the EJB timer service. In this chapter, we examine how to use the EJB
timer service with different types of beans. We also provide a sample to walk
you through a typical EJB timer development.

Scheduling

Scheduling functionality is required in many business applications. Various
scenarios involving scheduling ensure that certain code gets executed at a
given point in time. For instance, imagine a system that handles huge loads
during the peak hours and during the off hours wants to run maintenance
chores such as cleaning the file system of temporary files, generating the activ-
ity reports, cleaning the databases, preparing audit reports of access from var-
ious parties to its subsystems, and so on. These tasks can be carried out
automatically by scheduling them to run during the off hours. This way your
IT professional will not be pressed for resources during the peak traffic hours
and also will be able to perform routine maintenance tasks and all around use
the resources better.

In many other similar situations scheduling can help—workflows are
another example. Simply put, a workflow is a set of activities, each of which is

EJB Timers

C H A P T E R

14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 391

scheduled to run at a specific time or when a conditional criteria is met. For
example, consider a reservation workflow rule that ensures that if the cus-
tomer does not guarantee a reservation with credit card within 24 hours, the
reservation is cancelled, and an e-mail notification is sent to the customer’s
travel agent and also possibly to the customer. There are numerous ways in
which scheduling can help you implement such use cases.

Scheduling techniques have been around for many years in the computer
science world. UNIX-based operating systems have supported job-scheduling
mechanisms through system services such as Cron for a long time. Cron is basi-
cally a daemon that uses the system clock to facilitate the scheduling of jobs for
execution at any given time of day. Scheduled jobs or Cron jobs, as they might
be called, are UNIX commands or scripts that you want to run on a particular
schedule. These jobs are maintained in Cron tables. Authorized UNIX users
create/edit these Cron tables, which are then read by the Cron daemon almost
every minute to start these jobs. The Cron table is an ASCII text file consisting
of entries for Cron jobs, each specified with a UNIX command to execute and
its scheduled time of execution in terms of hours and minutes, day of week,
day of month, and month. Another variant of the Cron service is the At utility.
While Cron enables you to schedule a repetitive task, At lets you schedule a
one-time task for execution. UNIX also supports another form of scheduling
through its Batch utility. Batch executes a set of tasks instead of a single task;
however, it is similar to At in that it executes only once.

Windows-based operating systems support a similar kind of functionality
through the At utility, which basically takes the information about the com-
mand or batch program to execute, time to execute, and other such parame-
ters, and schedules the job for execution. Linux too offers system-level
scheduling capabilities quite similar to those of UNIX.

Hence, almost all the operating-system environments today support sophis-
ticated scheduling mechanisms. It should come as no surprise that developers
would want similar scheduling functionality in their programming platforms
to be able to exploit scheduling techniques in different applications—EJB
developers are no different.

EJB and Scheduling

If you think scheduling operating system commands and programs is power-
ful, think how powerful it would be to be able to schedule execution of parts
of your code or methods on your components. Yes, that is what scheduling
with EJB should allow us to do. EJB containers should let us schedule a given
method to run at a particular point in time so that the container can call back
that method once the scheduled time has elapsed. This capability can open a
whole new world of possibilities with EJB.

392 Chapter 14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 392

EJB Timers 393

THE JAVA PLATFORM AND SCHEDULING

The Java language platform has been providing basic scheduling capabilities
since J2SE 1.3 via java.util.Timer and java.util.TimerTask APIs. Together, these
are termed as the Java Timer APIs. Java Timer APIs provide a programming
model in which your schedulable task, or in other words the worker class, will
extend the TimerTask abstract class. TimerTask implements Runnable and it
represents a Java class that can be scheduled to run once or repeatedly by a
timer. Thus, the action you need to perform when the timer calls your class
should be put in the run() method of your TimerTask implementation.

The Timer object provides methods that you can use to schedule TimerTask
objects for future execution in a background thread. Corresponding to each
Timer object is a single background thread that is used to execute all the
timer’s tasks sequentially. Thus, if you used the same Timer object to schedule
multiple timer tasks and if a certain timer task takes longer than expected to
complete, the subsequent timer task will be held up until the previous one
completes.

The Timer object, and hence the corresponding background thread, is kept
alive by the JVM as long as there is an outstanding task to complete. Once all
the tasks associated with the given Timer object are done executing, the JVM
will kill the thread and release the Timer object in the subsequent garbage
collection cycle. By default, your application could be held up as long as the
timer is alive. This means that if you have a repeated timer task, your
application can theoretically keep running forever. To get around this, you can
create a Timer object that uses a daemon thread so that it does not keep the
application from terminating.

An important point to understand about scheduling on the Java platform is
that due to the inherent nature of Java, it is impossible to guarantee that the
timer will execute a given timer task at exactly the specified moment. In other
words, Java does not provide us with a consistently met real-time guarantee,
the main reason being that the implementation of thread scheduling, on which
job scheduling is dependent, is inconsistent across various JVMs. The Timer
object schedules tasks via the Object.wait() mechanism, and so the exact
moment at which the JVM wakes up the timer task objects is dependent on
JVM’s thread scheduling policy and such factors. Garbage collection adds yet
another parameter and further makes job scheduling on the Java platform non-
deterministic.

Thus, the Java Timer API is more than enough for simple scheduling activities
for non-managed Java applications. If you need more sophisticated func-
tionality, you can use scheduling frameworks, such as Quartz, to meet those
needs. There is also another timer API in Java: the JMX (Java Management
Extensions) timer API. However, it is very tightly coupled with the JMX
framework and hence, not suitable for generic purposes.

20_576828 ch14.qxd 11/3/04 11:44 AM Page 393

Unfortunately though, scheduling support for EJB was not available until
EJB 2.1. However, the need for this kind of capability was always there and so
as a result, there are a variety of non-standard schedulers available for the J2EE
platform today. In fact, quite a few projects we have worked on involved the
use of these non-standard schedulers, such as the open-source Quartz sched-
uler or Sims Computing Flux Scheduler, due to lack of standard scheduler
support in EJB container at the time.

The EJB Timer Service

EJB 2.1 supports scheduling through the container-managed EJB timer service.
Developers interact with the EJB timer service through various timer service
APIs. These APIs can be used for creating timers for specified dates and peri-
ods. You can also create timers scheduled to expire at recurring intervals. As
soon as the date or period specified for the timer is reached, the timer expires
and the container notifies your bean of the timer expiration by calling a spe-
cific callback method on the EJB. This timer method will implement the logic
that you want to execute upon timer expiration(s). Figure 14.1 describes the
high-level interaction between the timer service and an EJB interested in
receiving timer notifications.

Enterprise beans interested in receiving timer notifications through the call-
back methods will register themselves to the timer service. Stateless session
beans, entity beans, and message-driven beans can all receive timed notifica-
tions from the container. Timers cannot be created for stateful session beans;
however, future versions of EJB are expected to support stateful session bean
timers as well. The timer created for an entity bean is associated with an entity
bean’s identity and so when the entity bean is removed the container will
remove all the timers associated with the bean.

Figure 14.1 Interaction between the timer service and EJB.

Enterprise bean registers itself to EJB
Timer service by creating timer

Timer service notifies the bean via callback
method upon timer expiration

Timer Service Enterprise Bean

EJB Container

394 Chapter 14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 394

Timer Service API
The timer service API consists of four interfaces—javax.ejb.TimedObject,
javax.ejb.Timer, javax.ejb.TimerHandle, and javax.ejb.TimerService.

javax.ejb.TimerService

This interface provides enterprise bean components access to the container’s
timer service. It provides various createTimer() methods to create timers and
thereby register with container timer service for timer notifications. Using
these createTimer() methods you can create mainly four types of timers,
depending on your needs.

■■ Recurrent expiration timers whose first expiration occurs at a given
point in time as specified by the Date argument to createTimer() method
and the subsequent timer expirations occur at interval durations speci-
fied in milliseconds.

■■ One-time expiration timers whose first and only expiration occurs at a
given point in time as specified by the Date argument to createTimer()
method.

■■ Recurrent expiration timers whose first expiration occurs after the spec-
ified number of milliseconds has elapsed and the subsequent timer
expirations occur at interval durations specified in milliseconds.

■■ One-time expiration timers whose first and only expiration occurs after
the specified number of milliseconds has elapsed.

Apart from various methods for creating timers, TimerService has made
available a getTimers() method which retrieves all the timers associated with
the given bean.

Source 14.1 shows the definition of the TimerService interface.

public interface javax.ejb.TimerService {

public Timer createTimer(long duration, Serializable info)

throws IllegalArgumentException, IllegalStateException,

EJBException;

public Timer createTimer(long initialDuration, long

intervalDuration,

Serializable info)

throws IllegalArgumentException, IllegalStateException,

EJBException;

public Timer createTimer(Date expiration, Serializable info)

throws IllegalArgumentException, IllegalStateException,

EJBException;

Source 14.1 The javax.ejb.TimerService interface. (continued)

EJB Timers 395

20_576828 ch14.qxd 11/3/04 11:44 AM Page 395

public Timer createTimer(Date initialExpiration, long

intervalDuration,

Serializable info)

throws IllegalArgumentException, IllegalStateException,

EJBException;

public Collection getTimers()

throws IllegalStateException, EJBException;

}

Source 14.1 (continued)

javax.ejb.Timer

This interface represents a timer instance that was created through TimerSer-
vice. Its methods provide information about the timer, such as the point in time
when the next timer expiration is scheduled, the number of milliseconds that
will elapse before the next scheduled timer expiration, and so on.

Also, this interface provides access to the timer information class through
the getInfo() method. The timer information class has to be a Serializable
instance, and it can be used as a means to provide application-specific infor-
mation corresponding to the timer such as, for example, the actions bean will
take upon timer expiration. This information class is written by the application
provider and is passed as an argument to the respective createTimer() method
in TimerService. If you do not want to provide a timer information object, pass
null while creating the timer.

Finally, the getHandle() method retrieves the Serializable handle to the timer.
This handle can be persisted and retrieved at a later time to obtain reference to
the timer instance.

Source 14.2 shows the definition of the Timer interface.

public interface javax.ejb.Timer {

public void cancel()

throws IllegalStateException, NoSuchObjectLocalException,

EJBException;

public long getTimeRemaining()

throws IllegalStateException, NoSuchObjectLocalException,

EJBException;

public Date getNextTimeout()

throws IllegalStateException, NoSuchObjectLocalException,

EJBException;

public Serializable getInfo()

Source 14.2 The javax.ejb.Timer interface.

396 Chapter 14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 396

throws IllegalStateException, NoSuchObjectLocalException,

EJBException;

public TimerHandle getHandle()

throws IllegalStateException, NoSuchObjectLocalException,

EJBException;

}

Source 14.2 (continued)

javax.ejb.TimedObject

This interface contains a single method: ejbTimeout(). The container calls this
callback method to notify the EJB of timer expiration. Therefore, for an EJB to
receive notification from the container about its timer expiration, it should
implement this interface and hence, implement the ejbTimeout() method. ejb-
Timeout() contains the logic that you want to execute upon timer expiration.
The container passes a corresponding instance of Timer associated with the
bean to ejbTimeout().

Source 14.3 shows the definition of the TimedObject interface.

public interface javax.ejb.TimedObject {

public void ejbTimeout(Timer timer);

}

Source 14.3 The javax.ejb.TimedObject interface.

javax.ejb.TimerHandle

This interface contains a single method, getTimer(), which retrieves the refer-
ence to Timer represented by the given handle. This method throws NoSu-
chObjectException if invoked for a timer that has already expired or cancelled.

Source 14.4 shows the definition of the TimerHandle interface.

public interface javax.ejb.TimerHandle

extends Serializable {

public Timer getTimer()

throws IllegalStateException, NoSuchObjectException, Æ

EJBException;

}

Source 14.4 The javax.ejb.TimerHandle interface.

EJB Timers 397

20_576828 ch14.qxd 11/3/04 11:44 AM Page 397

Durations in the timer API are specified in milliseconds, taking into
consideration that the rest of the J2SE APIs use millisecond as the unit of
time. However, do not expect the timers to expire with the millisecond
precision given the incapability of the Java platform to support real-time
notifications.

Interaction between the EJB and the Timer Service
It is clear that TimerService is the top-level API that allows you to create timers.
The question is—how to get access to a TimerService instance? You can get hold
of the TimerService instance through EJBContext. The EJBContext interface has
been updated to include the getTimerService() method in EJB 2.1. Hence, within
any business method in your bean, you can create a timer by getting the timer
service instance through the EJB context object.

What happens if you create a timer from one of your EJB methods without
implementing the TimedObject interface for that EJB? Check it out.

Figure 14.2 shows the sequence diagram of interaction between EJB and
timer service.

Figure 14.2 Sequence diagram of interaction between EJB and the timer service.

EJB Client : EnterpriseBean : EJBContext : TimerService

Calls a particular method
on EJB which in turn
creates a timer

Calls getTimerService()

Gets an instance of
TimerService

Timer
starts

tickingCalls the appropriate createTimer() method

Returns TimerService

Callback to ejbTimeout()

398 Chapter 14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 398

Timer Example: CleanDayLimitOrdersEJB

Let us now examine the code for stateless session bean timers. Entity bean and
message-driven bean timers are written exactly the same way as stateless ses-
sion bean timers are. To understand this example, take into consideration an
online securities trading system. The system allows the customer to place limit
orders for a given security, say for example stocks, such that the buy or sell
transaction for the given security can be limited to occur anytime during a day
or anytime during the trading week or anytime until the end of the current
month and so on so long as the buy/sell criteria specified by the customer is
met. Limit orders are supported by most of the contemporary online securities
trading systems. Now not all limit orders are executed since the criteria,
mainly the price criteria, set by the customer could not be met during the spec-
ified limit period. Obviously, such limit orders should be removed upon expi-
ration of limit periods.

Our example bean, CleanDayLimitOrdersEJB, demonstrates an elegant way
of cleaning the trading database by removing all the limit orders that were not
executed during the limit period. As per our scenario, a client application, Cle-
anDayLimitOrdersClient, will invoke the cleanPeriodicallyDayLimitOrders()
method on CleanDayLimitOrdersEJB. cleanPeriodicallyDayLimitOrders() creates
a recurrent expiration timer based on the current date such that at the end of
every trading day a timer expires and container callbacks to ejbTimeout()
method takes place. For now, we are least concerned with the database logic
and hence, this example code does not elaborate the database part.

Note that the source files for this example are available on the book’s accom-
panying Web site wiley.com/compbooks/roman.

EJB Timers 399

TIMERS AND TRANSACTIONS

The creation of timers is supported within transactions.
Therefore, if an enterprise bean method that creates the timer is executed as

part of a transaction and if that transaction is rolled back, the timer creation is
rolled back too. Similarly, if an enterprise bean method cancels the timer by
calling cancel() on the Timer interface within a transaction and if that
transaction is rolled back, the container rolls back the timer cancellation as
well. The container restores the duration of the timer to the duration it would
have had, had it not been rolled back.

ejbTimeout() can also be called within a transaction. Hence, if the
transaction rolls back, the container will call ejbTimeout() again.

20_576828 ch14.qxd 11/3/04 11:44 AM Page 399

You can also implement the CleanDayLimitOrdersEJB functionality on the
so-called Order entity bean, assuming that you have such an entity bean in
your application. Each Order entity bean will need to create and associate a
one-time expiration timer to itself upon creation. Also your Order entity
bean class will implement the TimedObject. Thus, if the order’s limit is day,
the entity timer will expire at the market close of the current trading
session; similarly, if the order limit is end of week, the timer will expire at
the market close of the last trading session of the week, and so on. Once
your Order entity bean is removed, the timer associated with it will also be
removed. Hence, if the object model for such a securities trading system
involves an Order entity bean, then associating timers with entity bean
provides for an elegant solution.

The CleanDayLimitOrders EJB Remote Interface
First let us define our bean’s remote interface. The code is shown in Source
14.5. Our remote interface defines a single business method, cleanPeriodically-
DayLimitOrders(), which we will implement in the enterprise bean class.

package examples;

import javax.ejb.EJBObject;

import java.rmi.RemoteException;

public interface CleanDayLimitOrders extends EJBObject {

public void cleanPeriodicallyDayLimitOrders () throws Æ

RemoteException;

}

Source 14.5 The examples.CleanDayLimitOrders interface.

The CleanDayLimitOrders EJB Bean Class
Our bean implements TimedObject apart from SessionBean interface, since it is
interested in receiving timer expiration notifications. Our bean class has one
business method, cleanPeriodicallyDayLimitOrders(), which is responsible for
cleaning the trading system database of expired day limit orders. The imple-
mentation of this method makes use of java.util.TimeZone and java.util.Calendar
types to manipulate the time. It does various calculations to arrive at the num-
ber of milliseconds that should expire until the market close on the current
day. This example takes into consideration the U.S. exchanges’ market close
time, which is 4 PM Eastern. Finally the method creates a recurrent expiration

400 Chapter 14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 400

timer, whose subsequent expirations occur at an interval of 86,400,000 mil-
liseconds (24 hours). The idea is that once the first timer is fired off sometime
after 4 PM Eastern, the subsequent timers will fire off exactly 24 hours after
that instant.

As noted earlier, ejbTimeout() has not been implemented in its entirety in that
the database code has been omitted for brevity. Source 14.6 shows the Clean-
DayLimitOrdersBean.java code.

package examples;

import javax.ejb.*;

import java.util.Calendar;

import java.util.TimeZone;

import java.util.SimpleTimeZone;

import java.util.GregorianCalendar;

import java.util.Date;

public class CleanDayLimitOrdersBean implements SessionBean,

TimedObject {

private SessionContext context;

public void cleanPeriodicallyDayLimitOrders() {

// Get hold of the eastern time zone assuming that the

securities are being

// traded on NYSE and NASDAQ exchanges.

String[] timezoneIDs = TimeZone.getAvailableIDs (-5 * 60

* 60 * 1000);

SimpleTimeZone est = new SimpleTimeZone (-5 * 60 * 60 * 1000,

timezoneIDs[0]);

// Provide the rules for start and end days of daylight

savings time.

est.setStartRule (Calendar.APRIL, 1, Calendar.SUNDAY,

2 * 60 * 60 * 1000);

est.setEndRule (Calendar.OCTOBER, -1, Calendar.SUNDAY,

2 * 60 * 60 * 1000);

// Get hold of a calendar instance for the eastern time zone.

Calendar cal = new GregorianCalendar(est);

// Set the calendar to the current time.

cal.setTime (new Date ());

// Calculate the difference between now and market

close i.e. 4 PM Eastern.

int hourofday = cal.get (cal.HOUR_OF_DAY);

Source 14.6 The examples.CleanDayLimitOrdersBean class. (continued)

EJB Timers 401

20_576828 ch14.qxd 11/3/04 11:44 AM Page 401

int minuteofhour = cal.get (cal.MINUTE);

// If this method is invoked after the market close,

then set the timer

// expiration immediately i.e. start=0. Otherwise,

calculate the

// milliseconds that needs to elapse until first timer

expiration.

long start = 0;

if (hourofday < 16)

{

int hourdiff = 16 - hourofday - 1;

int mindiff = 60 - minuteofhour;

start = (hourdiff * 60 * 60 * 1000) +

(mindiff * 60 * 1000);

}

// Finally, get hold of the timer service instance from

EJBContext object

// and create the recurrent expiration timer.

TimerService timerService = context.getTimerService();

Timer timer = timerService.createTimer(start, 86400000, null);

System.out.println(“CleanDayLimitOrdersBean: Timer

created to first expire

after “ + start + “ milliseconds.”);

}

public void ejbTimeout(Timer timer) {

System.out.println(“CleanDayLimitOrdersBean: ejbTimeout

called.”);

// Put here the code for cleaning the database of day

limit orders that have

// not been executed.

}

public void setSessionContext(SessionContext sc) {

System.out.println(“CleanDayLimitOrdersBean:

setSessionContext called.”);

context = sc;

}

public void ejbCreate() {

Source 14.6 (continued)

402 Chapter 14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 402

System.out.println(“CleanDayLimitOrdersBean: ejbCreate

called.”);

}

public CleanDayLimitOrdersBean() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

}

Source 14.6 (continued)

When trying this example, you might want to provide smaller values for
both start and interval periods to immediately see the timer expiration results.

The CleanDayLimitOrders EJB Home Interface
To complete our timer session bean code, we must define a home interface.
The home interface details how to create and destroy our CleanDayLimitOrders
EJB object. The code for our home interface is shown in Source 14.7.

package examples;

import java.io.Serializable;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.EJBHome;

public interface CleanDayLimitOrdersHome extends EJBHome {

CleanDayLimitOrders create() throws RemoteException,

CreateException;

}

Source 14.7 The examples.CleanDayLimitOrdersHome interface.

The CleanDayLimitOrders EJB Deployment Descriptor
Now that we have implemented our bean, we need to define the deployment
descriptor to let the container know of the requisite settings for our bean. The
deployment descriptor settings we use are listed in Source 14.8.

EJB Timers 403

20_576828 ch14.qxd 11/3/04 11:44 AM Page 403

<?xml version=’1.0’ encoding=’UTF-8’?>

<ejb-jar

xmlns=”http://java.sun.com/xml/ns/j2ee”

version=”2.1”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<display-name>CleanDayLimitOrdersEJB</display-name>

<enterprise-beans>

<session>

<ejb-name>CleanDayLimitOrdersBean</ejb-name>

<home>examples.CleanDayLimitOrdersHome</home>

<remote>examples.CleanDayLimitOrders</remote>

<ejb-class>examples.CleanDayLimitOrdersBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Bean</transaction-type>

<security-identity>

<use-caller-identity>

</use-caller-identity>

</security-identity>

</session>

</enterprise-beans>

</ejb-jar>

Source 14.8 The ejb-jar.xml.

The CleanDayLimitOrders EJB Client
Now that our bean is ready, we need to write the client. Our client is a typical
EJB client. It gets a hold of the JNDI initial context, looks up the EJB home
object, and creates the EJB remote object thereof. Finally, it invokes the cleanPe-
riodicallyDayLimitOrders() method on the EJB remote object. Source 14.9 shows
the code for CleanDayLimitOrdersClient.java.

package examples;

import java.util.Properties;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;

public class CleanDayLimitOrdersClient {

public static void main(String[] args) {

try {

Source 14.9 The examples.CleanDayLimitOrdersClient class.

404 Chapter 14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 404

Properties env = new Properties();

env.put(“java.naming.factory.initial”,

“com.sun.jndi.cosnaming.CNCtxFactory”);

env.put(“java.naming.provider.url”,

“iiop://localhost:3700”);

InitialContext ctxt = new InitialContext(env);

Object objref = ctxt.lookup(“CleanDayLimitOrdersBean”);

CleanDayLimitOrdersHome home = (CleanDayLimitOrdersHome)

PortableRemoteObject.narrow(objref,

CleanDayLimitOrdersHome.class);

CleanDayLimitOrders cleanDayLimitOrders = home.create();

cleanDayLimitOrders.cleanPeriodicallyDayLimitOrders();

System.out.println (“cleanPeriodicallyDayLimitOrders()

returned

successfully. Take a look at the application

server log or console

for messages from bean.”);

cleanDayLimitOrders.remove();

} catch (Exception ex) {

System.err.println(“Caught an unexpected exception!”);

ex.printStackTrace();

}

}

}

Source 14.9 (continued)

Running the Client
To run the client, look at the Ant scripts bundled along with this example. The
following is the client-side output you will get upon running CleanDayLimit-
OrdersClient.

C:\MEJB3.0\Timer\CleanDayLimitOrders>asant run_client

cleanPeriodicallyDayLimitOrders() returned successfully.

Take a look at the appl

ication server log or console for messages from bean.

On the application server console, you should see the following output.
Make sure to run your application server in verbose mode.

EJB Timers 405

20_576828 ch14.qxd 11/3/04 11:44 AM Page 405

[#|2004-07-19T15:24:08.918-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=23;|

CleanDayLimitOrdersBean: Timer created to first expire after 2160000

milliseconds.|#]

[#|2004-07-19T16:00:08.724-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=24;|

CleanDayLimitOrdersBean: setSessionContext called.|#]

[#|2004-07-19T16:00:08.724-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=24;|

CleanDayLimitOrdersBean: ejbCreate called.|#]

[#|2004-07-19T16:00:08.724-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=24;|

CleanDayLimitOrdersBean: ejbTimeout called.|#]

Take a close look at the highlighted portions. You’ll notice that our timer was
first created at around 3:24 PM Eastern and the first timer was fired at 4:00:08
PM Eastern time. You should continue to get these notifications for as long as
the enterprise bean is deployed and its respective J2EE application is running.
Of course, the application server has to be running in order to receive these
notifications.

Finally note that this output is for an EJB deployed on the reference imple-
mentation of J2EE 1.4.

We can generalize CleanDayLimitOrdersEJB further so that it can clean the
end-of-week or end-of-month limit orders as well. For this, we can create
multiple timers associated with our bean in a way that each of these timers
expires at a different interval.

Now that we know how to develop EJB timers, let us take a look at some
shortcomings of the EJB timer service.

Strengths and Limitations of EJB Timer Service

The EJB timer service has some obvious strengths with respect to other sched-
uling utilities and frameworks, in that:

■■ Scheduling semantics provided by the EJB timer service are platform
independent. You can use platform-specific utilities such as Cron or At
to schedule calls to an EJB client, which in turn calls a certain EJB
method; and this will work just fine. However, there is a caveat to this
approach. What do you do if your client needs to run on a different
platform? You will now have to learn and work with the scheduling

406 Chapter 14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 406

semantics of the new platform, which again may or may not satisfy
your requirements.

■■ The EJB timer service lets you schedule the timers programmatically.
Consider a scenario where EJB wants to create timers based on a certain
request from a client. Without having a framework API, such as the one
provided by the EJB timer service, it is hard to achieve this. More so if
you were to use platform-specific utilities for scheduling calls to EJB
methods, because then your EJB will require a way to schedule platform
timers from within the EJB environment.

■■ Finally, the EJB timer service provides a standard interface to schedul-
ing functionality as opposed to frameworks such as Flux or Quartz.
This gives you one less thing to worry about when your application is
required to support multiple J2EE platform products.

On the other hand, there is a lot of scope for the EJB timer service to improve
further. Currently, it lacks the following two features:

■■ Support for declaration of timer intervals in the deployment descriptors
is not available today. As a result, the developer has to embed the timer
expiration period and the subsequent expiration interval information in
the EJB bean class. This restricts the ability of the developer to declara-
tively provide timer-related information at the time of deployment.

■■ There is not much flexibility in the way the timers could be specified
today. Take our example into consideration. Since the only unit of time
that the timer APIs accept is milliseconds, we had to write the logic for
converting the hours and minutes into milliseconds in order to create
the timer for the CleanDayLimitOrders EJB. Had the timer API given a
provision for creating timers wherein the periods could be specified in
terms of hours, days, or months, it would have been much more power-
ful and simpler to use.

Also, we cannot create timers that would expire on given days of the
week and not on other days. Again, take CleanDayLimitOrders EJB into
consideration. Here, we actually want a timer that would expire after 4
PM Eastern every day from Monday through Friday. We do not want
our timer to expire on Saturdays and Sundays. However, because there
is no mechanism to specify this level of finer-grained scheduling infor-
mation to the EJB timer service right now, we will have to add this logic
in our code. Our implementation does not have this but a real trading
system should have the logic in place to avoid hitting the database
when the timer expiration occurs on Saturdays, Sundays, and other
non-trading days (such as public holidays).

Our hope is that in the subsequent EJB specifications, these features will be
added.

EJB Timers 407

20_576828 ch14.qxd 11/3/04 11:44 AM Page 407

Summary

In this chapter we provided a complete overview of using the EJB timer ser-
vice. We learned that although the EJB timer service is simple to use and very
helpful for implementing certain scenarios, it has some shortcomings, which
should be addressed in the upcoming EJB specifications.

In the next chapter, we discuss an advanced topic—entity bean relation-
ships. So sit up straight and read on!

408 Chapter 14

20_576828 ch14.qxd 11/3/04 11:44 AM Page 408

409

In previous chapters, we looked at how to build entity beans using BMP and
CMP. In this chapter, we’ll heat things up and learn about relationships between
data. Examples of relationships include an order having one or more line
items, a student registering for a course, and a person having an address.
These relationships need to be defined and maintained for advanced data
models.

In this chapter, we’ll learn about the following relationship topics:

■■ Cardinality

■■ Directionality

■■ Aggregation versus composition and cascading deletes

■■ Recursive, circular, and lazily loaded relationships

■■ Referential integrity

■■ Accessing relationships from client code through collections

■■ Implementing each of the preceding topics using both CMP and BMP

If these concepts are new to you, don’t worry—you’ll be an expert on them
shortly.

BMP and CMP Relationships

C H A P T E R

15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 409

To help you understand the concepts and to keep things brief, we’ll use a bit
of pseudo-code in this chapter. If you would like a complete example of
code that you can copy and paste into your deployment illustrating
relationships, download the book’s source code from the accompanying
Web site at wiley.com/compbooks/roman.

The CMP and BMP Difference

Relationships in EJB are implemented quite differently for CMP and for BMP.
BMP entity beans manage relationships explicitly in the bean itself. You need
to write a good deal of scaffolding code to maintain the relationship. At the
high level, your BMP entity bean looks like this:

public class OrderBean implements EntityBean {

// private fields

// get/set methods

// code to manage relationships in ejbXXX methods

}

With CMP, you declare the way you would like your relationships to work in
your deployment descriptor. The container then generates all the relationship
code you need when the container subclasses your entity bean. At the high
level, your deployment descriptor looks like this:

<ejb-jar>

<enterprise-beans>

... define enterprise beans ...

</enterprise-beans>

<relationships>

... define EJB relationships ...

</relationships>

</ejb-jar>

Let’s explore what goes into the preceding comments by tackling each rela-
tionship topic in detail.

410 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 410

Cardinality

Our first relationship topic is cardinality. Cardinality specifies how many
instances of data can participate in a relationship. There are three flavors of
cardinality:

■■ One-to-one (1:1) relationships, such as the relationship between an
employee and his home address. Each employee has exactly one home
address, and each home address has exactly one employee.

■■ One-to-many (1:N) relationships, such as the relationship between a
manager and his employees. Each manager can have many employees
working for him, but each employee can have only one manager.

■■ Many-to-many (M:N) relationships such as the relationship between
an employee and an e-mail list. Each employee can be subscribed to
many e-mail lists, and each e-mail list can have many employees sub-
scribed.

Just to get you thinking: Why don’t we talk about many-to-one
relationships?

Figure 15.1 illustrates the three flavors of cardinality. Let’s look at how to
code each type of relationship for both BMP and CMP.

Figure 15.1 The three flavors of cardinality.

Student Course
* *

Manager Employee
*1

Order Shipment
1 1

BMP and CMP Relationships 411

21_576828 ch15.qxd 11/3/04 11:44 AM Page 411

1:1 Relationships
In a one-to-one relationship, each constituent can have at most one relation-
ship with the other constituent. Examples of one-to-one relationships include:

■■ Person:Address

■■ Car:Windshield

■■ Order:Shipment

One-to-one relationships are typically set up by a foreign key relationship in
the database. Figure 15.2 shows a possible database setup.

In Figure 15.2, the order has a relationship with a shipment. The order table
has a foreign key, which is the shipment table’s primary key. This foreign key
is the link between the two tables. Note that this isn’t the only way to set up a
one-to-one relationship. You could also have the shipment point to the order.

412 Chapter 15

IMPLEMENTING RELATIONSHIPS IN SESSION BEANS

Session beans can perform persistence that involves relationships, just like
CMP and BMP entity beans can. If you are familiar with traditional procedural
programming, programming on the Microsoft platform, or programming that
involves servlets or JSP technology talking to a database via JDBC, the session
bean approach is quite analogous.

You can use a stateful session bean just like an entity bean; the only
difference is that with a stateful session bean, you expose methods to a client
for loading and storing data, and the client controls when the bean is loaded
and stored by calling those methods. In this case, all of the best practices for
relationship persistence that apply to BMP entity beans apply to stateful
session beans that use JDBC.

You can also use a stateless session bean to perform persistence that
involves relationships. Stateless session beans do not hold state and therefore
do not have an identity, so you can’t treat a stateless session bean like an
entity bean. You need to use the stateless session bean as a service to read and
write rows to and from the database, marshaling the state back to the client on
each method call. In essence, the stateless session bean serves as a stateless
persistence engine, and the relationship code needs to be custom coded.

In general, if you have complex relationships, we do not recommend the
session bean approach, due to all the manual coding. The entity bean value
proposition really shines through when it comes to relationships.

21_576828 ch15.qxd 11/3/04 11:44 AM Page 412

Figure 15.2 A possible one-to-one cardinality database schema.

Implementing 1:1 Relationships Using BMP

The following code shows how to implement a one-to-one relationship using
BMP:

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

private Shipment shipment; // EJB local object stub

public Shipment getShipment() { return shipment; }

public void setShipment(Shipment s) { this.shipment = s;}

...

public void ejbLoad() {

// 1: SQL SELECT Order. This also retrieves the

// shipment foreign key.

//

// 2: JNDI lookup of ShipmentHome

//

// 3: Call ShipmentHome.findByPrimaryKey(), passing

// in the shipment foreign key

}

public void ejbStore() {

// 1: Call shipment.getPrimaryKey() to retrieve

// the Shipment foreign key

//

// 2: SQL UPDATE Order. This also stores the

// Shipment foreign key.

}

}

1010112345 Software Order

78727Austin10101

OrderPK OrderName

ShipmentPK City ZipCode

Shipment
ForeignPK

BMP and CMP Relationships 413

21_576828 ch15.qxd 11/3/04 11:44 AM Page 413

As with all BMP entity beans, we must define our SQL statements in our
bean. See Chapter 6 for more on this. The special relationship management
code is in bold.

The relationship management code is necessary only at the instant we trans-
form our bean to and from relational data. It is necessary because we can’t just
persist a stub, as we can with our other fields (such as a String). If we did per-
sist a stub, and (by some miracle) that worked, it would look like a bit-blob in
the foreign key column. That bit-blob foreign key would not match up to the
primary key in the shipment table.

Here is an explanation for what’s happening in our bean:

■■ Our ejbLoad() method loads the database data of the order, and part of
that data is a foreign key to the shipment. We need to transform that
foreign key into a stub to a shipment bean. Therefore we need to per-
form a JNDI lookup of the shipment home and then call a finder
method, passing in the foreign key. This gives us a stub, and we can
then call business methods on the shipment.

■■ Our ejbStore() method stores the database data for the order, and part of
that data is a foreign key to the shipment. We need to transform the ship-
ment stub into a foreign key. Therefore, we need to call getPrimaryKey()
on the shipment stub. This gives us our foreign key, and we can then per-
form the SQL.

Implementing 1:1 Relationships Using CMP

The following code shows how to implement that same one-to-one relation-
ship using CMP:

public abstract class OrderBean implements EntityBean {

// no fields

public abstract Shipment getShipment();

public abstract void setShipment(Shipment s);

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

As with all CMP entity beans, we define our get/set methods as abstract
methods and have no fields. The container implements these methods (and
defines the fields) when the container subclasses our bean (see Chapter 7).

414 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 414

What’s exciting is that our ejbLoad() and ejbStore() methods are free of any
scaffolding code because the container generates all that scaffolding code for
us. We do need to specify the relationship in the deployment descriptor, and
we do so as follows:

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee” version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<!-- This declares a relationship -->

<ejb-relation>

<!-- The nickname we’re giving this relationship -->

<ejb-relation-name>Order-Shipment</ejb-relation-name>

<!--

This declares the 1st half of the relationship

(the Order side)

-->

<ejb-relationship-role>

<!-- The nickname we’re giving this half of the relationship -->

<ejb-relationship-role-name>

order-spawns-shipment

</ejb-relationship-role-name>

<!-- The Cardinality of this half of the relationship -->

<multiplicity>One</multiplicity>

<!--

The name of the bean corresponding to this

half of the relationship

-->

<relationship-role-source>

<ejb-name>Order</ejb-name>

</relationship-role-source>

<!--

Recall that a CMP entity bean has an abstract get/set

method for the relationship. We need to tell the

container which get/set method corresponds to this

relationship, so that the container can generate the

appropriate scaffolding code when sub-classing our bean.

That is the purpose of this element, which is called the

BMP and CMP Relationships 415

21_576828 ch15.qxd 11/3/04 11:44 AM Page 415

container-managed relationship (CMR) field. The value

of the CMR field should be the name of your get/set

method, but without the get/set, and with a slight

change in capitalization. getShipment() becomes shipment.

-->

<cmr-field><cmr-field-name>shipment</cmr-field-name></cmr-field>

</ejb-relationship-role>

<!--

This declares the 2nd half of the relationship

(the Shipment side)

-->

<ejb-relationship-role>

<ejb-relationship-role-name>

shipment-fulfills-order

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Shipment</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

</relationships></ejb-jar>

The deployment descriptor should be self-explanatory. After we write the
proprietary descriptor that maps CMP fields to columns, we will have sup-
plied enough information to the container that its tools can generate any nec-
essary relationship code, such as the code we saw in the BMP example.

1:N Relationships
A one-to-many relationship is one of the more common relationships you’ll
see in your object model. This is because one-to-one relationships are often
combined into a single data object, instead of having a relationship between
two separate data objects. Examples of one-to-many relationships include:

■■ Order:LineItems

■■ Customer:Orders

■■ Company:Employees

One-to-many relationships are also typically set up by a foreign key rela-
tionship in the database. Figure 15.3 shows a possible database setup.

In Figure 15.3, the company has a relationship with many employees. The
company has a vector of line-item foreign keys stored as a bit-blob in the data-
base. We need a vector because we have a relationship with many employees,
not just one employee.

416 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 416

The approach shown in Figure 15.3 is not ideal, because it’s very nasty to
deal with bit-blobs in the database. Queries and reporting become challenging,
as databases were not meant to handle relationships in this way. Figure 15.4
shows an alternative.

In Figure 15.4, each employee has a foreign key, which is the company
table’s primary key. Thus, the employees are pointing back to their company.
This may seem backwards if we want to get from the company to the em-
ployees. It works, however, because the database doesn’t care—it is a flat
structure without a sense of direction. You can still construct queries that get
from the company to employees.

Figure 15.3 A possible one-to-many cardinality database schema.

Figure 15.4 Another one-to-many cardinality database schema.

12345 The Middleware Company

NameCompanyPK

M

12345Ed20202

12345Floyd20203

Sex CompanyNameEmployeePK

M

12345 The Middleware Company

M

Ed20202

Floyd20203

M

<Vector BLOB>

CompanyPK Name Employee FKs

Name SexEmployeePK

BMP and CMP Relationships 417

21_576828 ch15.qxd 11/3/04 11:44 AM Page 417

Implementing 1:N Relationships Using BMP

The following code shows how to implement a one-to-many relationship
using BMP:

public class CompanyBean implements EntityBean {

private String companyPK;

private String companyName;

private Vector employees; // EJB object stubs

public Collection getEmployees() { return employees; }

public void setEmployees(Collection e) {

this.employees = (Vector) e;

}

...

public void ejbLoad() {

// 1: SQL SELECT Company

// 2: JNDI lookup of EmployeeHome

// 3: Call EmployeeHome.findByCompany(companyPK)

}

public void ejbStore() {

// 2: SQL UPDATE Company

}

The code works as follows:

■■ A one-to-many relationship has a Vector of stubs, rather than a single
stub. Our get/set method gets and sets this Vector (a Vector is a Collec-
tion).

■■ Our ejbLoad() method is responsible for loading the company state, as
well as loading the relationships to employees. How can we achieve
this? Remember that the employee table contains the foreign key rela-
tionships to the company, not the reverse. Therefore it is natural for the
employee bean to access that relationship data, not the company bean.
Thus, we do not deal with foreign keys in our bean; we let the
employee bean deal with them. We do so by calling a finder method on
the employee local home object. That finder method locates each
employee that is a member of this company and returns a collection of
stubs to us. Note that this causes a second SQL statement to be exe-
cuted.

■■ Our ejbStore() method is extremely straightforward. Since our ejbLoad()
method is not responsible for dealing with foreign keys, neither is our
ejbStore() method. It doesn’t even know about the relationship. The
employee (not the company) has an ejbStore() that persists foreign keys
to the company.

418 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 418

If you’re good at SQL, you might have noticed that in our example, if we
really wanted to do so, we could load both the company and the foreign
keys for our employee in one SQL statement. But this would not help us,
because we would still need to transform those foreign keys into stubs.
We’d need to call EmployeeHome.findByPrimaryKey() for each found key,
which would generate even more SQL.

Implementing 1:N Relationships Using CMP

The following code shows how to implement a one-to-many relationship
using CMP:

public abstract class CompanyBean implements EntityBean {

// no fields

public abstract Collection getEmployees();

public abstract void setEmployees(Collection employees);

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

Our ejbLoad() and ejbStore() methods are free of any scaffolding code. The
relationships are specified in the deployment descriptor as follows:

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee” version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Company-Employees</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

Company-Employs-Employees

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Company</ejb-name>

</relationship-role-source>

<!--

BMP and CMP Relationships 419

21_576828 ch15.qxd 11/3/04 11:44 AM Page 419

When you have a relationship with more than one object, you

can use either a java.util.Collection or a java.util.Set.

We need to identify which one we’re using. How do you choose

between a Collection and a Set? A Collection can contain

duplicates, whereas a Set cannot. This needs to match up to

your bean’s get/set methods.

-->

<cmr-field>

<cmr-field-name>employees</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

Employees-WorkAt-Company

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Employee</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

As you can see, this is much simpler than BMP. If you understood the
deployment descriptor for a one-to-one relationship described earlier in this
chapter, then you should be able to grasp this one fairly easily.

Relationships with CMP can perform much better than their BMP
equivalents. To load a one-to-many relationship with BMP, we need to
perform two SQL statements: We need to ejbLoad() the “1” side of the
relationship and then find() the “N” side of the relationship.

This is an inherent downside to BMP; you are limited to performing SQL
operations at the granularity of an entity bean. With CMP, if your container
is good, you can optimize and tell the container to perform one gigantic SQL
statement to load yourself and your relationships.

420 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 420

M:N Relationships
A many-to-many relationship is not as common as a one-to-many relationship
but is still important. Examples of one-to-many relationships include the
following:

■■ Student:Course

■■ Investor:MutualFund

■■ Stock:Portfolio

Many-to-many relationships are typically set up by an association table in
the database. An association table contains foreign keys to two other tables.
Figure 15.5 shows a possible database setup.

What’s interesting about Figure 15.5 is that we’ve created a third table,
called an Enrollment table, which models the relationship between a student
and a course. The alternative to an association table is for each half of the rela-
tionship to have a vector of foreign keys to the other half, persisted as bit-
blobs, which is nasty to deal with.

Figure 15.5 A possible many-to-many cardinality database schema.

202021010112345

CoursePKStudentPKEnrollmentPK

EJB for Architects20202

CourseNameCoursePK

Joe
Student10101

StudentNameStudentPK

BMP and CMP Relationships 421

21_576828 ch15.qxd 11/3/04 11:44 AM Page 421

Two Choices When Implementing M:N Relationships

When you model a many-to-many relationship using entity beans, you have
two choices.

■■ Fake the many-to-many relationship by introducing a third entity
bean. Our enrollment table could theoretically include other informa-
tion as well, such as the date when the enrollment was made. It then
makes sense to model the many-to-many relationship itself as an entity
bean—an enrollment bean. The enrollment bean would map to the
association table. This demonstrates a great modeling principle: When
you have a many-to-many relationship, consider making the relation-
ship itself a first-class citizen. When you do this, you are introducing an
intermediary. That intermediary has two one-to-many relationships.
Thus, we have effectively reduced the many-to-many relationship prob-
lem into two one-to-many relationship problems!

■■ Model the many-to-many relationship as a true many-to-many rela-
tionship. If all you’re doing is storing relationship information, you
might not need to introduce a third entity bean. In this case, you have
only two entity beans, each representing half the relationship. Each
entity bean would contain a Collection of the other entity bean. Each
entity bean would be persisted to its own table, and each entity bean’s
Collection would be persisted to the relationships table. With BMP, you
are in control of the JDBC, so you can map an entity bean to two tables
very easily. With CMP, you’re dependent on your container’s persis-
tence handling logic.

We prefer the fake approach, because it keeps your entity beans pure and
clean. The fewer relationships you code into your entity beans, the more
reusable your entity beans are in a variety of circumstances, and the less bloat
your entity beans incur. This approach also has the advantage that your entity
bean and database are similar to one another, making mapping more straight-
forward.

What’s cool, however, is that your EJB components can map to the database
any way you’d like to map them. That is, both approaches can map to associa-
tion tables. This is because the database is completely unaware of how it’s being
represented in the middle tier. You can even switch back and forth between the
fake and real approach if you’d like. And even if you’re not using an association
table but some other approach, you can still map your beans any way you’d
like, assuming you’re good with JDBC (in the BMP case) or assuming your con-
tainer vendor has a good persistence engine (in the CMP case).

Let’s see how to model both fake and real many-to-many relationships with
both BMP and CMP.

422 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 422

Implementing Fake M:N Relationships Using BMP

The following code shows how to implement a many-to-many relationship as
two one-to-many relationships using BMP:

public class StudentBean implements EntityBean {

private String studentPK;

private String studentName;

...

public void ejbLoad() { // SQL SELECT Student }

public void ejbStore() { // SQL UPDATE Student }

}

public class CourseBean implements EntityBean {

private String coursePK;

private String courseName;

...

public void ejbLoad() { // SQL SELECT Course }

public void ejbStore() { // SQL UPDATE Course }

}

public class EnrollmentBean implements EntityBean {

private String enrollmentPK;

private Student student; // EJB local object stub

private Course course; // EJB local object stub

public Course getCourse() { return course; }

public void setCourse(Course c) { this.course = c;}

public Student getStudent() { return student; }

public void setStudent(Student s) { this.student = s; }

...

public void ejbLoad() {

// 1: SQL SELECT Enrollment. This loads both the

// Enrollment plus the foreign keys to Student

// and Course.

//

// 2: JNDI lookup of StudentHome, CourseHome

//

// 3: Call findByPrimaryKey() on both the Student

// and Course homes, passing the foreign keys

}

public void ejbStore() {

// 1: Call getPrimaryKey() on Student,Course. This

// gives us our foreign keys.

//

// 2: SQL UPDATE Enrollment

}

}

BMP and CMP Relationships 423

21_576828 ch15.qxd 11/3/04 11:44 AM Page 423

As usual, the relationship code is in bold. A brand-new entity bean, called
enrollment, models the relationship between student and course. The enroll-
ment bean keeps a stub for a course and a stub for a student and has get/set
methods for clients to access those stubs. At the point in which object/rela-
tional mapping occurs, we transform those stubs to and from their foreign key
database representation.

Implementing Fake M:N Relationships Using CMP

The following code shows how to implement a fake many-to-many relation-
ship using CMP:

public abstract class StudentBean implements EntityBean {

// no fields

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

public abstract class CourseBean implements EntityBean {

// no fields

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

public abstract class EnrollmentBean implements EntityBean {

// no fields

public abstract Course getCourse();

public abstract void setCourse(Course c);

public abstract Student getStudent();

public abstract void setStudent(Student s);

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

Our ejbLoad() and ejbStore() methods are free of any scaffolding code. The
relationships are specified in the deployment descriptor as follows:

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee” version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

...

424 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 424

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Enrollment-Student</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

Enrollments-AreRegisteredBy-Student

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Enrollment</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>student</cmr-field-name></cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

Student-Has-Enrollments

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Student</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

<ejb-relation>

<ejb-relation-name>Enrollment-Course</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

Enrollments-AreRegistrationsFor-Course

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Enrollment</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>course</cmr-field-name></cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

Course-Has-Enrollments

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Course</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

BMP and CMP Relationships 425

21_576828 ch15.qxd 11/3/04 11:44 AM Page 425

As you can see from the preceding deployment descriptor, we model our
fake many-to-many relationship as two many-to-one relationships (one for
each bean in the relationship). A many-to-one relationship is conceptually the
same as a one-to-many relationship, and we learned how to model a one-to-
many relationship with CMP earlier.

Implementing True M:N Relationships Using BMP

The following code shows how to implement a true many-to-many relation-
ship using BMP:

public class StudentBean implements EntityBean {

private String studentPK;

private String name;

private Vector courses; // EJB object stubs

public Collection getCourses() { return courses; }

public void setCourses(Collection c) { this.courses = c;}

...

public void ejbLoad() {

// 1: SQL SELECT Student

// 2: JNDI lookup of CourseHome

// 3: Call CourseHome.findByStudent(studentPK)

}

public void ejbStore() {

// SQL UPDATE Student

}

public class Course implements EntityBean {

private String coursePK;

private String name;

private Vector students; // EJB object stubs

public Collection getStudents() { return students; }

public void setStudents(Collection s) { this.students = s;}

...

public void ejbLoad() {

// 1: SQL SELECT Course

// 2: JNDI lookup of StudentHome

// 3: Call StudentHome.findByCourse(coursePK)

}

public void ejbStore() {

// SQL UPDATE Course

}

426 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 426

The relationship code is in bold. As you can see, all we’ve done to model a
true many-to-many relationship is to code a one-to-many relationship for each
bean in the relationship. This code is similar to the code presented when we
discussed one-to-many relationships.

Implementing True M:N Relationships Using CMP

The following code shows how to implement a true many-to-many relation-
ship using CMP:

public abstract class StudentBean implements EntityBean {

// no fields

public abstract Collection getCourses();

public abstract void setCourses(Collection courses);

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

public abstract class CourseBean implements EntityBean {

// no fields

public abstract Collection getStudents();

public abstract void setStudents(Collection students);

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

Our ejbLoad() and ejbStore() methods are free of any scaffolding code. The
relationships are specified in the deployment descriptor as follows:

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee” version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Student-Course</ejb-relation-name>

BMP and CMP Relationships 427

21_576828 ch15.qxd 11/3/04 11:44 AM Page 427

<ejb-relationship-role>

<ejb-relationship-role-name>

Students-EnrollIn-Courses

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Student</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>courses</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

Courses-HaveEnrolled-Students

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Course</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>students</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

As you can see, modeling a true many-to-many relationship using CMP is
extremely straightforward. We just use the word many on each half of the rela-
tionship, and state that each half of the relationship has a collection of the other
half.

If you’ve made it this far, congratulations; this concludes our cardinality dis-
cussion! Let’s move on to directionality.

Directionality

The directionality of a relationship specifies the direction in which you can nav-
igate a relationship. There are two flavors of directionality.

■■ Bidirectional. You can get from entity A to entity B, and can also get
from entity B to entity A.

■■ Unidirectional. You can get from entity A to entity B, but cannot get
from entity B to entity A.

428 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 428

Directionality applies to all cardinalities (1:1, 1:N, and M:N). Directionality
and cardinality are orthogonal and complementary concepts. You can mix and
match them any way you would like.

Let’s use our one-to-one relationship example of an order and a shipment to
help us figure out directionality.

Implementing Directionality with BMP
The following code is a bidirectional relationship, with the key information in
bold:

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

// EJB local object stub, must be stored/loaded

private Shipment shipment;

public Shipment getShipment() { return shipment; }

public void setShipment(Shipment s) { this.shipment = s; }

...

}

public class ShipmentBean implements EntityBean {

private String shipmentPK;

private String shipmentName;

// EJB local object stub, must be stored/loaded

private Order order;

public Order getOrder() { return order; }

public void setOrder(Order o) { this.order = o; }

...

}

As you can see, in a bidirectional relationship, each bean in the relationship
has a field pointing to the other bean, along with a get/set method.

In comparison, with a unidirectional relationship, we don’t allow the user to
get from the second bean to the first bean.

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

// EJB local object stub, must be stored/loaded

private Shipment shipment;

BMP and CMP Relationships 429

21_576828 ch15.qxd 11/3/04 11:44 AM Page 429

public Shipment getShipment() { return shipment; }

public void setShipment(Shipment s) { this.shipment = s; }

...

}

public class ShipmentBean implements EntityBean {

private String shipmentPK;

private String shipmentName;

// No Order stub, no Order get/set method

...

}

Implementing Directionality with CMP
The following is a bidirectional CMP relationship:

public abstract class OrderBean implements EntityBean {

// no fields

public abstract Shipment getShipment();

public abstract void setShipment(Shipment s);

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

public abstract class ShipmentBean implements EntityBean {

// no fields

public abstract Order getOrder();

public abstract void setOrder(Order o);

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

As you can see, in a bidirectional CMP relationship, each bean in the rela-
tionship has a pair of abstract get/set methods pointing to the other bean. We
need to tell the container that these get/set methods are special relationship
methods so that the container can generate relationship code. Here is the
deployment descriptor that achieves this.

430 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 430

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee” version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Order-Shipment</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

order-spawns-shipment

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Order</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>shipment</cmr-field-name></cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

shipment-fulfills-order

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Shipment</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>order</cmr-field-name></cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

In the deployment descriptor, we set up two container-managed relation-
ship (CMR) fields: one for each bean’s abstract get/set method pair that points
to the other bean.

To make this into a unidirectional relationship, we simply get rid of an
abstract get/set method pair, along with its corresponding CMR field.

Directionality May Not Map to Database Schemas
Note that directionality in entity beans may not correspond to the inherent
directionality of the database schema. An entity bean can provide for direc-
tionality even though the database does not do so easily, and vice versa. For

BMP and CMP Relationships 431

21_576828 ch15.qxd 11/3/04 11:44 AM Page 431

example, Figure 15.6 is a normalized database schema for a Person:Address
relationship. Figure 15.7 is a denormalized schema.

Both of these schemas give us enough information to derive relationship
information. You can, if you choose to do so, map entity beans to both these
schemas and use bidirectional relationships. The difference is that the denor-
malized schema allows for more efficient SQL. That is the classic computer sci-
ence space-time tradeoff. If you denormalize the database, you waste space
and increase maintenance problems, but you gain speed.

Figure 15.6 A normalized schema.

Figure 15.7 A denormalized schema.

10101Ed Roman12345

78727 12345Austin10101

PersonPK

AddressPK City ZipCode PersonForeignPK

PersonName Address

202021010112345

CoursePKStudentPKEnrollmentPK

EJB for Architects20202

CourseNameCoursePK

Joe
Student10101

StudentNameStudentPK

432 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 432

Bidirectional or Unidirectional?
How do you choose between bidirectional and unidirectional relationships?
Here are some questions to ask:

■■ Should each bean know about the other bean? Would that hamper
reuse?

■■ From the client’s perspective, does it make intuitive sense to navigate
the relationship from the direction in question?

■■ Is the database mapping of stubs to foreign keys straightforward, or
does adding directionality result in mapping to multiple tables, result-
ing in inadequate performance?

Lazy Loading

All the relationship code we’ve discussed so far makes a big assumption:
Whenever an entity bean is loaded, all of the other entity beans that it has a
relationship with are also loaded. This is called aggressive loading. We saw this,
for example, with our Order:Shipment relationship at the beginning of this
chapter. The order bean looked up the shipment bean in the order bean’s
ejbLoad() method.

Aggressive loading is nice because you can load all database data in a single
transaction. However, it does have its downside. Aggressive loading could
lead to loading a very large entity bean graph, and you may not need that
entire graph.

BMP and CMP Relationships 433

RELATIONSHIPS AND LOCAL INTERFACES

A common theme throughout this book has been to always use local interfaces
when possible. This is especially true for entity beans, and has a big impact on
relationships.

Specifically, if you decide for some bizarre reason to use remote interfaces
with entity beans, then you must adhere to the following rules:

◆ You must not expose get/set methods for relationship fields to remote
clients. Doing so creates problems because, for example, the client does
not have access to the container-implemented collection interface.

◆ Your entity bean can only have unidirectional relationships with other
entity beans. The lack of a local interface prevents other entity beans
from having a relationship with you.

21_576828 ch15.qxd 11/3/04 11:44 AM Page 433

Lazy loading means to load only related beans when you need to access those
beans. For example, with the Order:Shipment relationship using BMP that we
presented at the beginning of this chapter, we would rewrite the code to lazy-
load as follows:

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

private String shipmentFK; // Foreign key to shipment

private Shipment shipment; // EJB local object stub

public void ejbLoad() {

// 1: SQL SELECT Order, loading the shipment foreign key

// 2: Set shipmentFK field to the loaded key

}

public Shipment getShipment() {

// 1: JNDI lookup of ShipmentHome

// 2: Call ShipmentHome.findByPrimaryKey(shipmentFK)

return shipment;

}

...

}

In the preceding code, we are looking up the shipment just in time when the
client calls getShipment(), rather than in ejbLoad(). ejbLoad() merely locates the
appropriate foreign key, which getShipment() uses.

With CMP, lazy loading happens automatically behind the scenes. You are,
however, reliant on container-specific flags to enable lazy loading. Most major
containers support this, so check your container documentation.

Aggregation Versus Composition
and Cascading Deletes

When you have a relationship between two entity beans, you need to think
about whether that relationship is an aggregation or a composition relationship.

An aggregation relationship is a uses relationship. For example, students use
courses. If you delete a student, you don’t delete the courses the student is reg-
istered in, because other students are using that course. Similarly, if you delete
a course, you don’t murder a student!

A composition relationship is an is-assembled-of relationship. For example,
orders are assembled of line items. Deleting an order deletes all line items.
Line items shouldn’t be around if their parent order is gone.

434 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 434

After you’ve figured out whether your relationship is an aggregation or
composition, you need to write your entity beans so they model the semantics
you desire. This all boils down to a concept called a cascading delete. An aggre-
gation relationship does not cause a cascading delete, whereas a composition
relationship does.

With BMP, you implement a cascading delete manually in your ejbRemove()
method. For example, an order bean’s ejbRemove() method would not only per-
form a SQL DELETE of the order, but would also call the shipment bean’s
ejbRemove() method:

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

private Shipment shipment; // EJB local object stub

public Shipment getShipment() { return shipment; }

public void setShipment(Shipment s) { this.shipment = s;}

...

public void ejbRemove() {

// 1: SQL DELETE Order

// 2: shipment.remove();

}

}

With CMP, the container generates cascading delete code for you. If you
have a composition relationship, you just need to set up a <cascade-delete/> tag
in the deployment descriptor, as follows:

BMP and CMP Relationships 435

DESIGN TIP: AGGRESSIVELY LOAD IN ONE DIRECTION ONLY
FOR M:N RELATIONSHIPS

With many-to-many relationships, you need to be careful about how
aggressively you load your entity bean graph. For example, assume that Larry
lives at addresses A, B, and C; Curly at C and D; Moe at C and E; and E is a
commune with 37 people living in it. Larry, Curly, Moe, and everyone in the
commune are customers of ours. If we cascade the load across the relationship
in both directions when we read in Larry, we would retrieve at least 5 address
objects and 40 customer objects, not to mention any other addresses at which
the commune people also live and any customers and their addresses that
those retrievals would then cascade to. The same problem arises if we also
cascade the deletion in both directions. We need to cascade the retrieval and
deletion in one direction, or be incredibly smart about how we cascade in both
directions. Unless your entity bean graph is small, we recommend you use lazy-
loading for at least one direction of the relationship.

21_576828 ch15.qxd 11/3/04 11:44 AM Page 435

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee” version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Order-Shipment</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

order-spawns-shipment

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Order</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>shipment</cmr-field-name></cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

shipment-fulfills-order

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<cascade-delete/>

<relationship-role-source>

<ejb-name>Shipment</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>order</cmr-field-name></cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

If you have an aggregation relationship, you just leave the <cascade-delete/>
tag out.

Relationships and EJB-QL

When setting up CMP relationships, you can also set up special queries using
the EJB Query Language (EJB-QL), which we briefly describe in Chapter 7 and
fully explain in Appendix D. The following is relevant to our discussion and is
excerpted from Appendix D.

436 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 436

The big difference between EJB-QL and SQL is that EJB-QL enables you to
traverse relationships between entity beans using a dot notation. For example:

SELECT o.customer

FROM Order o

In this EJB-QL, we are returning all customers that have placed orders. We
are navigating from the order entity bean to the customer entity bean easily
using a dot notation. This is quite seamless.

What’s exciting about this notation is that bean providers don’t need to
know about tables or columns; they merely need to understand the relation-
ships between the entity beans that they’ve authored. The container will han-
dle the traversal of relationships for us because we declare our entity beans in
the same deployment descriptor and Ejb-jar file, empowering the container to
manage all of our beans and thus understand their relationships.

In fact, you can traverse more than one relationship. That relationship can
involve container-managed relationship fields and container-managed persis-
tent fields. For example:

SELECT o.customer.address.homePhoneNumber

FROM Order o

The restriction on this type of recursive relationship traversal is that you are
limited by the navigatability of the relationships that you define in the deploy-
ment descriptor. For example, let’s say that in the deployment descriptor, you
declare that orders have a one-to-many relationship with line items, but you
do not define the reverse many-to-one relationship that line items have with
orders. When performing EJB-QL, you can get from orders to line items, but
not from line items to orders.

Recursive Relationships

A recursive relationship is one in which an entity bean instance has a relation-
ship with another instance of the same entity bean class, as shown in Figure 15.8.

Figure 15.8 A recursive relationship.

Employee
Employee

BMP and CMP Relationships 437

21_576828 ch15.qxd 11/3/04 11:44 AM Page 437

Figure 15.8 shows an Employee:Manager relationship. All that this means is
that our employee entity bean has a relationship with another employee entity
bean.

As you would expect, recursive relationships are implemented exactly as
nonrecursive relationships are. All the principles we learned earlier apply, and
nothing is new. We just happen to have a relationship with an instance of an
entity bean that uses the same class.

Circular Relationships

A circular relationship is similar to a recursive relationship except that instead
of involving a single entity bean, it involves several. Figure 15.9 depicts a cir-
cular relationship.

The following relationships exist:

■■ Employees work in a division.

■■ A division owns one or more workstations.

■■ An employee has a workstation.

The problem with circular relationships is that if your beans automatically
find each other, you will get into an endless circle of finding. The same prob-
lem exists for cascading deletes.

Figure 15.9 A circular relationship.

Employee

DivisionWorkstation
1*

*

11

1

438 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 438

So how do you implement circular relationships between EJBs appropri-
ately? You have several implementation strategies.

■■ Some containers enable you to optimize performance and load an entity
bean at the same time that it’s found. This is where the circularity issue
stems from, because the ejbLoad() method performs the cascading find.
Not loading an entity bean when it’s found means no cascading find
operation occurs.

■■ Break the circular relationship by removing one of the relationships
altogether. This is a harsh approach to resolving the problem.

■■ Break the circular relationships within your model by making one or
more relationships unidirectional, effectively breaking the circle in both
directions. This isn’t always an option because your requirements may
not permit it.

■■ Use lazy loading rather than aggressive loading, and do not use cascad-
ing deletes.

■■ Choose an application server with persistence logic that can detect cir-
cular relationships. Many persistence administration tools automati-
cally detect and warn you of circular relationships when you define
them. This enables you to prevent the problem before it occurs.

Referential Integrity

Referential integrity is the assurance that a reference from one entity to
another entity is valid. For example:

■■ Let’s say a company, department, and position each has relationships
with an employee. If the employee is removed, all references to it must
also be removed, or your system must not allow the removal of
employee.

■■ Let’s say an order has a one-to-many relationship with a line item.
Someone adding a second order to an order line item is trying to
change a one-to-many relationship to a many-to-many relationship. We
must therefore break the line item’s relationship with the original order
so that we maintain our intended one-to-many semantics.

Referential integrity issues arise in both the database (keeping foreign keys
correct) and in the application server (keeping stubs correct). So how do you
ensure referential integrity within your EJB applications? You have three fun-
damental options:

BMP and CMP Relationships 439

21_576828 ch15.qxd 11/3/04 11:44 AM Page 439

■■ Enforce referential integrity within your database with triggers. For
example, you could write a trigger that fires when an employee is
deleted. This trigger would delete the relationships the employee had
with other database tables to preserve referential integrity.

■■ Enforce referential integrity within your database with stored proce-
dures. Your EJB component would call these stored procedures to per-
form database operations, and the stored procedures would be
responsible for preserving referential integrity.

■■ Enforce referential integrity within EJB components.

Implementing referential integrity in your database has the advantage in
that other non-EJB applications can take advantage of it, your database being
the lowest common denominator within your organization. Relational data-
bases implement triggers for exactly this purpose, and most data modeling
tools support the generation of trigger code to simplify this effort for you. The
drawback of implementing logic in your database is that it increases the pro-
cessing burden on your database server(s), running the risk that your database
becomes a bottleneck to your application. You can also take a hybrid approach
to implementing referential integrity—your EJBs handle the referential
integrity for some entities and your database for others.

Of these options, we believe that the EJB approach is the cleanest and easi-
est to maintain over the long term, because your EJB layer encapsulates all
relationships. Here is how you do it with EJB:

■■ With BMP you need to take care of referential integrity on your own.
You do so by manually breaking old relationships. If someone tries to
assign a second order to your line item, your line item bean should call
the order bean and tell the order bean to remove you from its list of line
items.

■■ With CMP the container will automatically handle referential integrity
for you. You never have to worry about these issues. This is one neat
feature the container provides that makes CMP a compelling value
proposition.

Note that it’s not quite this simple. To complicate matters, you might have a
farm of EJB application servers, and your component might exist simultane-
ously on several machines. Furthermore, if you have other applications access-
ing your database, it is possible that they too have representations of your data
in their memory as well. The good news is that transactions (see Chapter 12)
solve this problem. For example, when you delete an employee and also delete
the relationships it has with other entities within a transaction, either all or
none of the deletions occur, preserving referential integrity.

440 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 440

Writing code to enforce referential integrity in your EJB components instead
of your database works only when all of your applications are written this
way (and hopefully they share a common code base). However, this is rarely
the case. In many organizations, some or often most applications are
written assuming that the database(s) will handle referential integrity. This
is clearly an inappropriate layering of these applications because business
logic is now implemented on several disparate architectural tiers, making
the applications less robust. However, it is a reality that many EJB
developers must accept; some of their business logic will be implemented in
the database, perhaps through triggers or through Java objects implemented
within the database.

Relationships, Referential Integrity, and Client Code
Throughout this chapter, we’ve seen lots of fascinating relationships. Many
of those relationships involved collections. For example, here is our
Company:Employee one-to-many CMP relationship again:

public abstract class CompanyBean implements EntityBean {

// no fields

public abstract Collection getEmployees();

public abstract void setEmployees(Collection employees);

...

public void ejbLoad() { } // Empty

public void ejbStore() { } // Empty

}

This code has methods to get/set entire Collections of employees. But
what’s interesting is that there is no API for clients to perform operations on
individual employees.

This is where the Collection Collection comes into play. By using the Collec-
tion Collection from client code, you can modify the contents of a one-to-many
relationship. For example:

// Lookup local home objects

Context ctx = new InitialContext(...);

CompanyHome companyHome = (CompanyHome) ctx.lookup(“CompanyHome”);

EmployeeHome employeeHome = (EmployeeHome) ctx.lookup(“EmployeeHome”);

// Make a new employee

Employee employeeA = employeeHome.create(“Ed Roman”);

BMP and CMP Relationships 441

21_576828 ch15.qxd 11/3/04 11:44 AM Page 441

// Find a company

Company company =

companyHome.findByPrimaryKey(“The Middleware Company”);

Collection employees = company.getEmployees();

// Add the employee to the company.

// This demonstrates the add() Collection API method

employees.add(employeeA);

// Look at each employee in the company.

// This demonstrates using iterators to loop through collections

Iterator i = employees.iterator();

while (i.hasNext()) {

Employee emp = (Employee) i.next();

System.out.println(emp.getName());

}

// Remove the employee from the company.

// This demonstrates the remove() Collection API

employees.remove(employeeA);

Since we’re using local interfaces, the collection that the client modifies is
the same as the collection inside the bean. This is because the get/set methods
pass the collection by reference rather than by value. Thus, when the client
modifies the contents of the collection, he is actually changing the bean’s rela-
tionships. If remote interfaces were used, the relationships would not be acces-
sible through the remote interface to begin with, due to the remote interface
restrictions discussed earlier in this chapter.

The container is responsible for providing an implementation of the Collec-
tion interface. This needs to be a smart collection that understands how to pre-
serve referential integrity behind the scenes.

Be careful when using iterators and relationships. If you want to modify a
relationship while an iterator is at work, use only the java.util.Iterator
.remove() method. Adding or removing elements from a collection while the
iterator is in progress will throw off the iterator.

Table 15.1 lists the effects that client operations have on referential integrity.
Note that for the one-to-many and many-to-many rows on the table, we are
performing operations on collections and using the collections API for opera-
tions such as add() and remove().

442 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 442

Table 15.1 Client Operations and Referential Integrity

ORIGINAL NEW
SITUATION RELATIONSHIPS OPERATION RELATIONSHIPS

1:1 Relationship orderA-shipmentA orderA.setShipment OrderA-
Order:Shipment orderB-shipmentB (orderB.getShipment()); ShipmentB,

OrderB-NULL

1:N Relationship companyA- CompanyA.set NULL-employeeA,
Company: employeeA, Employees (CompanyB. NULL-employeeB,
Employee companyA- getEmployees()); companyA-

employeeB, employeeC,
companyB- companyA-
employeeC, employeeD,
companyB- companyB-Empty
employeeD Collection

1:N Relationship companyA- EmployeeA.set companyB-
Company: employeeA, Company employeeA,
Employee companyA- (employeeC.get companyA-

employeeB, Company()); employeeB,
companyB- companyB-
employeeC employeeC,
companyB- companyB-
employeeD employeeD

1:N Relationship companyA- CompanyB.get companyB-
Company: employeeA, Employees().add employeeA,
Employee companyA- (employeeA); companyA-

employeeB, employeeB,
companyB- companyB-
employeeC, employeeC,
companyB- companyB-
employeeD employeeD

1:N Relationship companyA- CompanyA.get NULL-employeeA
Company: employeeA, Employees().remove companyA-
Employee companyA- (employeeA); employeeB,

employeeB, companyB-
companyB- employeeC,
employeeC, companyB-
companyB- employeeD
employeeD

M:N Relationship studentA-courseA, studentA.setCourses studentA-courseB,
Student:Course studentA-courseB, (studentB.get studentA-courseC,

studentB-courseB, Courses()); studentB-courseB,
studentB-courseC studentB-courseC

(continued)

BMP and CMP Relationships 443

21_576828 ch15.qxd 11/3/04 11:44 AM Page 443

Table 15.1 (continued)

ORIGINAL NEW
SITUATION RELATIONSHIPS OPERATION RELATIONSHIPS

M:N Relationship studentA-courseA, studentA.get studentA-courseA,
Student:Course studentA-courseB, Courses().add studentA-courseB,

studentB-courseB, (courseC); studentA-courseC,
studentB-courseC studentB-courseB,

studentB-courseC

M:N Relationship studentA-courseA, studentA.get studentA-courseA,
Student:Course studentA-courseB, Courses().remove studentB-courseB,

studentB-courseB, (courseB); studentB-courseC
studentB-courseC

Try to look at only the first three columns of Table 15.1 and see if you can
guess what the fourth column should be.

Summary

Still with us? Fantastic! Pat yourself on the back, because you’ve achieved a
great deal in this chapter. You learned about cardinality, directionality, referen-
tial integrity, cascading deletes, recursive relationships, circular relationships,
lazily loaded relationships, and how to control relationships from client code.
You also saw how to implement each of the above topics using both CMP and
BMP.

You should be prepared now to go ahead and implement relationships in
your own deployments. For concrete examples without pseudo-code that you
can use as a basis for your own deployments, see the book’s accompanying
source code (wiley.com/compbooks/roman).

444 Chapter 15

21_576828 ch15.qxd 11/3/04 11:44 AM Page 444

445

Most modern business applications require that you persist data—create,
retrieve, update, and delete data. Persisting data from EJB components can be
as easy as defining a few simple class-to-table mappings using an EJB con-
tainer’s persistence administration tool, or as difficult as writing sophisticated
Java source code.

In this chapter we explore the issues surrounding EJB persistence and
explore the various approaches to persistence that you may employ within
your EJB applications. We’ll cover the following topics:

■■ Comparing entity beans with other persistence approaches

■■ How to choose between container-managed persistence (CMP) and
bean-managed persistence (BMP)

■■ A collection of persistence best practices, such as versioning EJB compo-
nents, and dealing with a legacy data design

This chapter is written with the assumption that you will use one or more
relational databases to store your business objects. We are considering only
relational databases because that’s what most organizations use.

Persistence Best Practices

C H A P T E R

16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 445

Comparing Entity Beans with Other
Persistence Approaches

A fundamental issue that you need to address is how to persist the information
encapsulated by your EJBs. There are three approaches to this:

■■ Session beans plus JDBC. A session bean persists data manually, typi-
cally via JDBC.

■■ Session beans plus O/R persistence frameworks. A session bean can use
O/R frameworks such as JDO, Hibernate, OJB, and so on for persisting
or accessing domain data.

■■ Entity beans, either BMP or CMP.

Let’s first figure out how entity beans (either CMP or BMP) compare to
other persistence approaches such as session beans plus JDBC or session beans
plus persistence frameworks. This discussion will help you make the decision
of selecting the appropriate persistence option in your projects. Then we’ll
compare BMP and CMP.

Control
There are significant control differences between performing persistence via
session beans and entity beans. Session beans are more of a service-oriented
architecture because you call methods explicitly to load and store data. Thus,
you are in command of when to use JDBC explicitly. This is very similar to the
Microsoft approach to business components. In comparison, with entity beans,
the container automatically loads and stores data on your behalf.

This loss of control that entity beans give you can be somewhat disturbing.
If you’re not careful to tune your container properly using its flags, and to start
and end transactions at the right times, operations that require a single SQL
statement can take several statements. Proper education of your developers
will help solve these problems.

Data retrieval
Another way to compare these persistence options is by understanding how
data is retrieved in each of these approaches and understanding their perfor-
mance impact.

Session Bean Plus JDBC

When you perform a JDBC query from session bean, the session bean gets
returned a result set. The result set contains queried data and the session bean

446 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 446

traverses through the result set object to access this relational data. Here, since
the client makes local method invocations on a result set object to access data
to access underlying relational data, the performance is typically very good.

The session bean will require putting the data represented within the result
set object into serializable data transfer objects (DTO) so that it can be mar-
shaled to its client across the network. Of course, this chore is not required
when using disconnected JDBC rowsets since they can be marshaled to the
client directly.

Session Bean Plus O/R Persistence Frameworks

When you do a query using JDO or other non-standard frameworks such as
Hibernate, a session bean will get returned a collection of objects mapped to
the underlying relational data. The returned collection of objects contains the
queried data and session bean traverses through these plain old Java objects
(POJO) to access the relational data. Here, since the client makes local method
invocations on POJOs to access underlying relational data, the performance is
typically very good. The session bean can directly pass the collection of POJOs
to its client.

Session Bean Plus Entity Bean

When you do a query using entity bean home, the session bean will get
returned a collection of stubs to the server-side entity objects. The returned col-
lection of stubs provides access to the server-side relational data. The session
bean uses these stubs to do method invocations, which in turn retrieves the
relational data. This will have negative impact on performance when the stubs
correspond to remote entity objects, as the client will be required to make
remote method invocations to retrieve data. However, if session beans and
entity beans are deployed in the same container, and if entity bean supports
local interfaces, then there is no negative performance impact because the
client now makes local method invocations on the object representations of
data to access the underlying relational data.

Here the session bean will require putting the data represented by entity
objects into serializable DTOs so that it can be marshaled to the client.

Thus, the point to take away is that there are performance implications of
using remote entity beans, especially when entity beans and their clients (ses-
sion beans, typically) are not co-located within the same virtual machine.

Procedural versus Object-Oriented
Most EJB deployments work with data that is either procedural (tabular) or
object-oriented in nature. Session beans that use JDBC for data access work
with tabular representation of data. Session beans that use the O/R framework

Persistence Best Practices 447

22_576828 ch16.qxd 11/3/04 11:45 AM Page 447

for data access work with object-oriented representation of data. Also, since
entity beans are Java objects, session beans that use entity beans for data access
work with object-oriented data.

Object-oriented data access is favored over procedural data access simply
because they provide benefits such as encapsulation and relationships, which
are inherent to object-oriented programming. Object-oriented data access thus
helps when working with data that requires encapsulation or relationships
with other data.

Caching
Middle-tier data caching is extremely important because it empowers you to
reduce database traffic, and your database will most likely be your bottleneck.

Session beans do not represent database data and therefore cannot be
cached at all. Hence, when using session beans you will have to rely on the
data access mechanism to provide caching. Persistence frameworks such as
Hibernate and JDO do support caching. Mostly, the rows they read in are
cache-consistent for the duration of a single transaction only. However, Hiber-
nate does support JVM-level or cluster-level cache.

Most of the application servers support entity bean caching across multiple
transactions provided application server has exclusive access to that part of
the database. You can set this up using container-specific flags.

If data is shared, entity bean caching benefits are more prominent because
that data is likely to be viewed many times. An example of shared data is a
product catalog, such as the hottest 100 books on Amazon.com.

If your data is exclusive (not shared), caching offers almost no benefits. An
example of exclusive data is a personal account, such as your personal account
settings on Amazon.com. In the exclusive data case, the extra SQL statements
that sometimes occur through entity beans may offset the caching benefits,
making entity beans a lower-performing solution. However, in most deploy-
ments, most data is shared and read-only, and hence caching is an important
performance boost that entity beans provide.

Enforcement of Schema Independence
Schema independence is an extremely important feature of your persistence
layer. As a nightmare motivational story, a project for one of our clients took
three developers four months to change two columns in a database because of
spaghetti SQL all over the place. By encapsulating that data with a layer, we
would have avoided those headaches.

Entity beans force developers to go through an entity bean layer, yielding a
single entry point to the database. Developers are isolated from the schema,
allowing ease of schema evolution and data encapsulation.

448 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 448

In comparison, session beans can also isolate you from the schema, if you use
the appropriate data access approach such as an O/R mapping framework like
JDO or Hibernate. Most of these O/R mapping frameworks enable you to spec-
ify the field-column mappings in configuration files, thereby taking the schema
dependence off the code. In the end, if your developers are on top of things,
either session beans or entity beans will give you schema independence.

Migration
Most EJB deployments are based on existing databases. These databases are
likely to be tabular in nature, and many have SQL code that has been tuned
over the years to be high performing. It is a known commodity that works well.

Session bean and JDBC persistence approach is somewhat procedural in
nature and is a natural evolution of those legacy procedural systems. For some
deployments, application developers can simply copy SQL code from existing
solutions into the new EJB system. This eliminates a risk factor in a new EJB
architecture.

In comparison, entity beans, or O/R persistence frameworks for that matter,
represent data in an object-oriented manner such that the container maps the
data objects to the underlying tabular data via its generated SQL code. If the
EJB server is good, it will generate optimized SQL for accessing the database.
Mostly, the persistence engines of EJB servers are fairly smart in generating
optimized SQL. Again, here you do lose some control in that you rely on the
SQL code from your container and not your time-tested SQL. But in the long
term this will prove to be a better choice, given that server vendors will con-
tinue to make their products smarter in terms of accessing data. Hence, once
you migrate your data access logic to entity beans you are likely to benefit
from EJB server advancements in the future.

Rapid Application Development
When building a new EJB system, using entity beans or an O/R framework
will provide a rapid application development advantage over session beans
and JDBC. Most popular UML editors (Rational Rose, Borland TogetherJ)
enable you to autogenerate framework-based persistence objects, such as
Hibernate objects or JDO objects, and entity beans from UML diagrams. Fur-
thermore, tools (such as IDEs or popular code generation tools, such as XDo-
clet or EJBGen, enable you to generate complete entity bean Ejb-jar files from a
few bits of information about the data you’re modeling.

Note, however, that developing EJB applications inherently consumes more
time because of the overhead involved in writing all the files that comprise a
bean. Therefore, if you’re not using powerful tools, or at least copying and
pasting template code, you may find yourself bogged down.

Persistence Best Practices 449

22_576828 ch16.qxd 11/3/04 11:45 AM Page 449

Choosing Between CMP and BMP

Now that we’ve compared session beans and entity beans, let’s assume we’re
using entity beans. In Chapter 6, you discovered two approaches for persisting
entity beans: With BMP, you are responsible for coding all database logic,
while with CMP, the container handles the persistence for you.

The choice between CMP and BMP is not necessarily clear-cut. Both bean-
managed and container-managed beans have virtues and drawbacks.

Code Reduction and Rapid Application Development
The promise of CMP is quite compelling. If you tell the EJB container a couple
of things about your bean, container-managed persistence can perform all
data access logic for you. This reduces the size of your bean tremendously—no
more JDBC code in your beans—which reduces overall development time. It
also makes code easier to understand and maintain. CMP beans are also fan-
tastic for prototyping. If you need to get something working right away, go
with CMP, knowing that you can take a BMP approach later if required.

Know that in reality you still may need to write persistent code with con-
tainer-managed beans. This could be going through a series of wizards to spec-
ify how your entity beans map to an underlying store. You also need to specify
the logic behind your finder methods. The difference is that with CMP, your
data access logic is now specified declaratively, whereas with BMP, you’re
writing the logic in Java. To CMP’s credit, the amount of programming you’re
doing is much less.

Performance
CMP entity beans, if tuned properly, are much higher performing than BMP
entity beans.

For example, with BMP, it takes two SQL statements to load an entity bean:
the first to call a finder method (loading only the primary key) and the second
during ejbLoad() to load the actual bean data. A collection of n bean-managed
persistent entity beans requires n+1 database calls to load that data (one finder
to find a collection of primary keys, and then n loads).

With CMP, the container can reduce the n+1 database calls problem to a sin-
gle call, by performing one giant SELECT statement. You typically set this up
using container-specific flags (which do not affect bean portability). Check
your container’s documentation to see if this feature is supported.

There is a hack work-around to increase BMP performance. It’s called the
fat key pattern and is explained on the book’s companion Web site at
wiley.com/compbooks/roman.

450 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 450

Bugs
CMP systems tend to be harder to debug than BMP systems are. The reason is
that with BMP, you are in total control of the JDBC code; if something goes
wrong, you can debug that code.

With CMP, you are generating code based on deployment descriptor values.
While it may be true that user error is reduced at the database level, serious ram-
ifications occur if there is some kind of bug. Because the container is performing
your persistence for you, it is tough to figure out which database operations the
container is really doing. You may need to trace through container-generated
code if it’s available, decompile the container, or possibly wait on technical sup-
port lines, delaying a project.

Furthermore, since we’re all human, we make mistakes writing CMP
deployment descriptors, such as having values that are incorrect or that do not
match up perfectly to our bean files. Often the container’s JDBC code genera-
tor is too dumb to point out your error and simply generates bad code. At
other times, your container’s generator tool might even crash, making it even
harder to figure out what the problem is. (This is really annoying!)

See Chapter 11 for strategies for debugging misbehaving EJB applications.

Control
BMP gives you ultimate control over JDBC, and thus you have unlimited flexi-
bility for the way you map your objects to the database. For CMP, many con-
tainers support complex mappings, but some containers don’t. For example, if
your container-managed persistent entity bean class has a vector of Java objects
as a container-managed field, you may need to convert that vector into a bit-
blob or other form that the container can handle when mapping to storage.

Application Server and Database Independence
One nice thing about container-managed persistence is that you aren’t hard-
coding a particular database storage API into your beans, such as JDBC.
Because you aren’t issuing explicit relational database calls in your persistence
layer, you can easily move into a different database, such as Oracle instead of
SQL Server. Theoretically, you might even port your beans to use object data-
bases without changing code.

Database independence is important for those who are providing beans to
others. Often those beans must be able to work with whatever target database
the customer has. Given that enterprise beans represent intellectual property,
they most likely will not ship with their source code. This means that if an
entity bean uses BMP, the customer cannot easily tweak the data access logic.
For these vendors, CMP is the only alternative to shipping multiple versions of
the same bean code.

Persistence Best Practices 451

22_576828 ch16.qxd 11/3/04 11:45 AM Page 451

Unfortunately, there is no standard way to specify the actual O/R mapping
with CMP. Each container has its own tools, wizards, or mapping files that
specify which fields correspond to which database columns. But what if you
want to install your bean in a different container? You’ll need to re-specify
your mappings using the new container’s tools. If you have a complex data
model, this could become a hefty task. Furthermore, since not all application
servers support your complex persistence needs, your beans may not be
portable to other containers.

Because of this, sometimes using BMP and allowing your SQL to be hand-
tuned through the EJB environment properties (see Chapter 10) is the way to
go if you want to be application server- and database-neutral.

Relationships
The EJB 2.x CMP model offers many useful relationship features to bean
providers. These include referential integrity, cardinality, relationship man-
agement, and cascading deletes. The container can take care of all these issues
for you.

With BMP, you must write the scaffolding code to manage and persist
the relationships between entity beans. This can get very hairy. You’ll notice
that a big chunk of your BMP code is dedicated to managing these relation-
ships, which decreases time to market and makes your beans more difficult to
understand.

Learning Curve and Cost
Most developers already understand how to perform relational database
access from Java, and thus BMP does not require much of a learning curve. In
comparison, some advanced EJB servers ship with complex O/R mappers for
CMP. These mappers provide useful functionality but do require training and
ramp-up time. They also might cost some money, depending on your vendor’s
policy.

Most people would love to go with CMP but are afraid to risk that CMP is
not flexible enough. If you’re in this category, you have a path to try out
CMP before you buy. You can make all your entity beans use CMP, and then
subclass those beans as necessary if you want to use BMP. This works
because CMP entity beans are abstract classes.

452 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 452

Choosing the Right Granularity for Entity Beans

If you do decide to go with entity beans (instead of session beans plus JDBC,
or session beans plus Java classes), then you need to decide on the granularity
of your entity beans. The granularity refers to how big (or small) your entity
beans are.

In the past, entity beans were restricted to represent only large chunks of
data involving complex joins across multiple tables. Now with the advent of
local interfaces and the new CMP model, the container can make many more
optimizations. This means the idea of small-grained entity beans is much more
viable, if you tune your entity beans properly (see Chapter 18 for tips here).

Another choice you have is to make some of your entity beans be Java
classes. These Java classes would hang off other entity beans. For example, you
could have an order entity bean that has a vector of line item Java classes. If
you’re using CMP, the EJB specification refers to these Java classes as dependent
value classes. Don’t be confused by the terminology; this is just the Java Com-
munity Process’s way of giving a fancy name to Java classes that hang off a
CMP entity bean.

For example, here is a dependent value class:

package examples;

public class LineItem implements java.io.Serializable {

private String product;

private int quantity;

public void setProduct(String product) { this.product = product; }

public String getProduct() { return product; }

public void setQuantity(int quantity) { this.quantity = quantity; }

public int getQuantity() { return quantity; }

}

If you’re going to use them, then you should know that there are a few rules
for dependent value classes:

■■ Dependent value classes are defined as CMP fields, and they work just
like CMP fields do. For example, rather than having a java.util.String
CMP field, you might have a custom class like examples.LineItem. Every-
thing we learned about how to use CMP fields in Chapter 8 applies to
these custom Java classes too.

■■ Dependent value classes may not be container-managed relationship
(CMR) fields, which we learned about in Chapter 15. Relationships
exist only between entity beans, not Java classes.

Persistence Best Practices 453

22_576828 ch16.qxd 11/3/04 11:45 AM Page 453

■■ Dependent value classes cannot contain references to other entity
beans. For example, this sequence of references would be illegal: order
(entity bean) points to line item (dependent value class) points to
address (entity bean).

■■ Dependent value classes must be serializable. Getting and setting them
are performed by-value rather than by-reference. This hampers perfor-
mance, but does enable you to access it via the remote interface.

The real value of dependent value classes over entity beans is that they are
quick to develop. The downside is that you lose many of the entity bean bene-
fits described earlier in this chapter.

Persistence Tips and Tricks

In this section, we’ll present a number of best practices when performing
object-to-relational mapping.

Beware the Object-Relational Impedance Mismatch
The object-oriented paradigm, which EJB follows, is based on proven software
engineering principles for building applications out of objects that have both
data and behavior. The relational paradigm, however, is based on proven
mathematical principles for efficiently storing data. Difficulties arise when
you attempt to use object and relational technologies together, such as EJBs
and relational databases, because of the impedance mismatch between the two
paradigms. The impedance mismatch becomes apparent when you look at the
preferred approach to access: With the object paradigm you traverse objects
through their relationships, whereas with the relational paradigm you join the
data rows of tables. This fundamental difference results in a less-than-ideal
combination of object and relational technologies. Of course, when have you
ever used two different things together without a few hitches? To be success-
ful using EJB and relational databases together is to understand both para-
digms and their differences, and then make intelligent tradeoffs based on that
knowledge.

Hard-Coded versus Soft-Coded SQL
Most developers hard-code SQL into their BMP entity beans. We showed an
example of this in Chapter 7. The problem with this approach is that when
your data schema changes, you need to update your source code, retest it,
compile it, and redeploy it.

Another possibility is to take a soft-coded approach to SQL, where the map-
ping of your EJB object schema to your database schema is maintained outside

454 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 454

your EJBs. You can keep a list of database mappings in a file or a database, or
internally as a data collection, or you can use EJB environment properties
accessed through JNDI (see Chapter 10 for more details). The advantage of the
soft-coded approach is that you need to update only the metadata represent-
ing your mappings, not the EJB code itself, along the same lines that CMP
works for entity beans.

To implement soft-coded SQL within your session beans, you could either
build a mapping facility yourself or adopt one of several Java persistence lay-
ers or frameworks. The high-level design of a persistence layer, as well as links
to several vendors of commercial and open source products, is provided at
www.ambysoft.com/persistenceLayer.html.

When to Use Stored Procedures
Stored procedures are operations that run within a database. A stored proce-
dure typically runs some SQL code, massages the data, and then hands back a
response in the form of zero or more records, or a response code, or as a data-
base error message. In the past, stored procedures were written in a propri-
etary language, such as Oracle PL/SQL, although Java is quickly becoming the
language of choice for database programming. You can invoke stored proce-
dures from a J2EE deployment via JDBC.

The following code invokes a stored procedure (thrown exceptions omitted):

// Define the code to invoke a stored function

CallableStatement orderCounter = connection.prepareCall(

“{ call ? = COUNT_CUSTOMER_ORDERS[(?)]} “);

// Invoke the stored function

orderCounter.registerOutParameter(1, java.sql.Types.FLOAT);

orderCounter.setInt(2, customer.getCustomerID());

orderCounter.execute();

// Get the return value

numberOfOrders = orderCounter.getFloat(2);

// End the transaction and close the connection

connection.commit();

orderCounter.close();

Now that you’ve seen how to call stored procedures, when should you use
them in an EJB environment? Here are some good use cases:

1. Performance. Often you’re performing data-intensive operations with
small result sets, and stored procedures then become very appetizing.
For example, a good candidate for a stored procedure would be to pro-
duce counts listing the number of critical orders (criticality defined
by a business rule involving a list of preferred customers, preferred

Persistence Best Practices 455

22_576828 ch16.qxd 11/3/04 11:45 AM Page 455

products, and order total) that have been outstanding for more than 30,
60, or 90 days. This operation is data intensive; it would need to take a
pass at every order record that has been outstanding for more than 30
days and run it through the defined business rule to determine if it is
critical or not. This involves an amount of data that you wouldn’t want
to bring across the network to an EJB application server, convert to
objects, and then process accordingly. The stored procedure could do all
the work on the database server and simply send back the three result-
ing numbers. Stored procedures are also precompiled, resulting in per-
formance wins.

2. Shared business rules. We encourage organizations to strive, first and
foremost, towards centralizing on an EJB layer for all their applications.
However, due to political reasons, the reality is that this may not be fea-
sible for all organizations. When your application must share a rela-
tional database with other non-EJB applications, such as a legacy
system or Microsoft-based system, the database becomes an option for
implementing your business rules. This is especially true when legacy
applications are unable to access better approaches to implementing
business rules, such as an EJB application server or a business rules
server. As a result, your relational database becomes the most viable
option to implement shared business rules because it is the lowest com-
mon denominator that your suite of applications can interact with.

3. Data security access control logic. If you have external systems touch-
ing your database without going through your EJB layer, you can
secure your data by configuring access control on the database. For
example, you may want to give another department access to view
salary data, but not update it.

4. Legacy database encapsulation. You often find that you need to write
stored procedures to present a clean view of a legacy database to your
EJBs. Most legacy designs are completely inappropriate for access by
object-oriented code, or non-object code for that matter, yet cannot eas-
ily be reworked due to the large number of legacy applications coupled
to them. You can create stored procedures to read and write records that
look like the objects that you want. Dealing with legacy databases is
discussed later in this chapter.

5. Centralized SQL. The SQL is kept in the stored procedures and is writ-
ten by database experts who excel at writing optimized SQL and do not
need to know Java.

6. Easier migration for fast-changing schemas. If your database schema
changes, then compiling a stored procedure will result in a compile-
time error. This makes it easy to find out the ripple effect on schema

456 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 456

changes, which is very useful if your schema is being enhanced at a
high velocity. SQL code from Java can only be debugged at runtime or
by combing through your code.

Note that there are also many reasons to avoid the use of stored procedures:

1. The server can quickly become a bottleneck using this approach. You
really need to be careful when moving functionality onto your server: A
stored procedure can bring the server to its knees if it is invoked often
enough.

2. Stored procedures that are written in a proprietary language can be
problematic if you want to be able to port your application to another
database vendor in the future. It is quite common to find that you need
to port your database to scale it to meet new transaction volumes—
don’t underestimate the importance of portability. These proprietary
languages also increase your learning time before you’re productive.

3. You dramatically increase the coupling within your database because
stored procedures directly access tables, coupling the tables to the
stored procedures. This increased coupling reduces the flexibility of
your database administrators. When they want to refactor the database
schema, they need to rewrite stored procedures.

4. You increase the maintenance burden for your application because
those who maintain your system need to deal with application logic in
two places: in your EJBs and in stored procedures. Your system will
become messy over time and difficult to deal with.

The following statement sums up our thoughts on stored procedures: Use
them only when necessary.

Normalizing and Denormalizing
When building your data model, you’ll often be confronted with a space ver-
sus time tradeoff. For example, if you have an order that uses a customer, you
can keep the two separate and unique in the database, or you can copy the cus-
tomer data into the order table. By duplicating the customer information, you
may make queries for orders faster, since you don’t have to use the JOIN state-
ment across several tables. Data normalization is the process of eliminating data
redundancy in a database, while denormalization is the process of increasing
redundancy for performance.

The advantage of having a highly normalized data schema is that informa-
tion is stored in one place and one place only, reducing the possibility of incon-
sistent data. Furthermore, highly normalized data schemas in general are
closer conceptually to object-oriented schemas, such as those you would create

Persistence Best Practices 457

22_576828 ch16.qxd 11/3/04 11:45 AM Page 457

for your EJB design because the object-oriented goals of promoting high cohe-
sion and loose coupling between classes results in similar solutions (at least
from a data point of view). This generally makes it easier to map your EJBs to
your data schema.

The disadvantage of normalized data schemas is that when put into pro-
duction, they often suffer from performance problems. An important part of
data modeling is to denormalize portions of your data schema to improve
database access times.

For example, often by analyzing the relationships between data, you will see
many opportunities for denormalization. One-to-one relationships, such as
those between customer and address, are often prime candidates for denormal-
ization. Their data may be stored in a single customer table to improve perfor-
mance (the address data would be stored as one or more columns within the
customer table). This is particularly true of leaf tables, tables that are related to
only one other table, a trait that the address table also exhibited.

Note that if your initial, normalized data design meets the performance
needs of your EJBs, it is fine as is. You should resort to denormalization only
when performance testing shows that you have a problem with your beans
and subsequent profiling reveals that you need to improve database access
time. Enterprise-ready databases, such as Oracle, Sybase, and DB2, include
data access monitoring tools that enable you to do exactly this. But if it ain’t
broke, don’t fix it.

Table 16.1 summarizes the three most common normalization rules describ-
ing how to put data entities into a series of increasing levels of normalization.
Strategies for achieving normalization are classic database challenges that are
beyond the scope of this book. An Introduction to Database Systems, 7th Edition
by C.J. Date (Addison-Wesley, 2000) goes into greater detail.

Table 16.1 Data Normalization Rules

LEVEL RULE

First normal form A data entity is in 1NF when it contains no repeating
groups of data.

Second normal form A data entity is in 2NF when it is in 1NF and when all of
its non-key attributes are fully dependent on its primary
key.

Third normal form A data entity is in 3NF when it is in 2NF and when all of
its attributes are directly dependent on the primary key.

458 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 458

When you are trying to track down the source of an EJB performance
problem, you’ll often discover that database access is the source of the
problem. This is why it is important for your data design to be driven by
your EJB design, and for you to be prepared to move away from a pure or
normalized database design to one that is denormalized to reflect the actual
performance needs of your EJBs.

Use Your EJB Object Model to Drive Your Data Model
For EJB components to map well to a relational database, your EJB schema and
relational database schema must reflect one another. This evokes the question
should your EJB object model drive your data model or the other way around?
Whenever you are given the choice, your EJB object model should drive the
development of your data model. Data models take into account only half of
the picture (data), whereas object-oriented EJB models take into account the
entire picture (data and behavior). By using your EJB models to drive the
development of your data models, you ensure that your database schema
actually supports the needs of your EJB components.

Note that for this to work, you need to have the freedom to define your data
schema, which you will not have if you have to work with a legacy data
schema. You also may find that you’re not allowed to define the data model;
rather, another group at your organization handles that. This approach often
proves to be a disaster, resulting in poor performance and significant rework
later in the project. In reality, data modeling is an iterative approach. You will
likely need to make several iterations of your object model based on feedback
from your data modeling efforts, and vice versa.

Follow a Good Data Design Process
Your life as an EJB programmer accessing a relational database will be much
saner if you apply a process to object-relational mapping. We recommend the
following steps:

1. Develop a data schema based on your object schema. Strip away the
operations from each class, declare the classes to be tables, and remove
any tables that have no attributes. Associations between classes, includ-
ing inheritance, simple associations, aggregation, and composition are
translated into relationships between tables. It is important to under-
stand that this provides you with a starting point, not a final solution.

2. Apply data naming conventions. Your organization may have naming
conventions for the names of tables and columns; if so, apply them as
appropriate. For example, the customer table may be called TCustomer
and the first name column of that table FIRST_NAME_C.

Persistence Best Practices 459

22_576828 ch16.qxd 11/3/04 11:45 AM Page 459

3. Identify keys for each data entity. Each table should have a primary key,
one or more columns that uniquely identify an individual row in the
table. Foreign keys need to be introduced to implement relationships
between tables, and many-to-many relationships between tables need
to be resolved via the introduction of an associative table.

4. Normalize or denormalize your data schema as required. You normal-
ize your data schema to improve the robustness of your design,
although you may find that you need to denormalize occasionally.

5. Refactor your object schema and your data schema as required. Perfor-
mance problems require that your team tune the container, change the
EJB object model, or change the relational database schema to improve
the data access times of your EJBs.

Use Surrogate Keys
A common challenge in EJB deployments is to generate unique primary keys.
You can generate two basic types of keys

■■ A natural key is one or more existing data attributes that are unique to
the business concept. For example, a customer table might have two
candidate natural keys, CustomerNumber and SocialSecurityNumber.

■■ A surrogate key is a key that has no business meaning, such as an
AddressID column of an address table. Addresses don’t have an easy
natural key because you would need to use all of the columns of the
address table to form a key for it. Introducing a surrogate key is there-
fore a much better option in this case.

The foremost advantage of natural keys is that they already exist; you don’t
need to introduce a new, unnatural value to your data schema. However, the
primary disadvantage of natural keys is that because they have business
meaning, they may need to change if your business requirements change. For
example, if your users decide to make CustomerNumber alphanumeric instead
of numeric, in addition to updating the schema for the customer table (which
is unavoidable), you would have to change every single table where Customer-
Number is used as a foreign key. If the customer table instead used a surrogate
key, the change would have been localized to just the customer table itself
(CustomerNumber in this case would just be a non-key column of the table).
Naturally, if you needed to make a similar change to your surrogate key strat-
egy, perhaps adding a couple of extra digits to your key values because you’ve
run out of values, you would have the exact same problem. This points out the
need to set a workable surrogate key strategy.

460 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 460

For a key to remain a surrogate, you must never display its value, never
allow anyone to edit it, and never allow anyone to use it for anything other
than identification. As soon as you display or edit a value you give it business
meaning, which effectively makes it a natural key. For example, a Customer-
Number could have been originally intended to serve as a surrogate key, but if
one day a customer number is printed on an invoice, the customer number has
effectively evolved into a natural key. Ideally nobody should know that the
persistent object identifier even exists, except perhaps the person(s) debug-
ging your data schema during initial development of your application.

It’s important that your primary keys are unique. There are dozens of ways
to generate unique keys, such as using a database’s built-in counter, an
entity bean, an RMI-IIOP object, the current System time, and so forth. Each
approach has its advantages and disadvantages. This discussion is fully
presented in Floyd Marinescu’s book EJB Design Patterns, published by
John Wiley and Sons (2002, ISBN: 0-471-20831-0).

Understand the Impacts of Database Updates
It is important to recognize that changes to database data affect the state of the
EJB components that represent that data in your application server. A database
should not be updated, either by an EJB or a non-EJB application, if the impact
of those changes is not fully understood. You can prevent that from happening
by setting an internal policy that all database access should go through a com-
mon persistence layer (of either session beans, entity beans, or both) and
championing that policy to all developers who access that database.

Versioning EJB Components
Sometimes you might need to track versions of an EJB component, which
means to access old information that no longer exists in your bean. For exam-
ple, if a customer suddenly got married, her last name might change. You
might want to access her maiden name when trying to get information about
her that may be stored in a different system. As another example, the historical
titles that an employee has held at your organization might be important data
for you to determine the next title in her career path.

To develop a versionable EJB component, you have several strategies at
your disposal:

1. As your object changes, record those changes in an audit log. You can
store entire objects in the log, or you can store just the deltas (changes)
to your objects. You might write to this log by using an XML structure

Persistence Best Practices 461

22_576828 ch16.qxd 11/3/04 11:45 AM Page 461

or serialized string. To restore an object from the log, either read the
object of the appropriate version in, or (if you’re using deltas) perform a
manual merge.

2. Add versioning columns to your tables. Tables representing versionable
objects require several columns to be added, as described in Table 16.2.
Whenever an object is updated, a new record is inserted into the appro-
priate table(s) and made the current version. The previously current
version is closed, the CurrentVersion column is set to false, and the
EffectiveEnd column is set to the current datetime. Note that both of
those columns are optional: You can determine which row represents
the current version of the object by taking the one with the most recent
EffectiveStart value, and a previous version can be restored for a spe-
cific point in time by taking the row with the effective start date just
previous to the requested point in time. This approach is called the
immutable object design pattern.

3. Add historical tables. With this strategy you have one set of operational
tables for your system that you use as you normally would, and a corre-
sponding set of historical tables that have the same schemas with the
addition of the EffectiveEnd column described in Table 16.2. When an
object is updated or deleted, the operational tables are changed in the
normal way. In addition, the values that had been initially retrieved
into memory are written to the corresponding historical table(s), with
the EffectiveEnd value set to the current datetime.

462 Chapter 16

PATTERNS FOR THINGS THAT CHANGE WITH TIME

Martin Fowler has developed a pattern language for the development of
versionable objects. Posted online at www.martinfowler.com, the language
consists of the following patterns:

1. Audit log: A simple log of changes, intended to be easily written and non-
intrusive.

2. Effectivity: Add a time period to an object to show when it is effective.

3. Snapshot: A view of an object at a point in time.

4. Temporal object: An object that changes over time.

5. Temporal property: A property that changes over time.

6. Time point: Represents a point in time to some granularity.

22_576828 ch16.qxd 11/3/04 11:45 AM Page 462

Table 16.2 Potential Table Columns to Support Versioning

COLUMN TYPE PURPOSE

CurrentVersion Boolean Indicates whether the row represents the
(Optional) current version of the object, simplifying

retrieval for most business transactions.

EffectiveStart Datetime Indicates the beginning of the period when
the values contained in the row were valid.
Must be set to the current datetime when
the row is first inserted.

EffectiveEnd Datetime Indicates the end of the period when the
(Optional) values contained in the row were valid. The

value is set to the current datetime when the
replacement version of an object is first
inserted.

A few quick observations about making your EJB components versionable:

■■ The addition of versioning columns is not an option if you are mapping
to a legacy database schema.

■■ For any of these approaches to work, all systems or objects accessing
your database must follow them consistently.

■■ Versioning is performance intensive, requiring additional writes to sup-
port updates and deletions as well as more complex retrievals.

■■ There is no explicit support for versioning with CMP entity beans. If
you’re using CMP, check your EJB container’s documentation to see if it
supports versioning.

■■ If your EJB object model and database schemas vary wildly, the audit
log approach is likely your best bet.

■■ These approaches focus on the versioning of data only, not behavior. To
version behavior, you need to support different versions of the same
classes or apply the strategy or command design patterns.

■■ Avoid versioning if you can because it is complex, error-prone, and it
negatively affects performance.

Living with a Legacy Database Design
For the sake of simplicity we have assumed throughout this chapter that you
are in a position to define your data schema. If this is actually your situation,
consider yourself among the lucky few. The vast majority of EJB developers
are often forced to tolerate an existing legacy design, one that is often difficult,

Persistence Best Practices 463

22_576828 ch16.qxd 11/3/04 11:45 AM Page 463

if not impossible, to change because of corresponding changes that would be
required to the legacy applications that currently access it. The problem pre-
sented by your legacy database is often too difficult to fix immediately; you
therefore have to learn to work around it.

This section is not about general integration with non-RDBMS legacy
systems, such as an SAP R/3 system or a CICS/COBOL system. For
integration with legacy systems, see Chapter 17.

How do you learn to live with a legacy data design? The first step is to
understand the scope of the challenge. Start by identifying and understanding
the impact of typical data-related problems that you will encounter with
legacy data. Table 16.3 lists the most common data problems and summarizes
their potential impact on your application. You will likely experience several
of these problems in any given database, and any given table or even column
within the database will exhibit these problems.

Table 16.3 is lengthy and intended for reference purposes only—you don’t
need to read or understand the entire table right now. When you encounter a
legacy database and want to migrate that into an EJB environment, return to
this table.

Both data and database design problems have a common impact on your
EJB components: They make it harder to take advantage of CMP because
your EJB container needs the ability to overcome the problems
appropriately. For those living with a hairy legacy design, we recommend
BMP or session beans plus JDBC.

The good news is that your project team isn’t the only one facing these sorts
of challenges—almost every organization has these problems. As a result, a
large market exists for tools to help deal with legacy databases. A sampling is
listed in Table 16.4. The basic features are extraction of legacy data, transfor-
mation of the legacy data to cleanse it, and the loading of that data into a new
data schema that is more robust. Products that support all of these features are
referred to as ETL (extract, transform, load) tools.

464 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 464

Ta
b

le
 1

6.
3

Ty
pi

ca
l L

eg
ac

y
D

at
a

Pr
ob

le
m

s

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

A
si

ng
le

 c
ol

um
n

is
 u

se
d

fo
r

Ad
di

tio
na

l i
nf

or
m

at
io

n
fo

r
an

 in
ve

nt
or

y
ite

m
 is

•

O
ne

 o
r

m
or

e
at

tr
ib

ut
es

 o
f y

ou
r

EJ
B

se

ve
ra

l p
ur

po
se

s
st

or
ed

 in
 th

e
N

ot
es

 c
ol

um
n

co
m

po
ne

nt
s

m
ay

 n
ee

d
to

 b
e

m
ap

pe
d

to
 th

is
 fi

el
d,

 r
eq

ui
rin

g
a

co
m

pl
ex

 p
ar

si
ng

 a
lg

or
ith

m
 to

de

te
rm

in
e

th
e

pr
op

er
 u

sa
ge

 o
f t

he

co
lu

m
n.

Ad

di
tio

na
l i

nf
or

m
at

io
n

w
ill

 b
e

on
e

or
 m

or
e

of

•
Yo

ur
 E

JB
 c

om
po

ne
nt

(s
)

m
ay

 b
e

a
le

ng
th

y
de

sc
rip

tio
n

of
 th

e
ite

m
, s

to
ra

ge

fo
rc

ed
 to

 im
pl

em
en

t a
 s

im
ila

r
re

qu
ire

m
en

ts
, o

r
sa

fe
ty

 r
eq

ui
re

m
en

ts
 w

he
n

at
tr

ib
ut

e
in

st
ea

d
of

 im
pl

em
en

tin
g

ha
nd

lin
g

th
e

ite
m

.
se

ve
ra

l a
tt

rib
ut

es
 a

s
yo

ur
 d

es
ig

n
or

ig
in

al
ly

 d
es

cr
ib

ed
.

Th
e

pu
rp

os
e

of
 a

 c
ol

um
n

is

If
th

e
va

lu
e

of
 D

at
eT

yp
e

is
 1

7,
 P

er
so

nD
at

e
re

pr
es

en
ts

•

A
po

te
nt

ia
lly

 c
om

pl
ex

 m
ap

pi
ng

 is

de
te

rm
in

ed
 b

y
th

e
va

lu
e

of
 o

ne

th
e

da
te

 o
f b

irt
h

of
 th

e
pe

rs
on

. I
f t

he
 v

al
ue

 is
 8

4,

re
qu

ire
d

to
 w

or
k

w
ith

 th
e

va
lu

e
or

 m
or

e
ot

he
r

co
lu

m
ns

.
Pe

rs
on

D
at

e
is

 th
e

pe
rs

on
’s

 d
at

e
of

 g
ra

du
at

io
n

fr
om

st

or
ed

 in
 th

e
co

lu
m

n.
hi

gh
 s

ch
oo

l.
If

th
e

va
lu

e
is

 b
et

w
ee

n
35

 a
nd

 4
8,

 it
 is

th

e
da

te
 th

e
pe

rs
on

 e
nt

er
ed

 h
ig

h
sc

ho
ol

.

In
co

rr
ec

t d
at

a
va

lu
es

Th
e

Ag
eI

nY
ea

rs
co

lu
m

n
fo

r
a

pe
rs

on
 r

ow
 is

 –
3

•
Yo

ur
 E

JB
 c

om
po

ne
nt

s
ne

ed
 to

or

 th
e

Ag
eI

nY
ea

rs
co

lu
m

n
co

nt
ai

ns
 7

, a
lth

ou
gh

 th
e

im
pl

em
en

t v
al

id
at

io
n

co
de

 to
 e

ns
ur

e
B

ir
th

D
at

e
is

 A
ug

us
t 1

4,
 1

96
7

an
d

th
e

cu
rr

en
t d

at
e

th
at

 th
ei

r
ba

se
 d

at
a

va
lu

es
 a

re

is
 O

ct
ob

er
 1

0,
 2

00
1.

co

rr
ec

t.
•

St
ra

te
gi

es
 to

 r
ep

la
ce

 in
co

rr
ec

t v
al

ue
s

m
ay

 n
ee

d
to

 b
e

de
fin

ed
 a

nd

im
pl

em
en

te
d.

•

An
 e

rr
or

-h
an

dl
in

g
st

ra
te

gy
 n

ee
ds

 to

be
 d

ev
el

op
ed

 to
 d

ea
l w

ith
 b

ad
 d

at
a.

Th

is
 m

ay
 in

cl
ud

e
lo

gg
in

g
of

 th
e

er
ro

r,
at

te
m

pt
in

g
to

 fi
x

th
e

er
ro

r,
or

dr

op
pi

ng
 th

e
da

ta
 fr

om
 p

ro
ce

ss
in

g
un

til
 th

e
pr

ob
le

m
 is

 c
or

re
ct

ed
. (c
on

tin
ue

d)

22_576828 ch16.qxd 11/3/04 11:45 AM Page 465

Ta
b

le
 1

6.
3

(c
on

tin
ue

d)

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

In
co

ns
is

te
nt

/i
nc

or
re

ct

Th
e

na
m

e
of

 a
 p

er
so

n
is

 s
to

re
d

in
 o

ne
 ta

bl
e

in

•
Pa

rs
in

g
co

de
 w

ill
 b

e
re

qu
ire

d
to

 b
ot

h
da

ta
 fo

rm
at

tin
g

th
e

fo
rm

at
 F

irs
tn

am
e

Su
rn

am
e,

 y
et

 in
 a

no
th

er

re
tr

ie
ve

 a
nd

 s
to

re
 th

e
da

ta
 a

s
ta

bl
e,

 S
ur

na
m

e,
 F

irs
tn

am
e.

ap

pr
op

ria
te

.

M
is

si
ng

 d
at

a
Th

e
da

te
 o

f b
irt

h
of

 a
 p

er
so

n
ha

s
no

t b
ee

n
•

Se
e

st
ra

te
gi

es
 fo

r
de

al
in

g
w

ith

re
co

rd
ed

 in
 s

om
e

re
co

rd
s.

in
co

rr
ec

t d
at

a
va

lu
es

.

M
is

si
ng

 c
ol

um
ns

Yo

u
ne

ed
 a

 p
er

so
n’

s
m

id
dl

e
na

m
e,

 b
ut

 a

•
Yo

u
m

ay
 n

ee
d

to
 a

dd
 th

e
co

lu
m

n
to

co

lu
m

n
fo

r
it

do
es

 n
ot

 e
xi

st
.

th
e

ex
is

tin
g

le
ga

cy
 s

ch
em

a.

•
Yo

u
m

ig
ht

 n
ee

d
to

 d
o

w
ith

ou
t t

he

da
ta

.
•

Id
en

tif
y

a
de

fa
ul

t v
al

ue
 u

nt
il

th
e

da
ta

is

 a
va

ila
bl

e.

•
An

 a
lte

rn
at

e
so

ur
ce

 fo
r

th
e

da
ta

 m
ay

ne

ed
 to

 b
e

fo
un

d.

Ad
di

tio
na

l c
ol

um
ns

Th

e
So

ci
al

 S
ec

ur
ity

 n
um

be
r

fo
r

a
pe

rs
on

 is

•
Fo

r
co

lu
m

ns
 th

at
 a

re
 r

eq
ui

re
d

fo
r

st
or

ed
 in

 th
e

da
ta

ba
se

 a
nd

 y
ou

 d
on

’t
ne

ed
 it

ot

he
r

ap
pl

ic
at

io
ns

, y
ou

 m
ay

 b
e

re
qu

ire
d

to
 im

pl
em

en
t t

he
m

 in
 y

ou
r

EJ
B

 c
om

po
ne

nt
s

to
 e

ns
ur

e
th

at
 th

e
ot

he
r

ap
pl

ic
at

io
ns

 c
an

 u
se

 th
e

da
ta

yo

ur
 a

pp
lic

at
io

n
ge

ne
ra

te
s.

•

Yo
u

m
ay

 n
ee

d
to

 w
rit

e
th

e
ap

pr
op

ria
te

 d
ef

au
lt

va
lu

e
to

 th
e

da
ta

ba
se

 w
he

n
in

se
rt

in
g

a
ne

w

re
co

rd
.

•
Fo

r
da

ta
ba

se
 u

pd
at

es
, y

ou
 m

ay
 n

ee
d

to
 r

ea
d

th
e

or
ig

in
al

 v
al

ue
, a

nd
 th

en

w
rit

e
it

ou
t a

ga
in

.

22_576828 ch16.qxd 11/3/04 11:45 AM Page 466

Ta
b

le
 1

6.
3

(c
on

tin
ue

d)

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

M
ul

tip
le

 s
ou

rc
es

 fo
r

th
e

C
us

to
m

er
 in

fo
rm

at
io

n
is

 s
to

re
d

in
 th

re
e

se
pa

ra
te

•

Id
en

tif
y

a
si

ng
le

 s
ou

rc
e

fo
r

yo
ur

sa

m
e

da
ta

le
ga

cy
 d

at
ab

as
es

.
in

fo
rm

at
io

n
an

d
us

e
on

ly
 th

at
.

•
B

e
pr

ep
ar

ed
 to

 a
cc

es
s

m
ul

tip
le

so

ur
ce

s
fo

r
th

e
sa

m
e

in
fo

rm
at

io
n.

•

Id
en

tif
y

ru
le

s
fo

r
ch

oo
si

ng
 a

 p
re

fe
rr

ed

so
ur

ce
 w

he
n

yo
u

di
sc

ov
er

 th
e

sa
m

e
in

fo
rm

at
io

n
is

 s
to

re
d

in
 s

ev
er

al
 p

la
ce

s.

Im
po

rt
an

t e
nt

iti
es

, a
tt

rib
ut

es
,

A
N

ot
e’

s
te

xt
 fi

el
d

co
nt

ai
ns

 th
e

in
fo

rm
at

io
n

•
D

ev
el

op
 c

od
e

to
 p

ar
se

 th
e

an
d

re
la

tio
ns

hi
ps

 h
id

de
n

an
d

C
la

rk
 a

nd
 L

oi
s

Ke
nt

, D
ai

ly
 P

la
ne

t P
ub

lic
at

io
ns

.
in

fo
rm

at
io

n
fr

om
 th

e
fie

ld
s.

flo
at

in
g

in
 te

xt
 fi

el
ds

•
D

o
w

ith
ou

t t
he

 in
fo

rm
at

io
n.

D
at

a
va

lu
es

 th
at

 s
tr

ay
 fr

om

Th
e

m
ai

de
n

na
m

e
co

lu
m

n
is

 b
ei

ng
 u

se
d

to

•
Yo

u
ne

ed
 to

 u
pd

at
e

th
e

th
ei

r
fie

ld
 d

es
cr

ip
tio

ns
 a

nd

st
or

e
a

pe
rs

on
’s

 fa
br

ic
 p

re
fe

re
nc

e
fo

r
cl

ot
hi

ng
.

do
cu

m
en

ta
tio

n
to

 r
ef

le
ct

 th
e

ac
tu

al

bu
si

ne
ss

 r
ul

es
us

ag
e.

•

B
ea

n
pr

ov
id

er
s

th
at

 to
ok

 th
e

do
cu

m
en

ta
tio

n
at

 fa
ce

 v
al

ue
 m

ay

ne
ed

 to
 u

pd
at

e
th

ei
r

co
de

.
•

D
at

a
an

al
ys

is
 s

ho
ul

d
be

 p
er

fo
rm

ed

to
 d

et
er

m
in

e
th

e
ex

ac
t u

sa
ge

 in
 c

as
e

di
ffe

re
nt

 a
pp

lic
at

io
ns

 a
re

 u
si

ng
 th

e
fie

ld
 fo

r
di

ffe
re

nt
 p

ur
po

se
s.

Va
rio

us
 k

ey
 s

tr
at

eg
ie

s
fo

r
th

e
O

ne
 ta

bl
e

st
or

es
 c

us
to

m
er

 in
fo

rm
at

io
n

us
in

g
•

Yo
u

ne
ed

 to
 b

e
pr

ep
ar

ed
 to

 a
cc

es
s

sa
m

e
ty

pe
 o

f e
nt

ity
SS

N
 a

s
th

e
ke

y,
 a

no
th

er
 u

se
s

th
e

C
lie

nt
ID

 a
s

th
e

si
m

ila
r

da
ta

 u
si

ng
 s

ev
er

al
 s

tr
at

eg
ie

s,

ke
y,

 a
nd

 a
no

th
er

 u
se

s
a

su
rr

og
at

e
ke

y.
im

pl
yi

ng
 th

e
ne

ed
 fo

r
si

m
ila

r
fin

de
r

op
er

at
io

ns
 in

 s
om

e
cl

as
se

s.

•
So

m
e

at
tr

ib
ut

es
 o

f a
n

en
tit

y
be

an

m
ay

 b
e

im
m

ut
ab

le
—

th
ei

r
va

lu
e

ca
nn

ot
 b

e
ch

an
ge

d—
be

ca
us

e
th

ey

re
pr

es
en

t p
ar

t o
f a

 k
ey

 in
 y

ou
r

re
la

tio
na

l d
at

ab
as

e.
 N

ot
e

th
at

 th
es

e
at

tr
ib

ut
es

 w
ou

ld
 n

ot
 b

e
pa

rt
 o

f t
he

pr

im
ar

y
ke

y
cl

as
s

fo
r

yo
ur

 e
nt

ity
 b

ea
n.

(c
on

tin
ue

d)

22_576828 ch16.qxd 11/3/04 11:45 AM Page 467

Ta
b

le
 1

6.
3

(c
on

tin
ue

d)

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

U
nr

ea
liz

ed
 r

el
at

io
ns

hi
ps

A

cu
st

om
er

 h
as

 a
 p

rim
ar

y
re

si
de

nc
e

an
d

a
•

D
at

a
m

ay
 b

e
in

ad
ve

rt
en

tly
 r

ep
lic

at
ed

.
be

tw
ee

n
da

ta
 r

ec
or

ds
su

m
m

er
 h

om
e.

 B
ot

h
of

 h
is

 h
om

es
 a

re
 r

ec
or

de
d

Ev
en

tu
al

ly
 a

 n
ew

 a
dd

re
ss

 r
ec

or
d

is

in
 y

ou
r

da
ta

ba
se

, b
ut

 th
er

e
is

 n
o

re
la

tio
ns

hi
p

in
ad

ve
rt

en
tly

 c
re

at
ed

 (
an

d
th

e
st

or
ed

 in
 th

e
da

ta
ba

se
 r

eg
ar

di
ng

 th
is

 fa
ct

re
la

tio
ns

hi
p

no
w

 d
ef

in
ed

)
fo

r
th

e
su

m
m

er
 h

om
e

ev
en

 th
ou

gh
 o

ne

al
re

ad
y

ex
is

ts
.

•
Ad

di
tio

na
l c

od
e

m
ay

 n
ee

d
to

 b
e

de
ve

lo
pe

d
to

 d
et

ec
t p

ot
en

tia
l

pr
ob

le
m

s.
 P

ro
ce

du
re

s
fo

r
ha

nd
lin

g
th

e
pr

ob
le

m
s

w
ill

 a
ls

o
be

 r
eq

ui
re

d.

O
ne

 a
tt

rib
ut

e
is

 s
to

re
d

in

Th
e

pe
rs

on
 c

la
ss

 r
eq

ui
re

s
a

si
ng

le
 n

am
e

fie
ld

,
•

Po
te

nt
ia

lly
 c

om
pl

ex
 p

ar
si

ng
 c

od
e

se
ve

ra
l f

ie
ld

s.

bu
t i

s
st

or
ed

 in
 th

e
co

lu
m

ns
 F

ir
st

N
am

e
an

d
m

ay
 b

e
re

qu
ire

d
to

 r
et

rie
ve

, a
nd

 th
en

Su

rn
am

e
in

 y
ou

r
da

ta
ba

se
.

sa
ve

 th
e

da
ta

.

In
co

ns
is

te
nt

 u
se

 o
f

A
da

te
 u

se
s

hy
ph

en
s

to
 s

ep
ar

at
e

th
e

ye
ar

, m
on

th
,

•
C

om
pl

ex
ity

 o
f p

ar
si

ng
 c

od
e

sp
ec

ia
l c

ha
ra

ct
er

s
an

d
da

y,
 w

he
re

as
 a

 n
um

er
ic

al
 v

al
ue

 s
to

re
d

as
 a

in

cr
ea

se
s.

st

rin
g

us
es

 h
yp

he
ns

 to
 in

di
ca

te
 n

eg
at

iv
e

nu
m

be
rs

.
•

Ad
di

tio
na

l d
oc

um
en

ta
tio

n
is

 r
eq

ui
re

d
to

 in
di

ca
te

 c
ha

ra
ct

er
 u

sa
ge

.

D
iff

er
en

t d
at

a
ty

pe
s

fo
r

A
cu

st
om

er
 ID

 is
 s

to
re

d
as

 a
 n

um
be

r
in

 o
ne

•

Yo
u

m
ay

 n
ee

d
to

 d
ec

id
e

ho
w

 y
ou

si

m
ila

r
co

lu
m

ns
ta

bl
e

an
d

a
st

rin
g

in
 a

no
th

er
.

w
an

t t
he

 d
at

a
to

 b
e

ha
nd

le
d

by
 y

ou
r

EJ
B

s
an

d
th

en
 tr

an
sf

or
m

 it
 to

/f
ro

m

yo
ur

 d
at

a
so

ur
ce

(s
)

as
 a

pp
ro

pr
ia

te
.

•
If

fo
re

ig
n

ke
y

fie
ld

s
ha

ve
 a

 d
iff

er
en

t
ty

pe
 th

an
 o

rig
in

al
 d

at
a

th
ey

re

pr
es

en
t,

th
en

 ta
bl

e
jo

in
s,

 a
nd

he

nc
e

an
y

SQ
L

em
be

dd
ed

 in
 y

ou
r

EJ
B

s,
 b

ec
om

e
m

or
e

di
ffi

cu
lt.

22_576828 ch16.qxd 11/3/04 11:45 AM Page 468

Ta
b

le
 1

6.
3

(c
on

tin
ue

d)

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

D
iff

er
en

t l
ev

el
s

of
 d

et
ai

l
A

be
an

 r
eq

ui
re

s
th

e
to

ta
l s

al
es

 fo
r

th
e

m
on

th
, b

ut

•
Po

te
nt

ia
lly

 c
om

pl
ex

 m
ap

pi
ng

 c
od

e
yo

ur
 d

at
ab

as
e

st
or

es
 in

di
vi

du
al

 to
ta

ls
 fo

r
ea

ch
 o

rd
er

;
m

ay
 b

e
re

qu
ire

d
to

 r
es

ol
ve

 th
e

or
 a

 b
ea

n
re

qu
ire

s
th

e
w

ei
gh

t o
f i

nd
iv

id
ua

l
va

rio
us

 le
ve

ls
 o

f d
et

ai
l.

co
m

po
ne

nt
s

of
 a

n
ite

m
 s

uc
h

as
 th

e
do

or
s

an
d

en
gi

ne
 o

f a
 c

ar
, b

ut
 y

ou
r

da
ta

ba
se

 r
ec

or
ds

 o
nl

y
th

e
ag

gr
eg

at
e

w
ei

gh
t.

D
iff

er
en

t m
od

es
 o

f o
pe

ra
tio

n
So

m
e

da
ta

 is
 a

 r
ea

d-
on

ly
 s

na
ps

ho
t o

f i
nf

or
m

at
io

n,

•
Th

e
de

si
gn

 o
f y

ou
r

EJ
B

s
m

us
t r

ef
le

ct

bu
t o

th
er

 d
at

a
is

 r
ea

d-
w

rit
e.

th
e

na
tu

re
 o

f t
he

 d
at

a
th

ey
 a

re

m
ap

pe
d

to
. E

JB
s

ba
se

d
on

 r
ea

d-
on

ly

da
ta

, t
he

re
fo

re
, c

an
no

t u
pd

at
e

or

de
le

te
 it

.

Va
ry

in
g

tim
el

in
es

s
of

 d
at

a
Th

e
cu

st
om

er
 d

at
a

is
 c

ur
re

nt
, a

dd
re

ss
 d

at
a

is
 o

ne

•
Yo

ur
 E

JB
 c

od
e

m
us

t r
ef

le
ct

, a
nd

da

y
ou

t o
f d

at
e,

 a
nd

 th
e

da
ta

 p
er

ta
in

in
g

to
 c

ou
nt

rie
s

po
te

nt
ia

lly
 r

ep
or

t t
o

th
ei

r
cl

ie
nt

s,
 th

e
an

d
st

at
es

 is
 a

cc
ur

at
e

to
 th

e
en

d
of

 th
e

pr
ev

io
us

tim

el
in

es
s

of
 th

e
in

fo
rm

at
io

n
th

at

qu
ar

te
r

be
ca

us
e

yo
u

pu
rc

ha
se

 th
at

 in
fo

rm
at

io
n

th
ey

 a
re

 b
as

ed
 o

n.
fr

om
 a

n
ex

te
rn

al
 s

ou
rc

e.

Va
ry

in
g

de
fa

ul
t v

al
ue

s
Yo

ur
 E

JB
 u

se
s

a
de

fa
ul

t o
f g

re
en

 fo
r

a
gi

ve
n

va
lu

e,

•
Yo

u
m

ay
 n

ee
d

to
 n

eg
ot

ia
te

 a
 n

ew

ye
t a

no
th

er
 a

pp
lic

at
io

n
ha

s
be

en
 u

si
ng

 y
el

lo
w

,
de

fa
ul

t v
al

ue
 w

ith
 y

ou
r

us
er

s.
re

su
lti

ng
 in

 a
 p

re
po

nd
er

an
ce

 (
in

 th
e

op
in

io
n

of
 y

ou
r

•
Yo

u
m

ay
 n

ot
 b

e
al

lo
w

ed
 to

 s
to

re

us
er

s)
 o

f y
el

lo
w

 v
al

ue
s

st
or

ed
 in

 th
e

da
ta

ba
se

.
yo

ur
 d

ef
au

lt
va

lu
e

(g
re

en
 is

 a
n

ill
eg

al

va
lu

e
in

 th
e

da
ta

ba
se

).

Va
rio

us
 r

ep
re

se
nt

at
io

ns

Th
e

da
y

of
 th

e
w

ee
k

is
 s

to
re

d
as

 T
, T

ue
s,

 2
, a

nd

•
Tr

an
sl

at
io

n
co

de
 b

ac
k

an
d

fo
rt

h
Tu

es
da

y
in

 fo
ur

 s
ep

ar
at

e
co

lu
m

ns
.

be
tw

ee
n

a
co

m
m

on
 v

al
ue

 th
at

 y
ou

r
EJ

B
(s

)
us

e
w

ill
 n

ee
d

to
 b

e
de

ve
lo

pe
d.

(c
on

tin
ue

d)

22_576828 ch16.qxd 11/3/04 11:45 AM Page 469

Ta
b

le
 1

6.
3

(c
on

tin
ue

d)

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

D
at

ab
as

e
en

ca
ps

ul
at

io
n

Ac
ce

ss
 to

 th
e

da
ta

ba
se

 is
 p

ro
vi

de
d

on
ly

 th
ro

ug
h

•
To

 e
na

bl
e

C
M

P
th

e
en

ca
ps

ul
at

io
n

sc
he

m
e

ex
is

ts
st

or
ed

 p
ro

ce
du

re
s;

 fo
r

ex
am

pl
e,

 to
 c

re
at

e
a

ne
w

sc

he
m

e
m

us
t b

e
m

ad
e

to
 lo

ok
 li

ke
 a

cu

st
om

er
 y

ou
 m

us
t i

nv
ok

e
a

sp
ec

ifi
ed

 s
to

re
d

da
ta

 s
ou

rc
e

th
at

 y
ou

r
pe

rs
is

te
nc

e
pr

oc
ed

ur
e.

 A
cc

es
s

to
 v

ie
w

s
on

 th
e

da
ta

ba
se

 is

co
nt

ai
ne

r
re

co
gn

iz
es

. O
th

er
w

is
e

yo
u

pe
rm

itt
ed

; d
ire

ct
 ta

bl
e

ac
ce

ss
 is

 d
en

ie
d.

 T
he

 d
at

ab
as

e
w

ill
 b

e
fo

rc
ed

 to
 ta

ke
 a

 S
es

si
on

m

us
t b

e
ac

ce
ss

ed
 v

ia
 a

n
AP

I i
m

pl
em

en
te

d
by

 a

B
ea

ns
 p

lu
s

 J
D

B
C

 o
r

B
M

P
ap

pr
oa

ch

C
 o

r
C

O
B

O
L

w
ra

pp
er

 th
at

 in
 tu

rn
 a

cc
es

se
s

da
ta

ba
se

to

 p
er

si
st

en
ce

.
di

re
ct

ly
. T

he
 d

at
ab

as
e

m
us

t b
e

ac
ce

ss
ed

 v
ia

•

Th
e

en
ca

ps
ul

at
io

n
sc

he
m

e
w

ill
 li

ke
ly

pr

ed
ef

in
ed

 c
la

ss
es

/o
bj

ec
ts

.
in

cr
ea

se
 th

e
re

sp
on

se
 ti

m
e

of

da
ta

ba
se

 a
cc

es
s.

•

Th
e

in
di

vi
du

al
 c

om
po

ne
nt

s
of

 th
e

en
ca

ps
ul

at
io

n
sc

he
m

e
m

ay
 n

ot
 b

e
ab

le
 to

 b
e

in
cl

ud
ed

 a
s

a
da

ta
 s

te
p

in

a
tr

an
sa

ct
io

n.

N
am

in
g

co
nv

en
tio

ns
Yo

ur
 d

at
ab

as
e(

s)
 m

ay
 fo

llo
w

 d
iff

er
en

t n
am

in
g

•
Th

e
be

an
 d

ep
lo

ye
r(

s)
 w

ill
 n

ee
d

to

co
nv

en
tio

ns
 fr

om
 o

ne
 a

no
th

er
 a

nd
 li

ke
ly

 d
o

no
t

un
de

rs
ta

nd
 a

ll
re

le
va

nt
 n

am
in

g
fo

llo
w

 c
om

m
on

 J
av

a
na

m
in

g
co

nv
en

tio
ns

.
co

nv
en

tio
ns

.
•

Po
lit

ic
al

 p
re

ss
ur

e
m

ay
 b

e
pu

t o
n

yo
ur

te

am
 to

 fo
llo

w
 in

ap
pr

op
ria

te

co
rp

or
at

e
da

ta
 n

am
in

g
co

nv
en

tio
ns

fo

r
us

e
w

ith
 y

ou
r

EJ
B

s.

In
ad

eq
ua

te
 d

oc
um

en
ta

tio
n

Th
e

do
cu

m
en

ta
tio

n
fo

r
yo

ur
 d

at
ab

as
e

is
 s

pa
rs

e,

•
A

si
gn

ifi
ca

nt
 le

ga
cy

 d
at

a
an

al
ys

is

no
ne

xi
st

en
t,

or
 o

ut
 o

f d
at

e.
ef

fo
rt

 w
ill

 b
e

re
qu

ire
d

to
 d

et
er

m
in

e
th

e
pr

op
er

 u
sa

ge
 o

f e
ac

h
ta

bl
e,

co

lu
m

n,
 a

nd
 s

to
re

d
pr

oc
ed

ur
e

w
ith

in

yo
ur

 d
at

ab
as

e.

22_576828 ch16.qxd 11/3/04 11:45 AM Page 470

Ta
b

le
 1

6.
3

(c
on

tin
ue

d)

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

O
rig

in
al

 d
es

ig
n

go
al

s
ar

e
at

Th

e
le

ga
cy

 d
at

ab
as

e
w

as
 b

ui
lt

fo
r

in
te

rn
al

 u
se

•

G
oo

d
lu

ck
. Y

ou
’ll

 n
ee

d
it.

od
ds

 w
ith

 c
ur

re
nt

 p
ro

je
ct

 n
ee

ds
.

by
 d

at
a

en
tr

y
cl

er
ks

 to
 c

ap
tu

re
 c

us
to

m
er

 o
rd

er
s

in
 b

at
ch

 m
od

e,
 w

he
re

as
 y

ou
 a

re
 b

ui
ld

in
g

a
24

x7

or
de

r
en

tr
y

ap
pl

ic
at

io
n

to
 b

e
de

pl
oy

ed
 o

ve
r

th
e

In
te

rn
et

.

In
co

ns
is

te
nt

 k
ey

 s
tr

at
eg

y
Yo

ur
 d

at
ab

as
e

us
es

 n
at

ur
al

 k
ey

s
fo

r
so

m
e

ta
bl

es
,

•
B

ea
n

pr
ov

id
er

s
m

us
t u

nd
er

st
an

d,

su
rr

og
at

e
ke

ys
 in

 o
th

er
s,

 a
nd

 d
iff

er
en

t s
tr

at
eg

ie
s

an
d

th
en

 a
pp

ro
pr

ia
te

ly
 c

od
e

su
pp

or
t

fo
r

su
rr

og
at

e
ke

ys
 w

he
n

th
ey

 a
re

 u
se

d.
fo

r
th

e
va

rio
us

 k
ey

 s
tr

at
eg

ie
s

fo
r

th
ei

r
EJ

B
s.

•

Ke
y

ge
ne

ra
tio

n
co

de
 in

cr
ea

se
s

in

co
m

pl
ex

ity
 to

 s
up

po
rt

 th
e

va
rio

us

st
ra

te
gi

es
.

•
Ad

di
tio

na
l s

ou
rc

e
co

de
 to

 v
al

id
at

e
th

at
 n

at
ur

al
 k

ey
s

ar
e,

 in
 fa

ct
, u

ni
qu

e
w

ill
 b

e
re

qu
ire

d.
•

Re
la

tio
ns

hi
p

m
an

ag
em

en
t c

od
e

in
cr

ea
se

s
in

 c
om

pl
ex

ity
 b

ec
au

se
 y

ou

ca
n’

t c
od

e,
 a

nd
 th

en
 r

eu
se

 a
 s

in
gl

e
ap

pr
oa

ch
.

22_576828 ch16.qxd 11/3/04 11:45 AM Page 471

Table 16.4 Sample Legacy Data Integration Tools

TOOL URL

Informatica PowerCenter www.informatica.com

ETI*Extract www.eti.com

Aardvark Knowledge Builder www.d2k.com

Ascential Software’s DataStage www.ascentialsoftware.com

Trillium Control Center www.trilliumsoft.com

Once you’ve identified the challenges in your legacy data integration
efforts, the second step is to determine how you will address the problems that
you have found with your legacy data and the legacy database design. Table
16.5 compares and contrasts several strategies at your disposal.

Table 16.5 Strategies for Mitigating Legacy Data Problems

STRATEGY ADVANTAGES DISADVANTAGES

Create your own • You have complete • Replication of common
private database for control over your data is likely.
new attributes. database. • Unable to easily take

• You may be able to avoid advantage of the existing
conforming to legacy corporate legacy data.
procedures within your • May still be required to
organization, speeding integrate with the legacy
up development corporate database(s) via

triggers, programmed
batch jobs, or ETL tools.

• Your team must have
database expertise.

• Your project risks
significant political
problems because you
may be perceived as not
being team players.

Refactor your • You have a clean • This is very difficult to
data schema. database design to achieve.

work with. • Legacy applications will
• Your database schema need to be updated to

can be redesigned to reflect the new data
reflect the needs of schema.
modern, object-oriented, • You will need to identify
and component-based and fix all of your data-
technologies, such as EJB. related problems,

requiring significant
effort.

472 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 472

Table 16.5 (continued)

STRATEGY ADVANTAGES DISADVANTAGES

• You need to develop, and
then follow, procedures
to ensure that your
database design remains
clean; otherwise you will
end up in the same
position several years
from now.

Encapsulate database • A clean access approach • Legacy applications
access with stored to encapsulation can be should be rewritten, to
procedures, views presented to application ensure integrity within
classes or objects, developers. the database.
or an API. • Implementing your

encapsulation strategy
may require significant
effort.

• Your encapsulation
approach may become
an architectural
bottleneck.

• Depending on the range
of technologies within
your organization, you
may not be able to find
one strategy that works
for all applications.

Design your EJBs to • Your EJBs work with the • Significant redesign and
work with the existing legacy database(s). coding is likely to be
design as is. required for this to work.

• The actual problem, a
poor database design, is
not addressed and will
continue to affect future
projects.

• This may not be feasible,
depending on the extent
of the mismatch
between the legacy
database design and the
requirements for your
application.

(continued)

Persistence Best Practices 473

22_576828 ch16.qxd 11/3/04 11:45 AM Page 473

Table 16.5 (continued)

STRATEGY ADVANTAGES DISADVANTAGES

Design your EJBs to • Performance is likely to
work with the existing be significantly impacted
design as is. because of the resulting
(continued) overhead of mapping

your EJBs to the
database and the
transformations required
to support those
mappings.

• Common approaches to
persistence, such as
CMP and the use of a
persistence layer or
framework, is likely not
an option if the mismatch
is too great.

Although descriptions of how to implement these three strategies is clearly
beyond the scope of this book, we can provide some advice:

1. Do not underestimate the effort required to address this problem. If it
can be done at all, data migration or improvement efforts often prove to
be a project, or a series of projects, that span several years. This is easily
on the order of magnitude of your organization’s Year 2000 (Y2K)
efforts.

2. Think small. A series of small changes, or refactorings, is often prefer-
able to a single big-bang approach in which you need to re-release all of
your organization’s applications at once. Martin Fowler’s book Refactor-
ing: Improving the Design of Existing Code (Addison Wesley, 1999)
describes the principles and practices of refactoring. It should provide
some insight into how to make incremental changes to your legacy data
design (many of his refactorings are geared to changing object-oriented
designs, but the fundamentals still apply).

3. Did we mention not to underestimate the effort required?

Handling Large Result Sets
A serious problem when writing finder methods of entity beans (or any rela-
tional database code for that matter) is handling larger-than-expected result
sets. If you locate too much data, you are causing undue performance issues,
because you may not need the entire result set. To handle this situation, you
have several strategies at your disposal:

474 Chapter 16

22_576828 ch16.qxd 11/3/04 11:45 AM Page 474

■■ Add code to estimate the size of the result set, a feature most relational
databases support, and throw an exception if it’s too big. This works for
session beans plus JDBC.

■■ Learn to live with the large result set. If it doesn’t happen very often, it
might not be worth your while to write code to deal with this. This
works for session beans plus JDBC, BMP, and CMP.

■■ Write tighter SELECT statements by introducing additional parameters
to narrow the results. This works for session beans plus JDBC, BMP,
and CMP.

■■ Limit the results of the finder through the SQL bound to the method (a
feature of most databases).

■■ Use a scrollable result set. JDBC 2.0 introduced the ability to access the
results of SELECT clauses as database cursors, enabling bean providers
to write code that brings portions of the result set across the network at
a time. This works for session beans plus JDBC.

■■ Use session beans to control how the result set is handled. For example,
you can use a stateful session bean that caches a collection of primary
keys. When the client requests data, return only a block (say 20 pieces)
of data at a time based on the primary keys.

■■ Let your persistence container handle it. Some persistence containers,
such as Oracle TOPLink, implement strategies for dealing with large
result sets. This works for entity beans.

Summary

In this chapter, we touched on a variety of best practices and strategies when
performing persistence in an EJB environment. We learned when to (and when
not to) use entity beans, and how to choose between BMP and CMP, and we
surveyed a large collection of persistence best practices.

In the next chapter, we’ll take a look at an advanced EJB topic—integration
with legacy systems. Stay tuned!

Persistence Best Practices 475

22_576828 ch16.qxd 11/3/04 11:45 AM Page 475

22_576828 ch16.qxd 11/3/04 11:45 AM Page 476

477

In this chapter, we will begin our journey into the world of EJB integration. If
you are faced with a situation where you are required to integrate EJB applica-
tions with those running on other platforms or legacy applications, this chap-
ter will provide you with a lot of helpful information. Specifically, you’ll learn
about the following:

■■ Introduction to integration, including an overview of various styles of
integration

■■ Various approaches to integrate EJB with non-EJB applications

■■ J2EE connector architecture by example

■■ Best practices for integrating EJB applications

Why Does Integration Matter?

Integrating applications, services, and data is absolutely critical for streamlin-
ing business processes. These processes might run throughout your company
or be used by your business partners, suppliers, and customers. Companies
with integrated business processes are quick to respond to fluctuating market
conditions as compared to those lacking integrated business processes. Also, if
the industry you are in is hit by a consolidation wave, it is quite possible for

EJB Integration

C H A P T E R

17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 477

your company to participate in mergers and acquisitions. With every merger
or acquisition comes the huge challenge of integrating business processes,
mostly electronic, of the two companies. Although, this integration is gradual,
it provides a definite value to your company.

Apart from the business imperatives, there are many technical reasons why
businesses should take integration seriously. A typical enterprise IT today
comprises anywhere from dozens to hundreds of applications. These applica-
tions might have been acquired from outside or built in-house. Many times
these applications would be developed using legacy technologies or deployed
on legacy platforms. It is not uncommon to find an enterprise with silos of
applications mostly written using different architectures and potentially main-
taining their own instances of domain data. This places huge burdens in terms
of resources and time on an enterprise IT.

It is not very hard to see some of the clear-cut benefits of integrating these
isolated silos of applications across your IT.

■■ Integration eliminates the need to build new applications and services
every time a new business requirement has to be met. Thereby, it maxi-
mizes the use of current IT assets and provides a better return on IT
investments.

■■ Integration makes it possible to optimize resources in terms of storage
and processing by taking redundancy out of data and business func-
tions.

■■ Integration brings together the entire enterprise from back-end transac-
tion processing to front-end customer service. This ultimately increases
the value of IT to a business.

These benefits are the core reasons why integration does matter to a CIO,
and hence, to us.

Integration Styles
Depending on whether it is being done within or across the enterprise bound-
ary, integration solutions can be categorized as intra-enterprise or inter-enter-
prise. Integration solutions can be further classified into the following two
groups:

■■ Application integration focuses on establishing connectivity between
applications. This style forms the basis for enterprise application inte-
gration (EAI) solutions. This connectivity can be established through
messaging systems such as message-oriented middleware (MOM) or
RPC communications such as IIOP, sockets, SOAP RPC, and so on.

478 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 478

■■ Business process integration automates business processes by coordi-
nating and controlling activities that span multiple systems. Process
integration middleware can reuse various applications implementing
process activities and also can support long-running transactions. Tra-
ditionally this style of integration has been achieved using business
process management systems (BPMS) from vendors such as Vitria, See-
Beyond, Intalio, TIBCO, Sun Microsystems, IBM, Microsoft, BEA, and
so on. Also some BPM vendors provide BPM products that focus exclu-
sively on the target industries. Recently, this sector has seen a lot of
standardization in terms of how the processes are described and how
their activities are coordinated. BPMI BPML, W3C Choreography,
OASIS WS-BPEL, and EbXML BPSS are just a few examples of such
standards.

Thus, process integration can be viewed as a business logic layer that deter-
mines what needs to be done at a given point in a process while application
integration can be viewed as a technology layer that determines how it gets
done. Usually, business process integration is done with the help of business
analysts, as opposed to application integration that is done by software archi-
tects. As technologists we are best served by focusing on the how part of inte-
gration, that is application integration.

EJB and Integration

Presently, EJB applications have three technology choices for application inte-
gration:

■■ JMS and JMS-based message-driven beans are a foremost technology
choice for communicating with message-oriented middleware systems
from EJB platform.

■■ Java Web Services is another approach of integration to and from EJB
applications, especially with a target platform such as Microsoft .NET,
which is also Web Services aware.

■■ J2EE Connector Architecture is a full-fledged enterprise integration
framework for building adapters or connectors that can communicate
with EJB applications.

We already discussed JMS-based message-driven beans and Java Web Ser-
vices in Chapters 9 and 5, respectively. In this chapter, we will focus on learn-
ing J2EE Connector Architecture and see how it addresses the integration
problem.

EJB Integration 479

23_576828 ch17.qxd 11/3/04 11:45 AM Page 479

J2EE Connector Architecture

J2EE Connector Architecture is a standard framework for supporting enter-
prise application integration for Java platform. Connector architecture defines
the notion of a resource adapter (RA) that can be plugged into any J2EE-com-
pliant application server to enable J2EE applications to communicate with the
enterprise information system (EIS). The connector specification thus defines a
component model for developing and deploying resource adapters.

Why J2EE Connectors?
Even before J2EE Connector Architecture existed, it was possible to communi-
cate with native applications via Java Native Interfaces (JNI). Socket communi-
cation presented yet another alternative of integrating with non-Java
applications. And don’t forget IIOP—using RMI-IIOP it is possible to commu-
nicate with any CORBA-IIOP application. So why do we need J2EE connectors?

To understand this, let us first understand various problems pertaining to
integration in a connector-less world.

An EIS encompasses all those systems that provide information
infrastructure for an enterprise. These EISs provide a well-defined set of
information services to their clients through various interfaces. Examples of
EISs include ERP systems, transaction processing systems, and database
systems. More recently, the term EIS is also used to refer to custom IT
applications.

Integrating J2EE Platform with Non-IIOP World

The two most common ways to integrate with non-IIOP applications from the
Java platform are to use JNI or sockets. However, if you want to integrate a
J2EE application with non-IIOP application you cannot use either of these
mechanisms since using both JNI and sockets is taboo in J2EE for security rea-
sons. A safe, robust framework that provides integration with the non-IIOP
world of applications is needed. J2EE Connector Architecture is an answer to
this need.

The M x N Integration Problem

Prior to J2EE connectors no standard mechanism of integrating J2EE applica-
tions with heterogeneous non-J2EE, non-IIOP EIS existed. To integrate J2EE
applications with EIS, most EIS vendors and application server vendors had to

480 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 480

provide non-standard proprietary solutions. For example, if you had to inte-
grate your J2EE order management application with a SAP inventory man-
agement application you had to use proprietary integration adapters to make
your application server communicate with SAP. These non-standard adapters
could have been provided by your application server vendor or by your EIS
vendor, which was SAP in this case. Similarly, if you wanted your J2EE appli-
cations to integrate with any other EISs, you needed specific adapters that
allowed your application server to talk to your EIS.

This presented a big challenge for the vendors of application servers and
EIS—they were required to support and maintain M x N number of propri-
etary integration solutions to make M number of application servers commu-
nicate with N number of EISs. This M x N problem, described in Figure 17.1,
was the main motivation for these vendors to create J2EE connector technol-
ogy that enables building standard adapters (a.k.a. resource adapters/connec-
tors) for specific EISs so that these adapters can plug into any J2EE-complaint
application server and communicate with the EIS.

Hence, the M x N problem is now reduced to 1 x N problem, where N
adapters are needed to integrate with N number of EIS from any J2EE envi-
ronment as shown in Figure 17.2.

Figure 17.1 The M x N integration problem.

M × N

Application serverM
EISN
Non-standard adapters for each combination of application server and EIS

M1
Application

Server

M2
Application

Server

M3
Application

Server

N1 EIS

N2 EIS

N3 EIS

M1 × N1

M2 × N1

M2 × N2

M1 × N3

M3 × N3

M3 × N1
M3 × N2

M2 × N3

M1 × N2

EJB Integration 481

23_576828 ch17.qxd 11/3/04 11:45 AM Page 481

Figure 17.2 Reduction of M x N integration problem to 1 x N.

The Infrastructure Services Problem

Another challenge when building integration solutions is to enable support for
infrastructure services—such as resource pooling (for threads, connections,
and so on), transaction management, security, life cycle management, and so
on—required for transactional, robust, and secure integration. Without a stan-
dard framework that provides these services, an integration solution devel-
oper is responsible for writing logic for these services. It usually takes experts
to write these services plus it requires longer cycle of solution development,
debugging, deployment, and testing. This makes quality integration with
underlying EIS very difficult to achieve.

J2EE connector architecture solves this problem too—it extends the infra-
structure services provided by the container to the resource adapters. This
means that the J2EE container will provide connection pooling, transaction
management, security, and so on to the deployed RA. It provides these ser-
vices through well-defined system contracts. RA will need to implement these
contracts in order for the container to provide the system services.

Thus, the application server and resource adapter keep the system-level
details related to the interaction with the underlying EIS transparent from the
application component. This is one of the main reasons for using resource

M × N

Application serverM
EISN
Standard resource adapters for a given EIS

M1
Application

Server

M2
Application

Server

M3
Application

Server

N1 EIS

N2 EIS

N3 EIS

RA for N2

RA for N2

RA for N2

482 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 482

adapters—it keeps the components free from the complexity of having to deal
with transactions, security, connections, multithreading, and other such infra-
structure details, while communicating with the EIS. This is what we call
“integration made simple”!

Resource Adapter Interaction with J2EE Components
When deployed in a managed environment by way of an application server,
RA accepts requests from various J2EE components, such as servlets, JSPs, and
EJBs, translates those requests into EIS-specific calls, and sends those requests
to the EIS. The response that it receives from the EIS is forwarded to the client
J2EE components. Application components thus interact with RA through its
client contracts. RA can support client contracts in one of the following ways:

■■ Common Client Interfaces (CCI) is a standard set of APIs for interact-
ing with any EIS through its respective RA. CCI provides a mechanism
for accessing a heterogeneous EIS using the same interface. CCI support
is optional although recommended for the RA provider. Especially
providers that expect their RA to be used by third-party tools should
support CCI to enable tools to communicate with them through the
standard CCI.

■■ EIS-specific client interfaces can be supported by the RA provider to
make it easier for application components to work with the underlying
EIS by using APIs attuned to EIS’s inner workings. Most of the EISs
have EIS-specific client APIs. For example, the JDBC API is the client
API for communicating with RDBMS EIS.

Figure 17.3 shows this interaction between various J2EE components, RA,
and EIS.

EJB Integration 483

J2EE CONNECTORS AND NON-MANAGED ENVIRONMENTS

Standalone Java applications run in a non-managed environment since there is
no container to provide them with managed services such as transactions,
security, life cycle management, resource pooling, and so on.

J2EE Connector Architecture supports non-managed environments. This
enables Java applications to access the underlying EIS through an RA. In a non-
managed scenario, the application client directly uses the RA library. RAs that
support non-managed access should expose the low-level APIs for transaction,
security, and connection management. The application client will interact with
RA and use its low-level APIs. This model is similar to using a resource adapter
such as a JDBC driver in a non-managed environment.

Since this chapter is on EJB integration we will discuss connectors only in the
context of managed environment.

23_576828 ch17.qxd 11/3/04 11:45 AM Page 483

Figure 17.3 Interaction between the J2EE connector, RA, and EIS.

Resource Adapter Interaction with Application Server
To interact with the application server and avail various container services, the
RA provider can choose to implement the following system contracts:

■■ The connection management contract enables application components
to connect to the EIS so that the application server can pool these con-
nections. Essentially, by implementing this contract your components
can connect to the resource adapter, which in turn will establish the
connection to the underlying EIS.

■■ The transaction management contract allows transactional access to
the EIS from your application components. It enables the application
server to leverage the transaction manager for managing global transac-
tions across multiple resource managers, including the EIS resource
manager. Also, RA can support local transactions, which do not require
coordination from a transaction manager through this contract.

■■ The security contract enables secure access to the EIS from the applica-
tion component.

■■ The life cycle management contract has been introduced in J2EE Con-
nector Architecture 1.5. It allows the application server to manage life
cycle functions, such as bootstrapping the RA upon application server
startup or RA deployment and shutting down RA upon application
server shutdown or undeployment, on behalf of a resource adapter.

Common Client Interfaces
OR adapter specific API

Enterprise
Java Beans

Enterprise
Information

System

Application Server

Resource
Adapter

Servlets / JSP

EIS-specific APIs

Application server
provides system
services

484 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 484

The application server will notify the RA instance of these
bootstrapping/shutdown events.

■■ The work management contract was introduced in J2EE Connector
Architecture 1.5. By implementing this contract, RA can submit the work
it needs to perform to the application server, which in turn will spawn a
new thread or retrieve a worker thread from its thread pool to execute
RA-delegated work. This contract thus enables RA to increase through-
put of handling requests from application components without having
to spawn or manage threads directly.

■■ The transaction inflow contract, also introduced in J2EE Connector
Architecture 1.5, allows the RA to propagate the transaction context
imported from EIS to the application server. This contract supplements
the transaction management contract, which allowed RA to propagate
the transaction context from application server to the underlying EIS.
Through this contract, the RA can notify the application server of trans-
action completion and crash recovery calls initiated by the EIS thereby
helping the application server coordinate transactions at its end.

EJB Integration 485

THE GROWING IMPORTANCE OF CONNECTORS IN J2EE

In J2EE 1.4 the application of RA has been extended further in that RA can now
be used to provide connectivity for all kinds of EIS applications. Regardless of
whether a standard connectivity solution to the EIS from the Java platform
exists, vendors are encouraged to provide connectivity to their EIS through RA.
Hence, we will eventually see vendors providing RA for connecting to all kinds
of EISs—RDBMS, MOM systems, and enterprise applications such as SAP, Siebel,
PeopleSoft, and so on.

This is a step in a good direction because:

◆ The whole industry can now unify around a single architecture for con-
nectivity regardless of the type of underlying EIS. This will enable tool
vendors and system integrators to provide out-of-the-box integration so-
lutions, which in turn will reduce the cost of building integration solu-
tions on J2EE platform.

◆ The industry will not have to spend time defining connectivity per EIS.
Connector architecture eliminates the need to define Service Provider In-
terfaces (SPI) for different EIS connectivity providers. As a result, the Java
community is not required to create standard SPIs for writing JMS mes-
sage providers or JDBC providers in the future. Rather, the vendors will
leverage SPI as defined by J2EE connector architecture to interact with
the J2EE application server and its container services.

The fact that vendors are building and shipping RA for connecting to all
kinds of EIS—including databases, messaging systems, and enterprise
applications—establishes connector architecture as the predominant framework
in the J2EE integration space.

23_576828 ch17.qxd 11/3/04 11:45 AM Page 485

■■ The message inflow contract, introduced in J2EE Connector Architec-
ture 1.5, allows RA to asynchronously deliver messages to message
endpoints residing in the application server independent of the messag-
ing semantics, style, and infrastructure used to deliver messages. This
contract also serves as a standard message provider pluggability con-
tract that allows a wide range of messaging providers to be plugged
into any compatible J2EE application server via a resource adapter.

The J2EE Connector API

The Connector API consists of six packages—javax.resource, javax.resource
.cci, javax.resource.spi, javax.resource.spi.endpoint, javax.resource.spi.security, and
javax.resource.spi.work. We will take a look at each of these packages and their
main interfaces and classes. This overview of connector APIs followed by the
description of how RA should implement various system contracts should
help you understand the connector architecture.

The javax.resource Package
Table 17.1 discusses the main members of this top-level connector API pack-
age.

Table 17.1 The javax.resource Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.Referenceable The implementation class of RA’s
connection factory is required to
implement Referenceable interface to
enable its registration in the JNDI
namespace.

javax.resource.ResourceException This is the root interface of the
connector exception hierarchy.

javax.resource.NotSupportedException This class extends ResourceException
and is thrown to indicate that the RA
did not support a particular operation.

The javax.resource.cci Package
This package comprises the APIs that should be implemented by an RA that
supports CCI. Table 17.2 discusses the main members of this package.

486 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 486

Table 17.2 The javax.resource.cci Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.cci This interface represents a handle that is used by the
.Connection client to access the underlying physical connection

represented by a ManagedConnection instance.

javax.resource.cci Represents a factory interface that is used to obtain the
.ConnectionFactory Connection handle via getConnection() method. The

client looks up an instance of ConnectionFactory
registered with JNDI during deployment. The
ConnectionFactory implementation class is required to
implement Referenceable so that it can support
registration to JNDI.

javax.resource.cci The client can use this interface to get specific
.ConnectionMetaData information, such as product name and version, about

the underlying EIS. Also, ConnectionMetaData provides
a user name corresponding to the resource principal
under whose security context the given connection to
the EIS has been established.

An instance of ConnectionMetaData could be obtained
through the getMetaData() method on the Connection
interface.

javax.resource.cci If supported by RA, the client can use this interface to
.ConnectionSpec pass the connection request–specific properties to

ConnectionFactory. ConnectionSpec is a marker
interface and the RA should implement this interface
as a JavaBean with getters/setters for each connection
property. The specification defines standard connection
properties, such as UserName and Password. However,
the RA is not required to implement getters/setters for
these standard properties if it is not relevant to the
underlying EIS.

javax.resource Interaction is a representation of the client’s interaction
.cci.Interaction with the EIS in terms of executing various functions or

procedures on the EIS. The client obtains the
Interaction instance through the createInteraction()
method on Connection. There are two methods the
client can use to interact with the EIS:
• execute (InteractionSpec ispec, Record input)

executes the EIS function as specified by the
InteractionSpec instance and produces the output
Record which carries the resulting return value.

• execute (InteractionSpec ispec, Record input, Record
output) executes the EIS function as specified by the
InteractionSpec instance and updates the output
Record with the resulting return value.

(continued)

EJB Integration 487

23_576828 ch17.qxd 11/3/04 11:45 AM Page 487

Table 17.2 (continued)

PACKAGE MEMBERS DESCRIPTION

javax.resource.cci This interface represents properties required for driving
.InteractionSpec interaction with the EIS. RA is required to implement

InteractionSpec as a JavaBean with getters/setters for
each of the properties. Connector specification defines
the following three standard interaction properties:
• FunctionName corresponds to the name of the EIS

function that the given interaction will execute.
• InteractionVerb specifies the mode of interaction with

EIS. The standard interaction verbs are SYNC_SEND,
SYNC_SEND_RECEIVE, and SYNC_RECEIVE.
SYNC_SEND specifies that the execution of an
Interaction will perform only send operation and not
receive. SYNC_SEND_RECEIVE specifies that the
execution will perform both synchronous send and
receive operations. SYNC_RECEIVE specifies that the
execution will perform only synchronous receive
operations. The last mode is used by an application
component to perform a synchronous callback to EIS.
Note that CCI does not support asynchronous
delivery of messages to the application components.
The message inflow system contract should be used
for the same, as we will see later in this chapter.

• ExecutionTimeout specifies the number of
milliseconds an Interaction will wait for an EIS to
execute the specified function.

RA is not required to support a standard property if
that property does not apply to the underlying EIS.
Also, RA can support additional InteractionSpec
properties if relevant to the EIS.

javax.resource.cci.Record This interface represents input or output to the
execute() methods on Interaction object. This is the
base interface for javax.resource.cci.MappedRecord,
javax.resource.cci.IndexedRecord, and javax
.resource.cci.Resultset types of records.

javax.resource.cci MappedRecord represents input or output in the
.MappedRecord form of a key-value pair-based collection.

Naturally, it extends java.util.Map, apart from
javax.resource.cci.Record interface, to provide this
functionality.

javax.resource.cci IndexedRecord represents input or output in the
.IndexedRecord form of an ordered and indexed collection.

It extends the java.util.List interface, apart from
javax.resource.cci.Record, to enable this searchable
and indexed collection of record elements.

488 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 488

Table 17.2 (continued)

PACKAGE MEMBERS DESCRIPTION

javax.resource.cci This interface represents tabular data that is retrieved
.ResultSet from EIS as a result of executing a function on EIS. It

extends java.sql.ResultSet, apart from the
javax.resource.cci.Record interface, to provide this
functionality. Thus, a CCI Resultset has capabilities
similar to JDBC ResultSet in that it can be scrollable
and updatable, can support various Java types and
concurrency modes, and so on.

javax.resource.cci The client application component can get information
.ResultSetInfo about the various facilities provided for ResultSet by

the EIS through this interface. ResultSetInfo supports
methods such as supportsResultSetType(),
supportsResultTypeConcurrency(), and so on, to
provide this information. The client can get a
hold of the ResultSetInfo instance through the
getResultSetInfo() method on Connection.

javax.resource.cci This factory interface allows the clients to create
.RecordFactory instances of MappedRecord and IndexedRecord. Note

that it is not used for creating ResultSet records. The client
component gets a hold of RecordFactory instance through
getRecordFactory() method on ConnectionFactory.

javax.resource.cci This represents the transaction demarcation interface
.LocalTransaction to be used by client application components for

managing local transactions at the EIS level. If RA
supports local transactions, it should implement
this interface. The client can get a hold of
the LocalTransaction instance through the
getLocalTransaction() method on the Connection
object. If RA’s CCI implementation does not support
local transactions, getLocalTransaction() should throw
javax.resource.NotSupportedException.

javax.resource.cci This CCI interface represents a request/response
.MessageListener message listener that should be implemented by

message endpoints (such as message-driven beans) to
enable EIS to communicate with them through the
onMessage() method.

javax.resource.cci This interface provides information about the
.ResourceAdapter capabilities of the RA. The client gets a hold of its
MetaData instance through the getMetaData() method on

ConnectionFactory.

Note that the RA is only supposed to implement the type of record that it deems fit for the underlying EIS.

EJB Integration 489

23_576828 ch17.qxd 11/3/04 11:45 AM Page 489

The javax.resource.spi Package
This package consists of APIs corresponding to various system contracts. An
RA should implement APIs for system contracts that it chooses to support
with the help of the application server. Table 17.3 discusses the main members
of this package.

Table 17.3 The javax.resource.spi Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi The allocateConnection() method on
.ConnectionManager ConnectionManager provides a hook to the application

server so that it can provide generic quality of services
such as security, connection pooling, transaction
management, logging, and so on, while establishing
connection to the EIS.

javax.resource.spi This interface represents a physical connection to the
.ManagedConnection underlying EIS.

javax.resource.spi This acts as a factory for ManagedConnection. It also
.ManagedConnection provides methods for matching and creating
Factory ManagedConnection instances thereby supporting

connection pooling. The ManagedConnectionFactory
instance can support various standard and non-
standard connection properties. However, it must
support these connection properties through JavaBean
style getters/setters.

javax.resource.spi This interface provides information about the
.ManagedConnection underlying EIS instance. An application server uses
MetaData ManagedConnectionMetaData to get runtime

information about the connected EIS instance such as
the user associated with the ManagedConnection
instance, the maximum limit of active connections that
an EIS can support, and the EIS product name and
version. The application server gets this meta data
instance through the getMetaData() method on
ManagedConnection.

javax.resource.spi This interface, implemented by the application server, is
.ConnectionEventListener used by the ManagedConnection implementation to

send connection events to the application server. The
application server registers an instance of
ConnectionEventListener with ManagedConnection
through the addConnectionEventListener() method on
ManagedConnection. The application server uses these
event notifications to manage connection pools, local
transactions, and perform clean-up, and so on.

490 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 490

Table 17.3 (continued)

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi RA implements this interface to support its own
.ConnectionRequestInfo connection request–specific properties. The application

server passes these properties to a resource adapter
via the createManagedConnection() and
matchManagedConnection() methods on
ManagedConnectionFactory so that RA can use this
additional per-request information to do connection
creation and matching.

javax.resource.spi This interface represents an RA instance. It contains
.ResourceAdapter various operations for life cycle management and

message endpoint setup, provided RA supports life
cycle management and message inflow system
contract. If RA does not support these contracts, it does
not have to implement this interface.

javax.resource.spi The BootstrapContext instance is passed by the
.BootstrapContext application server to the RA that implements life cycle

system contract through the start() method on
ResourceAdapter. It allows the RA to use various
application server-provided facilities such as the timer
service and work manager. Also, it provides an instance
of XATerminator through the getXATerminator()
method.

javax.resource.spi The application server implements this interface as part
.XATerminator of the transaction inflow system contract. The RA uses

the XATerminator instance to flow-in transaction
completion and crash recovery calls from an EIS.
XATerminator provides methods such as commit(),
prepare(), forget(), recover(), and rollback() to
communicate with the application server’s transaction
manager about the state of the incoming global
transaction.

javax.resource.spi The RA implements the LocalTransaction interface to
.LocalTransaction support transactions local to EIS. The RA provides

access to its LocalTransaction instance through the
getLocalTransaction() method on ManagedConnection.
The getLocalTransaction() method on the Connection
interface implementation will call the
getLocalTransaction() method on ManagedConnection
to ultimately provide an instance of
javax.resource.cci.LocalTransaction to the client
application component.

(continued)

EJB Integration 491

23_576828 ch17.qxd 11/3/04 11:45 AM Page 491

Table 17.3 (continued)

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi The RA implements this interface to associate the
.ResourceAdapter ResourceAdapter object with other objects such as
Association ManagedConnectionFactory and ActivationSpec. It has

getResourceAdapter() and setResourceAdapter()
methods that can be used for this purpose.

javax.resource.spi The RA that supports message inflow contract should
.ActivationSpec implement this interface as a JavaBean. The

ActivationSpec instance can provide connectivity
information to enable inbound messaging.

Note once again that the RA should implement only system contracts that
are needed. For instance, if the RA does not need help for managing outgoing
connections to the EIS, it does not have to implement the various javax
.resource.spi APIs for connection management. Similarly, if the RA does not
need help managing its life cycle it does not need to implement the
javax.resource.ResourceAdapter interface.

The javax.resource.spi.endpoint Package
This package consists of APIs pertaining to message inflow system contract.
Table 17.4 discusses the main members of this package.

Table 17.4 The javax.resource.spi.endpoint Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi The application server implements this interface. The
.endpoint.Message RA calls various methods on this interface to notify the
Endpoint application server that it is about to deliver a message

or that it just delivered a message. The application
server uses these notifications to start or stop
transactions, provided that message delivery is
transactional, that is, the onMessage() method on the
message listener interface implemented by MDB is
marked as transactional (container managed).

javax.resource.spi When the RA supports message inflow contract it uses
.MessageEndpointFactory an instance of MessageEndpointFactory to obtain

message endpoint instances for delivering messages.
Also, the RA can use this interface to find out if
message deliveries to a target method on message
listener interface implemented by a given message
endpoint is transactional or not. Like MessageEndpoint,
the application server also implements
MessageEndpointFactory.

492 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 492

The javax.resource.spi.security Package
This package contains APIs for security system contract. Table 17.5 discusses
members of this package.

The RA uses other interfaces and classes as well for implementing security
system contract. These are discussed later in this chapter.

The javax.resource.spi.work Package
This package contains APIs for work management system contract. Table 17.6
discusses main members of this package.

Table 17.5 The javax.resource.spi.security Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi This class acts as a holder of the user name and
.security.Password password security token. This class enables the
Credential application server to pass user’s security credentials to

the RA.

Table 17.6 The javax.resource.spi.work Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi The application server implements this top-level
.work.WorkManager interface for work management contract. The RA gets a

hold of WorkManager by calling getWorkManager()
on BootstrapContext. It provides methods used by the
RA for submitting Work instances for processing.

javax.resource.spi The Work interface is implemented by the RA and it
.work.Work represents the logic, such as delivering incoming

messages to message endpoints in the application
server that the RA wants the application server to
execute on a different thread.

javax.resource.spi The RA can implement this interface if it wants to be
.work.WorkListener notified by the application server of various stages,

such as work accepted, work completed, work rejected,
and so on, in the work processing life cycle. The RA
supplies the WorkListener instance to the application
server via various work submission methods such as
scheduleWork(), startWork(), or doWork() on
WorkManager.

(continued)

EJB Integration 493

23_576828 ch17.qxd 11/3/04 11:45 AM Page 493

Table 17.6 (continued)

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi.work This class models an execution context associated with
.ExecutionContext a given Work instance such as transactions, security,

and so on. RA can extend this class and override
methods of interest to further tune the execution
context to the EIS.

javax.resource.spi This class represents the various events that occur
.work.WorkEvent during Work processing. the application server

constructs the WorkEvent instance and passes it to the
RA via WorkListener.

System Contracts

Now that we know connector APIs, let us understand how the RA implements
system contracts so as to enable the application server to provide it with vari-
ous services. This understanding will prove instrumental while developing
RA for your own EIS.

Lifecycle Management
By implementing lifecycle management contract, RA enables application
server to manage its lifecycle in terms of:

■■ Bootstrapping an RA instance during RA deployment or application
server startup. During bootstrapping, the application server makes
facilities such as the timer service and work manager available to the
RA.

■■ Notifying the RA instance during its deployment, application server
startup, undeployment, and application server shutdown events.

Figure 17.4 shows the object diagram for life cycle management.
Some of the important implementation details for this contract are:

■■ The RA implements the ResourceAdapter interface to receive its life
cycle–related notifications from application server.

■■ If the RA supports inbound communication from EIS in the form of
message or transaction inflow, it occurs within the context of a
ResourceAdapter thread.

494 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 494

■■ The application server calls the start() method on ResourceAdapter dur-
ing which it passes BootstrapContext instance. The RA saves this Boot-
strapContext instance for later use. The RA can also perform other
initialization routines in start(), such as setting up Work instances to be
executed on multiple threads or preparing to listen incoming messages
from the EIS.

■■ The application server calls the stop() method on ResourceAdapter in
which RA should release its resources.

Connection Management
By implementing a connection management contract, the RA enables the
application server to manage connections and provide quality of services on
its behalf. The RA provides connection and connection factory interfaces. A
connection factory acts as a factory for EIS instances. For example, java.sql
.DataSource and java.sql.Connection act as connection factory and connection
interfaces for JDBC databases. If an EIS does not have an EIS-specific API, then
it can provide implementations of javax.resource.cci.ConnectionFactory and
javax.resource.cci.Connection.

Figure 17.4 Life cycle management object diagram.

MessageEndpointFactory

Application Server

ResourceAdapter

ResourceAdapter

Resource Adapter

Bootstrap Context

getXATerminator()

getWorkManager()

endpointDeactivation
(MessageEndpointFactory,
ActivationSpec)

endpointActivation
(MessageEndpointFactory,
ActivationSpec)

start(BootstrapContext) / stop()

WorkManager

XATerminator

EJB Integration 495

23_576828 ch17.qxd 11/3/04 11:45 AM Page 495

The various steps involved during connection management are:

1. When the RA is deployed or the application server is started, an
instance of ManagedConnectionFactory is created. The application server
calls various setters on ManagedConnectionFactory instance to set the
RA-specific connection properties, if they were provided during RA
deployment. For example, if your RA needs to know the EIS URL in
order to connect to it, you can provide an Eis_Url connection property
during RA deployment and implement the respective getter/setter
methods for this property in ManagedConnectionFactory implementation.

2. The deployer then creates a connection pool for the given RA using the
vendor-provided administration tools (such as http://localhost:4848
for J2EE 1.4 RI).

3. When a client application component attempts to create a connection to
EIS for the first time after pool creation or after the application server
has been started, the application server creates ManagedConnection
instances by calling createManagedConnection() on the ManagedConnec-
tionFactory object. The deployer can specify the number of managed
connection instances required in the connection pool during the pool
creation.

4. The application component then looks up the EIS connection factory in
the JNDI namespace. The application server either returns an instance
of an EIS-specific connection factory (such as javax.sql.DataSource) or
CCI connection factory (javax.resource.cci.ConnectionFactory). The appli-
cation server does this by calling the createConnectionFactory() method
on the ManagedConnectionFactory instance.

5. Once the client gets the connection factory instance, it calls an appropri-
ate method to get a hold of the connection instance. In case of an RA
supporting CCI, this would mean calling the getConnection() method on
the ConnectionFactory instance.

6. The connection factory implementation delegates the request for a con-
nection to the javax.resource.spi.ConnectionManager instance by calling its
allocateConnection() method. As already noted, allocateConnection() pro-
vides a hook to the application server for it to provide services such as
connection pooling, security, transactions, logging, and so on.

7. Upon receiving the request for a connection from the connection fac-
tory, the ConnectionManager instance calls matchManagedConnection() on
the ManagedConnectionFactory instance, passing it a set of all the unused
ManagedConnection instances in the pool.

8. If the matchManagedConnection() method determines that a Managed-
Connection could be used, it returns it to the application server. This

496 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 496

determination is done by matching the connection request properties
provided by the client application component, through the
javax.resource.cci.ConnectionRequestInfo object, with that of the Managed-
Connection instance.

9. If the matchManagedConnection() method does not find a usable instance
of ManagedConnection, the application server creates a new instance of
ManagedConnection.

10. The application server calls getConnection() on the ManagedConnection
instance, and returns the connection handle corresponding to Managed-
Connection (javax.resource.cci.Connection in case of CCI) to the client.

11. Once the application component gets a connection handle, it starts
interacting with EIS using the appropriate client-side APIs. An applica-
tion component working with CCI-enabled RA uses the
javax.resource.cci.Interaction object to do this. It gets a hold of the Interac-
tion object by calling the createInteraction() method on the Connection
instance.

12. The client application component uses one of the execute() methods on
Interaction to execute an EIS function. The semantics of EIS function call
such as function name, execution timeout, and so on, are provided
through the InteractionSpec instance. The input and output to the EIS
function is provided in terms of javax.resource.cci.Record instances.

13. Once the EIS function is executed and the application component
receives resultant output, it can close the connection to EIS by calling
close() on Connection instance.

14. By calling the close() method, the application server is notified that the
managed connection corresponding to the given connection handle is
finished servicing the client and that it can be placed back into the pool.
At this time, the application server can also call destroy() on Managed-
Connection if it created a new instance of ManagedConnection just to sat-
isfy this specific client request. This happens when the application
server had to create a new ManagedConnection instance in spite of reach-
ing the maximum limit of connections in the pool to satisfy a client
request.

15. Finally, when the application server is about to shut down or when the
connection pool is undeployed (using the vendor-provided administra-
tion tools), the application server will call destroy() on each instance of
ManagedConnection in the pool.

Figure 17.5 shows the interaction between various objects upon receiving
connection request from the client application component.

EJB Integration 497

23_576828 ch17.qxd 11/3/04 11:45 AM Page 497

Figure 17.5 Connection management object diagram.

Security Management
The security management contract is an extension of the connection manage-
ment contract, meaning the RA will have to implement the connection man-
agement contract to provide security connectivity to and from the EIS.
Connector security architecture extends the security model for J2EE applica-
tions, specifically authentication and authorization, to EIS sign-on. The con-
nector architecture specification does not mandate application servers to
support specific authentication mechanisms. J2EE 1.4 RI however supports
Kerberos v5 and basic password authentication mechanisms.

EIS sign-on can be done programmatically or declaratively. The former is
known as component-managed sign-on and the latter is known as container-
managed sign-on.

add/removeConnectionEventListener

getConnection

Architected interface

Create new instance

createManagedConnection
matchManagedConnection
createConnectionFactory

allocateConnection()

Create
new

instance

Create
new instance

Create
new instance

ManagedConnectionFactory

ManagedConnection

EIS
Specific

EIS
Application Server

Resource
Adapter

RA
specific

Connection event notifications

Security services

Connection pooling

Transaction
management

Application server
specific

Instantiation
Implementation specific

Application
component

Application server
specific

Client-side
Connection factory

Client-side
Connection

498 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 498

Container-managed Sign-on

In container-managed sign-on, the application server is configured to manage
EIS sign-on. When the client application component calls getConnection() on
javax.resource.cci.ConnectionFactory or an equivalent method of the RA client
API, it is not required to pass any security information. When the getConnec-
tion() method invokes the allocateConnection() method on ConnectionManager, it
gives the application server a chance to provide security services. This is when
the application server creates the JAAS Subject corresponding to the authenti-
cated user. It passes this Subject instance to the RA when calling the createMan-
agedConnection() method on the ManagedConnectionFactory instance. Note that
an application server might map the caller principal (principal associated with
the application component’s security context) to the resource principal (princi-
pal under whose security context a connection to EIS is established) or might
provide other specific security services before passing the Subject to the RA.

The RA uses the security credential(s) information presented within Subject
to establish a connection to the EIS. Depending on authentication mechanism
used by the application server and RA, the credentials can be of type
javax.resource.spi.security.PasswordCredential or org.ietf.jgss.GSSCredential. Thus
in container-managed sign-on, the RA is driven by the application server in
that it acts based on the security information passed down by the container.

The sequence diagram in Figure 17.6 demonstrates container-managed EIS
sign-on.

Refer to Chapter 13 for more on EJB security and JAAS.

Figure 17.6 Container-managed EIS sign-on.

RA‘s Client-side
connection factory

: EnterpriseBean

Get connection

Return
connection
handle

ConnectionManager.allocateConnection()

createManagedConnection(Subject,
ConnectionRequestInfo)

Return
ManagedConnection

Uses security
information
presented by
container as
Subject to
authenticate
with EIS

Return connection handle
a la javax.resource.cci.Connection

Application
Server EIS

: Managed
ConnectionFactory

Application server provides QoS as part of
which it initialize JAAS Subject
corresponding to the authenticated caller

EJB Integration 499

23_576828 ch17.qxd 11/3/04 11:45 AM Page 499

Component-managed Sign-on

This sign-on requires the client application component to provide security
information explicitly through ConnectionSpec in getConnection() or an equiva-
lent method of the RA client API. The getConnection() method on the connec-
tion factory instance invokes the allocateConnection() method on the
ConnectionManager instance and passes this security information via the Con-
nectionRequestInfo object. The security information passed this way is opaque
to the application server. Hence, when the application server calls createMan-
agedConnection() on the ManagedConnectionFactory instance, it passes it a null
Subject instance. However, the security information passed by the client appli-
cation component is maintained intact in the ConnectionRequestInfo object
passed to createManagedConnection(). The RA uses the security information
presented within the ConnectionRequestInfo JavaBean to establish a connection
to the EIS. Thus in component-managed sign-on, the RA is driven by the client
application component, in that it acts based on the security information pro-
vided by the component.

The sequence diagram in Figure 17.7 demonstrates container-managed EIS
sign-on.

Figure 17.7 Component-managed EIS sign-on.

RA‘s Client-side
connection factory

: EnterpriseBean

Get connection

Return
connection
handle

ConnectionManager.allocateConnection()

createManagedConnection(null,
ConnectionRequestInfo)

Return
ManagedConnection

Uses security
information
presented within
ConnectionRequestInfo
to authenticate to EIS

Return connection handle
a la javax.resource.cci.Connection

Application
Server EIS

: Managed
ConnectionFactory

Application server provides QoS. However, it
is not responsible for passing down security
credentials of principal caller in the form of
JAAS Subject.

500 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 500

Transaction Management
The transaction management contract is layered on top of connection manage-
ment. To support outbound transaction propagation, the RA has to support
outbound connections to the EIS. The RA can support either local transactions
or global transactions through the transaction management system contracts.
A local transaction is managed internal to the EIS and RA, without any help
from external transaction managers such as the one provided by J2EE Transac-
tion Service. Global transactions, on the other hand, are controlled and coordi-
nated by an external transaction manager.

Local Transaction Management Contract

A local transaction management contract requires the RA to implement the
javax.resource.spi.LocalTransaction interface. The LocalTransaction implementa-
tion will work with the low-level EIS APIs to signal its resource manager about
the transaction begin, commit, and rollback events.

The application server uses the instance of LocalTransaction to transparently
manage local transactions in case of container demarcated transactions. The
application server gets a hold of the LocalTransaction instance by calling getLo-
calTransaction() on ManagedConnection. Figure 17.8 shows how local transaction
management is done for container-managed transaction.

Figure 17.8 Local transaction management for container-managed transaction.

RA‘s Client-side
connection factory

: EnterpriseBean

Get connection
to EIS from a
container-
managed
transactional
bean method

Return connection
handle

Return connection
handle

Application
Server

: Managed
ConnectionFactory

: Managed
Connection

: Local
Transaction

Application server gets ManagedConnection instance
from connection pool or creates a new instance

ConnectionManager.allocateConnection()

getLocalTransaction()

begin()

getConnection(Subject, ConnectionRequest)

EJB Integration 501

23_576828 ch17.qxd 11/3/04 11:45 AM Page 501

If the client application component chooses to demarcate transactions using
an RA-supported client transaction demarcation API (such as javax.resource
.cci.LocalTransaction), then the RA will be responsible for notifying the applica-
tion server of the transaction events such as begin, commit, and rollback. The
RA does this by calling the localTransactionStarted(), localTransactionCommitted(),
and localTransactionRolledback() methods on javax.resource.spi.ConnectionEvent
Listener. Figure 17.9 shows how local transaction management is done for a
client demarcated transaction.

Global Transaction Management Contract

A global transaction management contract requires the RA to provide an
implementation for the javax.transaction.xa.XAResource interface. The XAResource
implementation will use low-level libraries to communicate with the EIS
resource manager. Implementing XAResource will enable the EIS resource
manager to participate in transactions that are controlled and coordinated by
the application server’s transaction manager. The transaction manager com-
municates transaction association, completion, and recovery signals to the EIS
resource manager via XAResource.

Figure 17.9 Local transaction management for client demarcated transaction.

: Managed
Connection

Factory

RA‘s Client-side
connection factory

Client-side
connection

: Enterprise
Bean

Get connection
to EIS from a
bean-managed
transactional
bean method

getLocalTransaction()

getConnection(Subject, ConnectionRequest)

Communicates to ManagedConnection
the client transaction begin / commit / rollback

Signals application server of transaction events

Calls the corresponding
begin / commit / rollback
method

begin() / commit() / rollback()

Return
connection

handle

Return
connection

handle

Client-side local
transaction
interface

Application
Server

: Managed
Connection

: Local
Transaction

Application server gets ManagedConnection instance from connection pool or creates a new
instance. ManagedConnection creates LocalTransaction instance in its constructor.

ConnectionManager.allocateConnection()

502 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 502

The application server gets the XAResource instance by calling the
getXAResource() method on ManagedConnection. The application server gets
the XAResource instance when it has to enlist the EIS resource manager in a
global transaction. Subsequently when the client application component
closes the connection, the application server performs transactional cleanup
by de-listing the XAResource corresponding to ManagedConnection from the
transaction manager.

The object interaction diagrams of enlisting and de-listing XAResource are
shown in Figures 17.10 and 17.11.

Figure 17.10 Enlisting EIS resource manager with transaction manager.

: Enterprise
Bean

: Managed
Connection

Factory

RA‘s Client-side
connection factory

Transaction
Manager

Get connection

getXAResource()

getConnection(Subject, ConnectionRequest)

Transaction.enlistResource(XAResource)

XAResource.start(XID, flag)

Return
connection

handle

Return
connection

handle

Application
Server

: Managed
Connection : XAResource

Application server gets ManagedConnection instance
from connection pool or creates a new instance.

ConnectionManager.allocateConnection()

EJB Integration 503

23_576828 ch17.qxd 11/3/04 11:45 AM Page 503

Figure 17.11 De-listing EIS resource manager with transaction manager.

Work Management
Sometimes you need your RA to multithread. However, in a managed envi-
ronment creating and executing threads is not encouraged mainly because the
application server will not have control over such threads and therefore will
not be able to manage them. To prevent the RA from creating and managing
threads directly, connector architecture provides a mechanism through which
the RA can delegate thread management to the application server and conse-
quently get its work done on multiple threads.

Under the work management contract, the RA creates Work instances, rep-
resenting unit of work that the RA wants to execute on a different thread, and
submits to the application server. The application server uses the threads from
its pool to execute these submitted Work instances. Work instances can be exe-
cuted on separately executing threads since they implement Runnable.

Figure 17.12 shows the interaction among various objects during work man-
agement.

: Enterprise
Bean

: Managed
Connection

Factory

RA‘s Client-side
connection factory

Transaction
Manager

Close connection

Transaction.delistResource(XAResource, flag)

XAResource.end(XID, flag)

Application
Server

: Managed
Connection : XAResource

Communicates to ManagedConnection about the client closing connection

connectionClosed(ConnectionEvent:CONNECTION_CLOSED)

Notify all registered
ConnectionEventListener

ManagedConnection.cleanup()

504 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 504

Figure 17.12 Work management object diagram.

Note the following in Figure 17.12:

■■ The RA gets the WorkManager instance by calling the getWorkManager()
method on the BootstrapContext object.

■■ The RA implements units of work as instances of Runnable and submits
them for execution on different threads to the application server
through the doWork(), startWork(), or scheduleWork() methods. The
doWork() method blocks the current thread until the Work instance com-
pletes execution; the startWork() method blocks until the Work instance
starts execution, and the scheduleWork() method accepts the Work
instance for processing and returns immediately.

■■ After accepting Work for processing, the WorkManager dispatches a
thread that calls the run() method to begin execution of Work. The Work
execution completes when run() returns. The WorkManager can call
release() to request Work instance to complete execution as soon as it can.

■■ Additionally, the RA can provide ExecutionContext within which the
Work instance will be executed, when submitting work.

BootstrapContext

Application Server Resource Adapter

getWorkManager()

WorkManager

Work

doWork(), startWork()

scheduleWork()

WorkEvent
getType(), getWork()

getStartTime(), getException()

WorkRejectedException
getErrorCode()

run(), release()

ExecutionContext
getXid(), getTransactionTimeout()

set Xid(), set TransactionTimeout()

WorkListener

WorkException

WorkCompletedException

workAccepted(), workStarted()

workRejected(), workCompleted()

EJB Integration 505

23_576828 ch17.qxd 11/3/04 11:45 AM Page 505

■■ Also, the RA can provide a WorkListener object to the work submission
methods so that the application server can call the RA to notify it of var-
ious work execution-related events such as work acceptance, work
rejection, and so on.

Message In-flow
The message in-flow contract allows the RA to asynchronously deliver mes-
sages to message endpoints, such as message-driven beans, residing within
the application server independent of messaging semantics. This contract sup-
plements the connection management contract in that just like the connection
management contract it is implemented for outbound communication from
the RA to EIS; the message in-flow contract is implemented for receiving
inbound messages from EIS to the application server endpoints.

Considering message-oriented middleware (MOM) systems as a category of
EIS, inbound communication from such MOM systems to the application
server endpoints can be facilitated by implementing the message in-flow con-
tract. Hence, in J2EE 1.4, all JMS and non-JMS messaging providers are imple-
mented as the RA that in turn implements the message in-flow contract.

Some of the important implementation details for this contract are:

■■ The RA implements the javax.resource.spi.ActivationSpec JavaBean and
supplies its class to the application server during its deployment. Acti-
vationSpec is opaque to the application server and is used by the RA to
establish subscriptions to the requested data from the EIS.

■■ The RA provides a message listener interface, akin to javax.jms.Message-
Listener, and a message interface, akin to javax.jms.Message. The mes-
sage listener interface will be implemented by message endpoints
similar to the way JMS MDB implements javax.jms.MessageListener.
Also, the message listener interface should have a public method, akin
to onMessage() of the javax.jms.MessageListener interface, that can be
invoked by the RA to deliver messages to the endpoint. The deployer
will specify the message listener interface class associated with the RA
during its deployment.

■■ The RA also implements the javax.resource.spi.ResourceAdapter interface
to facilitate message in-flow by implementing the endpointActivation()
and endpointDeactivation() methods.

■■ The application server calls the endpointActivation() method on
ResourceAdapter to notify the RA when the message endpoint interested
in consuming messages from the RA is deployed or when the applica-
tion server with such a deployed message endpoint is started. The

506 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 506

application server passes javax.resource.spi.endpoint.MessageEndpointFac-
tory and ActivationSpec instances when calling endpointActivation(). The
MessageEndpointFactory instance is used by the RA to create a Mes-
sageEndpoint instance later when it has to deliver a message to the end-
point by invoking its onMessage() method. ActivationSpec represents the
deployment properties of the message endpoint. The deployer provides
these properties during message endpoint deployment. The application
server creates the ActivationSpec JavaBean instance and instantiates its
properties with values supplied by the deployer. The RA uses the infor-
mation in the ActivationSpec JavaBean to establish subscription to the
requested data from the EIS.

■■ The application server calls the endpointDeactivation() method on
ResourceAdapter to notify the RA when the message endpoint interested
in consuming messages from the RA is undeployed or when the appli-
cation server with such a deployed message endpoint is being shut
down. The application server passes MessageEndpointFactory and Activa-
tionSpec instances when calling endpointDeactivation(). The RA uses Mes-
sageEndpointFactory to retrieve the underlying endpoint consumer and
remove it from its list of active message endpoints.

Figures 17.13 shows the object diagram of message in-flow contract.

Figure 17.13 Message in-flow object diagram.

MessageEndpointFactory

Application Server

ResourceAdapter

XAResource

NotSupportedException

ActivationSpec

Message object

Resource Adapter

MessageEndpoint

Message delivery calls

UnavailableException

createEndpoint(XAResource)

isDeliveryTransacted()

createEndpoint(XAResource)

isDeliveryTransacted()

Transactional notifications

EJB Integration 507

23_576828 ch17.qxd 11/3/04 11:45 AM Page 507

J2EE 1.4 RI ships with a sample connector that implements message in-flow
contract for Java Mail. Studying this sample will prove very helpful if you
want to develop an RA that listens to messages from EIS and delivers those
messages to message endpoints in the application server.

Connector Example: OutboundLoanRA

Okay! So we are halfway through our journey of learning about the J2EE Con-
nector Architecture. The remaining half will be more exciting than the previ-
ous half because we will now deep dive into developing and deploying our
own connector, OutboundLoanRA. As is obvious from the name, our RA sup-
ports outbound communication from the application server to the EIS. RA
development tends to be more complex than that of other J2EE components
since the RA developer is responsible for implementing not just client con-
tracts but also system contracts. To keep the complexity manageable, we will
implement only the connection management system contract in Outbound-
LoanRA. Even then, you should find this example helpful given that most of
the connectors support outbound communication to the EIS, and hence, con-
nection management. Connection management is the most commonly imple-
mented contract.

OutboundLoanRA supports client contracts in the form of CCI.

Example Architecture
OutboundLoanRA provides an elegant way of integrating our EJB application,
LoanApplication, with our legacy application LoanApp.dll. LoanApp.dll is a Win-
dows DLL written in Visual C++. LoanApp.dll is a backend application that
provides typical loan processing functionality. LoanApplication leverages
LoanApp.dll for loan processing. A standalone Java application is a client to our
LoanApplication EJB application consisting of LoanRatesEJB. A real-world loan-
processing application provides way more functionality, however, for our
example we will assume that our loan processing application, i.e. LoanApp.dll,
implements just one function: getHomeEquityLoanRate(). It basically returns the
rate of interest on home equity loans as a float. Internally, OutboundLoanRA
uses the JavaLoanApp class that in turn uses JNI to communicate with the
native C++ DLL.

Figure 17.14 shows architecture for our example.
We will examine each of these architectural components in detail in the sub-

sequent sections.

508 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 508

Figure 17.14 Example architecture.

All the source files and setup details for this example are available on the
book’s accompanying Web site: wiley.com/compbooks/roman.

JavaLoanApp.java
This is a POJO that uses JNI to communicate with LoanApp.dll. Here, getHome
EquityLoanRate() is declared as a native function. Source 17.1 shows Java
LoanApp.java code.

package examples.jni;

public class JavaLoanApp

{

public JavaLoanApp(String libPath) {

System.load(libPath);

}

// Native method declaration

public native float getHomeEquityLoanRate();

}

Source 17.1 The examples.jni.JavaLoanApp class.

LoanRatesClient

(Standalone Java
Client to LoanRatesEJB)

EJB client contracts

CCI client contracts

LoanRatesEJB

(Client application component to
OutboundLoanRA)

OutboundLoanRA

(J2EE connector that communicates
with LoanApp.dll using JNI)

LoanApp.dll

(Legacy Visual C++ application)

Java Native
Interfaces

Private
contracts

JavaLoanApp

(This standalone Java class uses JNI
to communicate with LoanApp.dll)

EJB Integration 509

23_576828 ch17.qxd 11/3/04 11:45 AM Page 509

Once we compile the source using a conventional javac compiler, we will
need to generate a header file containing the JNI function definition so that it
can be included by our C++ LoanApp.dll application. We can use the javah util-
ity that ships with JDK for this. Source 17.2 shows the generated examples_jni_
JavaLoanApp.h containing JNI exported function Java_examples_jni_JavaLoan
App_getHomeEquityLoanRate().

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class examples_jni_JavaLoanApp */

#ifndef _Included_examples_jni_JavaLoanApp

#define _Included_examples_jni_JavaLoanApp

#ifdef __cplusplus

extern “C” {

#endif

/*

* Class: examples_jni_JavaLoanApp

* Method: getHomeEquityLoanRate

* Signature: ()F

*/

/* JNI export function definition (generated by javah utility)

*/

JNIEXPORT jfloat JNICALL

Java_examples_jni_JavaLoanApp_getHomeEquityLoanRate

(JNIEnv *, jobject);

Source 17.2 The examples_jni_JavaLoanApp.h header file.

LoanApp.dll
The source code of interest in LoanApp.dll is LoanApp.h. It implements the JNI
exported function, Java_examples_jni_JavaLoanApp_getHomeEquityLoanRate().
We have kept the JNI function definition very simple—it always returns 5.64
percent as the home equity loan rate. Source 17.3 shows LoanApp.h. Note how
we included the javah generated examples_jni_JavaLoanApp.h header file.

// LoanApp.h : main header file for the LoanApp DLL

#pragma once

#ifndef __AFXWIN_H__

#error include ‘stdafx.h’ before including this file for PCH

Source 17.3 The LoanApp.h header file.

510 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 510

#endif

#include “resource.h” // main symbols

// CLoanAppApp

#include “examples_jni_JavaLoanApp.h”

class CLoanAppApp : public CWinApp

{

public:

CLoanAppApp();

// Overrides

public:

virtual BOOL InitInstance();

DECLARE_MESSAGE_MAP()

};

/* A very simplistic implementation of JNI exported function

*/

JNIEXPORT jfloat JNICALL

Java_examples_jni_JavaLoanApp_getHomeEquityLoanRate(JNIEnv *, jobject) {

return 5.64;

};

Source 17.3 (continued)

OutboundLoanRA
Now that we have skimmed through the implementations of JavaLoanApp and
LoanApp.dll, let us examine the source code for OutboundLoanRA. We will
examine the client contracts first, followed by the system contracts.

OutboundLoanRA Client Contracts

As noted earlier, OutboundLoanRA supports client contracts through CCI. We
have implemented javax.resource.cci.ConnectionFactory, javax.resource.cci.Con-
nection, javax.resource.cci.ConnectionMetaData, javax.resource.cci.ConnectionSpec,
javax.resource.cci.Interaction, javax.resource.cci.MappedRecord, javax.resource.cci
.RecordFactory, and javax.resource.cci.ResourceAdapterMetaData client contracts
for this example.

EJB Integration 511

23_576828 ch17.qxd 11/3/04 11:45 AM Page 511

ConnectionFactoryImpl.java

Source 17.4 shows ConnectionFactoryImpl.java, which implements the javax
.resource.cci.ConnectionFactory client contract.

package examples.out_loan_ra;

import java.io.*;

import javax.resource.Referenceable;

import javax.resource.*;

import javax.resource.spi.*;

import javax.naming.Reference;

import javax.resource.cci.*;

public class ConnectionFactoryImpl implements ConnectionFactory,

Serializable, Referenceable {

private ManagedConnectionFactory manConnFactory;

private ConnectionManager connManager;

private Reference ref;

//ManagedConnectionFactory implementation creates

ConnectionFactory instance

// by calling this constructor. During construction it also

passes an instance

// of ConnectionManager which ConnectionFactoryImpl will use

to call

// allocateConnection() method on ConnectionManager later

when client component

// invokes getConnection() on ConnectionFactory.

public ConnectionFactoryImpl(ManagedConnectionFactory

manConnFactory,

ConnectionManager connManager) {

System.out.println(“ConnectionFactoryImpl(ManagedConnectionFactory

manConnFactory, ConnectionManager connManager) called”);

this.manConnFactory = manConnFactory;

this.connManager = new ConnectionManagerImpl();

}

// Client component calls this definition of getConnection() when

// container manages EIS sign-on.

public javax.resource.cci.Connection getConnection() throws

ResourceException {

System.out.println(“ConnectionFactoryImpl.getConnection()

called”);

javax.resource.cci.Connection conn = null;

Source 17.4 The ConnectionFactoryImpl class.

512 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 512

conn = (javax.resource.cci.Connection)

connManager.allocateConnection(manConnFactory, null);

return conn;

}

// Client component can call this method to pass ConnectionSpec

containing RA

// specific security and connection information.

public javax.resource.cci.Connection getConnection

(ConnectionSpec cSpec) throws

ResourceException {

System.out.println(“ConnectionFactoryImpl.getConnection

(ConnectionSpec cSpec) called”);

javax.resource.cci.Connection conn = null;

ConnectionRequestInfo connRequestInfo = new

ConnectionRequestInfoImpl();

conn = (javax.resource.cci.Connection)

connManager.allocateConnection(manConnFactory,

connRequestInfo);

return conn;

}

public ResourceAdapterMetaData getMetaData() throws

ResourceException {

return new ResourceAdapterMetaDataImpl();

}

public RecordFactory getRecordFactory() throws ResourceException {

return new RecordFactoryImpl();

}

public void setReference(Reference ref) {

this.ref = ref;

}

public Reference getReference() {

return ref;

}

}

Source 17.4 (continued)

Note the following about ConnectionFactoryImpl:

■■ Our class implements Referenceable so that the connection factory can be
registered with JNDI.

EJB Integration 513

23_576828 ch17.qxd 11/3/04 11:45 AM Page 513

■■ The application server creates an instance of ConnectionFactory using a
constructor during which it passes an instance of ManagedConnection-
Factory for creating physical connections to the EIS.

■■ One implementation of the getConnection() method does not take any
arguments and calls allocateConnection() on ConnectionManager passing
it a reference to ManagedConnectionFactory and a null ConnectionRe-
questInfo object.

■■ The other implementation of the getConnection() method takes a single
argument, a ConnectionSpec instance. ConnectionSpec is used by an appli-
cation component to pass connection request–specific properties. How-
ever, since we do not have any connection-specific request properties,
our ConnectionSpec is practically empty. If we had connection request–
specific properties (such as user name, password, port number, and so
on), the getConnection() implementation would be required to populate
ConnectionRequestInfo with these ConnectionSpec properties. Since we
do not have any connection request properties, we simply create
the ConnectionRequestInfo object and pass it as an argument to
allocateConnection() on ConnectionManager.

■■ The getMetaData() method returns an instance of the ResourceAdapter
MetaData, and getRecordFactory() method returns an instance of
RecordFactory.

ConnectionImpl.java

Source 17.5 shows ConnectionImpl.java, which implements javax.resource.cci
.Connection client contract.

package examples.out_loan_ra;

import java.util.*;

import javax.resource.cci.*;

import javax.resource.ResourceException;

import javax.resource.spi.ConnectionEvent;

import javax.resource.spi.IllegalStateException;

import javax.resource.spi.*;

import javax.resource.NotSupportedException;

public class ConnectionImpl implements javax.resource.cci.Connection {

private ManagedConnectionImpl manConn;

// RA creates an instance of Connection using this constructor from

// getConnection() method of ManagedConnection.

Source 17.5 The ConnectionImpl class.

514 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 514

ConnectionImpl(ManagedConnectionImpl manConn) {

System.out.println(“ConnectionImpl(ManagedConnectionImpl)

called”);

this.manConn = manConn;

}

public Interaction createInteraction() throws ResourceException {

return new InteractionImpl(this);

}

public javax.resource.cci.LocalTransaction

getLocalTransaction() throws

ResourceException {

throw new NotSupportedException(“Local transactions are

not supported.”);

}

public ResultSetInfo getResultSetInfo() throws ResourceException {

throw new NotSupportedException(“ResultSet records are

not supported.”);

}

// This method called by client component should be used to

signal to the

// underlying physical connection of client’s intent to close

the connection.

// How client-side connection handle signals these (and other

events such as

// transaction begin, commit, and rollback in case of client

demarcated local

// transactions), is left up to RA to decide. In our

implementation we make

// our ManagedConnection implementation provide a private

contract method named

// sendEvent() that our ConnectionImpl will call to signal

it of various

// connection related events. Since this is a

Connection.close() method imple-

// mentation, we will signal a CONNECTION_CLOSED event.

public void close() throws ResourceException {

System.out.println(“ConnectionImpl.close() called”);

if (manConn == null)

return;

manConn.sendEvent(ConnectionEvent.CONNECTION_CLOSED,

null, this);

manConn = null;

Source 17.5 (continued)

EJB Integration 515

23_576828 ch17.qxd 11/3/04 11:45 AM Page 515

}

public ConnectionMetaData getMetaData() throws ResourceException {

return new ConnectionMetaDataImpl(manConn);

}

}

Source 17.5 (continued)

Note the following about our implementation:

■■ It throws javax.resource.NotSupportedException if someone tries to call the
getLocalTransaction() and getResultSetInfo() methods. It does so because it
does not implement the transaction management system contract and it
does not support ResultSet type of Record.

■■ In the implementation for close(), it sends a CONNECTION_CLOSED
event notification to ManagedConnection. The application server uses
this event notification to either destroy the underlying ManagedConnec-
tion or to put the ManagedConnection instance back into the pool.

ConnectionMetaDataImpl.java

Source 17.6 shows ConnectionMetaDataImpl.java, which implements the
javax.resource.cci.ConnectionMetaData client contract. ConnectionMetaDataImpl
simply provides information about the underlying EIS connected through the
given Connection handle.

package examples.out_loan_ra;

import javax.resource.ResourceException;

import javax.resource.cci.*;

import javax.resource.spi.*;

public class ConnectionMetaDataImpl implements ConnectionMetaData {

private ManagedConnectionImpl manConn;

public ConnectionMetaDataImpl (ManagedConnectionImpl manConn) {

this.manConn = manConn;

}

public String getEISProductName() throws ResourceException {

return “Loan Application DLL”;

}

Source 17.6 The ConnectionMetaDataImpl class.

516 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 516

public String getEISProductVersion() throws ResourceException {

return “1.0”;

}

public String getUserName() throws ResourceException {

return null;

}

}

Source 17.6 (continued)

ConnectionSpecImpl.java

Source 17.7 shows ConnectionSpecImpl.java, which implements the javax
.resource.cci.ConnectionSpec client contract. This is the minimal implementation
of ConnectionSpec, given that we do not support any connection request–spe-
cific properties. If we did support connection request–specific properties then
we would have to provide getters and setters for those properties.

package examples.out_loan_ra;

import javax.resource.cci.*;

public class ConnectionSpecImpl implements ConnectionSpec {

public ConnectionSpecImpl() {

}

}

Source 17.7 The ConnectionSpecImpl class.

InteractionImpl.java

Source 17.8 shows InteractionImpl.java, which implements the javax.resource
.cci.Interaction client contract.

package examples.out_loan_ra;

import examples.jni.JavaLoanApp;

import java.util.*;

import javax.resource.ResourceException;

import javax.resource.spi.ConnectionEvent;

Source 17.8 The InteractionImpl class. (continued)

EJB Integration 517

23_576828 ch17.qxd 11/3/04 11:45 AM Page 517

import javax.resource.spi.IllegalStateException;

import javax.resource.cci.*;

import java.lang.reflect.*;

import java.lang.*;

public class InteractionImpl implements Interaction {

Connection conn = null;

public InteractionImpl(Connection conn) {

System.out.println(“InteractionImpl(Connection conn) called”);

this.conn = conn;

}

public javax.resource.cci.Connection getConnection() {

return conn;

}

public void close() throws ResourceException {

conn = null;

}

public boolean execute (InteractionSpec iSpec, Record in, Record out)

throws

ResourceException {

System.out.println (“InteractionImpl.execute(InteractionSpec

iSpec, Record

in, Record out) called”);

out = exec((MappedRecord)in,(MappedRecord)out);

if (out != null) {

return true;

} else {

return false;

}

}

public Record execute (InteractionSpec iSpec, Record in) throws

ResourceException

{

System.out.println (“InteractionImpl.execute(InteractionSpec

iSpec, Record

in) called”);

MappedRecord out = new MappedRecordImpl();

return exec((MappedRecord)in, out);

}

Record exec(MappedRecord in, MappedRecord out) throws ResourceException {

Source 17.8 (continued)

518 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 518

try {

System.out.println(“InteractionImpl.exec(MappedRecord in,

MappedRecord

out) called”);

Set keys = in.keySet();

Iterator iterator = keys.iterator();

while (iterator.hasNext()) {

String key = (String)iterator.next();

if (key.equalsIgnoreCase(“HomeEquityRate”)) {

JavaLoanApp jlaObj = new

JavaLoanApp(“C:\\LoanApp.dll”);

float equityRate = jlaObj.getHomeEquityLoanRate();

System.out.println (“JNI Call Returned: “ +

equityRate);

out.put(key, new Float(equityRate));

}

}

return out;

}

catch(Exception e) {

throw new ResourceException(e.getMessage());

}

}

public ResourceWarning getWarnings() throws ResourceException {

return null;

}

public void clearWarnings() throws ResourceException {

}

}

Source 17.8 (continued)

This is the crux of OutboundLoanRA. InteractionImpl contains the logic
required for communicating with the EIS. It is InteractionImpl that creates an
instance of JavaLoanApp and calls its native method. Note the following about
our implementation:

■■ We support both the execute() methods; the one that takes input and
output records as well as the one which takes only input and returns
output record.

■■ Both the execute() methods call the exec() method, which in turn takes
the input Record, gets the name of the EIS function to execute, instanti-
ates JavaLoanApp, and finally calls the getHomeEquityLoanRate() native
method on JavaLoanApp. The result of this invocation is put into the out-
put Record and returned back to the client application component,
which is LoanRatesEJB in this case.

EJB Integration 519

23_576828 ch17.qxd 11/3/04 11:45 AM Page 519

MappedRecordImpl.java

Source 17.9 shows MappedRecordImpl.java, which implements the javax.resource
.cci.MappedRecord client contract. MappedRecordImpl implements both the
java.util.Map and javax.resource.cci.Record interfaces. As shown in Source 17.10,
implementing MappedRecord is fairly simple.

package examples.out_loan_ra;

import java.util.*;

public class MappedRecordImpl implements javax.resource

.cci.MappedRecord {

private String recordName;

private String recordDescription;

private HashMap mappedRecord;

public MappedRecordImpl() {

mappedRecord = new HashMap();

}

public MappedRecordImpl (String recordName) {

mappedRecord = new HashMap();

this.recordName = recordName;

}

public String getRecordName() {

return this.recordName;

}

public void setRecordName(String recordName) {

this.recordName = recordName;

}

public String getRecordShortDescription() {

return recordDescription;

}

public void setRecordShortDescription(String recordDescription) {

this.recordDescription = recordDescription;

}

public boolean equals(Object object) {

if(!(object instanceof MappedRecordImpl))

return false;

MappedRecordImpl mappedRecordObject =

(MappedRecordImpl)object;

Source 17.9 The MappedRecordImpl class.

520 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 520

return (recordName == mappedRecordObject.recordName) &&

mappedRecord.equals(mappedRecordObject.mappedRecord);

}

public int hashCode() {

return (new String(“MappedRecordImpl”)).hashCode();

}

public Object clone() throws CloneNotSupportedException {

return this.clone();

}

public void clear() {

mappedRecord.clear();

}

public boolean containsKey(Object key) {

return mappedRecord.containsKey(key);

}

public boolean containsValue(Object value) {

return mappedRecord.containsValue(value);

}

public Set entrySet() {

return mappedRecord.entrySet();

}

public Object get(Object object) {

return mappedRecord.get(object);

}

public boolean isEmpty(){

return mappedRecord.isEmpty();

}

public Set keySet(){

return mappedRecord.keySet();

}

public Object put(Object key, Object value) {

return mappedRecord.put(key, value);

}

public void putAll(Map map) {

mappedRecord.putAll (map);

}

public Object remove(Object object) {

Source 17.9 (continued)

EJB Integration 521

23_576828 ch17.qxd 11/3/04 11:45 AM Page 521

return mappedRecord.remove(object);

}

public int size() {

return mappedRecord.size();

}

public Collection values() {

return mappedRecord.values();

}

}

Source 17.9 (continued)

RecordFactoryImpl.java

Source 17.10 shows RecordFactoryImpl.java, which implements the javax
.resource.cci.RecordFactory client contract. Since OutboundLoanRA supports only
the MappedRecord client contract, we throw NotSupportedException if somebody
tries to create an indexed record.

package examples.out_loan_ra;

import javax.resource.cci.*;

import java.util.Map;

import java.util.Collection;

import javax.resource.ResourceException;

import javax.resource.NotSupportedException;

public class RecordFactoryImpl implements

javax.resource.cci.RecordFactory{

public MappedRecord createMappedRecord(String recordName) throws

ResourceException {

return new MappedRecordImpl(recordName);

}

public IndexedRecord createIndexedRecord(String recordName) throws

ResourceException {

throw new NotSupportedException(“IndexedRecords are not

supported.”);

}

}

Source 17.10 The RecordFactoryImpl class.

522 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 522

ResourceAdapterMetaDataImpl.java

Source 17.11 shows ResourceAdapterMetaDataImpl.java. In our implementation
of the javax.resource.cci.ResourceAdapterMetaData client contract, we provide
not only general information about the RA but also information about specific
capabilities of the RA such as the system contracts it supports.

package examples.out_loan_ra;

import java.io.*;

import javax.resource.Referenceable;

import javax.resource.*;

import javax.resource.spi.*;

import javax.naming.Reference;

import javax.resource.cci.*;

public class ResourceAdapterMetaDataImpl implements

ResourceAdapterMetaData {

private String adapterName;

private String adapterShortDescription;

private String adapterVendorName;

private String adapterVersion;

private String[] interactionSpecsSupported;

private String specVersion;

private boolean supportsExecuteWithInputAndOutputRecord;

private boolean supportsExecuteWithInputRecordOnly;

private boolean supportsLocalTransactionDemarcation;

// Additional properties

private boolean supportsGlobalTransactions;

private boolean supportsLifecycleManagement;

private boolean supportsMessageInflow;

private boolean supportsTransactionInflow;

private boolean supportsConnectionManagement;

private boolean supportsSecurityManagement;

public ResourceAdapterMetaDataImpl() {

adapterName = “Loan Application Resource Adapter”;

adapterShortDescription = “Loan Application Resource

Adapter provides

connectivity to Loan Application DLL”;

adapterVendorName = “Connectors Inc.”;

adapterVersion = “1.0”;

interactionSpecsSupported[0] = “InteractionImpl”;

specVersion = “1.5”;

supportsExecuteWithInputAndOutputRecord = true;

supportsExecuteWithInputRecordOnly = true;

Source 17.11 The ResourceAdapterMetaData class. (continued)

EJB Integration 523

23_576828 ch17.qxd 11/3/04 11:45 AM Page 523

supportsLocalTransactionDemarcation = false;

supportsGlobalTransactions = false;

supportsLifecycleManagement = false;

supportsMessageInflow = false;

supportsTransactionInflow = false;

supportsConnectionManagement = true;

supportsSecurityManagement = false;

}

public String getAdapterName() {

return adapterName;

}

public String getAdapterShortDescription() {

return adapterShortDescription;

}

public String getAdapterVendorName() {

return adapterVendorName;

}

public String getAdapterVersion() {

return adapterVersion;

}

public String[] getInteractionSpecsSupported() {

return interactionSpecsSupported;

}

public String getSpecVersion() {

return specVersion;

}

public boolean supportsExecuteWithInputAndOutputRecord() {

return supportsExecuteWithInputAndOutputRecord;

}

public boolean supportsExecuteWithInputRecordOnly() {

return supportsExecuteWithInputRecordOnly;

}

public boolean supportsLocalTransactionDemarcation() {

return supportsLocalTransactionDemarcation;

}

public boolean supportsGlobalTransactions() {

return supportsGlobalTransactions;

}

Source 17.11 (continued)

524 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 524

public boolean supportsLifecycleManagement() {

return supportsLifecycleManagement;

}

public boolean supportsMessageInflow() {

return supportsMessageInflow;

}

public boolean supportsTransactionInflow() {

return supportsTransactionInflow;

}

public boolean supportsConnectionManagement() {

return supportsConnectionManagement;

}

public boolean supportsSecurityManagement() {

return supportsSecurityManagement;

}

}

Source 17.11 (continued)

OutboundLoanRA System Contracts

Now let us examine the connection management–related system contracts for
OutboundLoanRA. We implemented javax.resource.spi.ManagedConnectionFactory,
javax.resource.spi.ManagedConnection, javax.resource.spi.ConnectionRequestInfo,
and javax.resource.spi.ManagedConnectionMetaData system contracts for this
example.

ManagedConnectionFactoryImpl.java

Source 17.12 shows ManagedConnectionFactoryImpl.java, which implements the
javax.resource.spi.ManagedConnectionFactory system contract.

package examples.out_loan_ra;

import java.io.*;

import java.util.*;

import javax.resource.*;

import javax.resource.spi.*;

import javax.resource.spi.security.PasswordCredential;

import javax.resource.spi.SecurityException;

import javax.security.auth.Subject;

Source 17.12 The ManagedConnectionFactoryImpl class. (continued)

EJB Integration 525

23_576828 ch17.qxd 11/3/04 11:45 AM Page 525

import javax.naming.Context;

import javax.naming.InitialContext;

public class ManagedConnectionFactoryImpl implements

ManagedConnectionFactory, Serializable {

private PrintWriter manConnLogWriter;

public ManagedConnectionFactoryImpl() {

System.out.println(“ManagedConnectionFactoryImpl() called”);

}

// This method is called by application server and is a hook for RA to

// to create the client-side connection factory interface instance.

Application

// server passes an instance of ConnectionManager to this method, which is

// passed forward to the client-side connection factory instance.

The connection

// factory instance on the client-side will use ConnectionManager to call

// allocateConnection().

public Object createConnectionFactory(ConnectionManager connManager) throws

ResourceException {

System.out.println

(“ManagedConnectionFactoryImpl.createConnectionFactory

(ConnectionManager) called”);

return new ConnectionFactoryImpl(this, connManager);

}

// This method will never be called in a managed environment because

// in a managed environment application server is required to provide

// an implementation of ConnectionManager such that its

allocateConnection()

// method provides all the QoS necessary. Hence, application server

// will never call this version of createConnectionFactory().

This method is

// part of ManagedConnectionFactory interface only to

accommodate non-managed

// environments.

public Object createConnectionFactory() throws ResourceException {

throw new ResourceException (“How can you call this method in a

managed

environment?”);

}

// This method is called by application server to create an instance of

// ManagedConnection. It passes an instance of Subject representing

authenticated

// user’s principal in case of container-managed EIS sign-on. In case of

// component-managed EIS sign-on, application component can pass

Source 17.12 (continued)

526 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 526

// connection request properties including username/password (or other form

// of security credential information) through ConnectionSpec JavaBean

// when it calls getConnection() on ConnectionFactory.

ConnectionFactory impl-

// mentation will take ConnectionSpec property information and populate

// ConnectionRequestInfo JavaBean, and pass it down to

application server as

// an argument to allocateConnection() on ConnectionManager.

When application

// server calls createManagedConnection(), it passes this very instance of

// ConnectionRequestInfo so that ManagedConnectionFactory can get access to

// connection request properties, including security information.

public ManagedConnection createManagedConnection (Subject subject,

ConnectionRequestInfo connRequestInfo) {

System.out.println

(“ManagedConnectionFactoryImpl.createManagedConnection

(Subject, ConnectionRequestInfo) called”);

return new ManagedConnectionImpl (this);

}

// This method is called by application server and is a hook for RA to

// implement the connection matching logic. If the EIS connection have

// connection properties, then the match logic should also compare the

// property values of ConnectionRequestInfo structure with those of

// the available connections to determine the correct match.

public ManagedConnection matchManagedConnections(Set connSet,

Subject subject,

ConnectionRequestInfo connRequestInfo)

throws ResourceException {

System.out.println

(“ManagedConnectionFactoryImpl.matchManagedConnections

(Set, Subject, ConnectionRequestInfo) called”);

Iterator iterator = connSet.iterator();

while (iterator.hasNext()) {

Object object = iterator.next();

if (object instanceof ManagedConnectionImpl) {

ManagedConnectionImpl manConn =

(ManagedConnectionImpl) object;

ManagedConnectionFactory manConnFactory =

manConn.getManagedConnectionFactory();

if (manConnFactory.equals(this)) {

System.out.println(“From ManagedConnectionFactoryImpl.

matchManagedConnections() -> Connection matched”);

return manConn;

}

}

}

System.out.println(“From ManagedConnectionFactoryImpl.

Source 17.12 (continued)

EJB Integration 527

23_576828 ch17.qxd 11/3/04 11:45 AM Page 527

matchManagedConnections() -> Connection did not match”);

return null;

}

public void setLogWriter(PrintWriter manConnLogWriter) {

this.manConnLogWriter = manConnLogWriter;

}

public PrintWriter getLogWriter() {

return manConnLogWriter;

}

public boolean equals(Object object) {

if (object == null) return false;

if (object instanceof ManagedConnectionFactoryImpl) {

return true;

} else {

return false;

}

}

public int hashCode() {

return (new String(“ManagedConnectionFactoryImpl”)).hashCode();

}

}

Source 17.12 (continued)

Note the following about our implementation:

■■ In the createManagedConnection() method, had we implemented the
security system contract, we would have been required to get the caller
principal credentials from the Subject, in case of container-managed EIS
sign-on, or from the ConnectionRequestInfo JavaBean, in case of compo-
nent-managed EIS sign-on.

■■ Had we used connection request–specific properties, in matchManaged-
Connection() method we would have been required to match the proper-
ties as well as determine the matching connection from the pool.

ManagedConnectionImpl.java

Source 17.13 shows ManagedConnectionImpl.java, which implements the javax
.resource.spi.ManagedConnection system contract.

528 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 528

package examples.out_loan_ra;

import java.io.*;

import java.util.*;

import javax.resource.*;

import javax.resource.spi.*;

import javax.resource.spi.security.PasswordCredential;

import javax.resource.spi.IllegalStateException;

import javax.resource.spi.SecurityException;

import javax.resource.NotSupportedException;

import javax.security.auth.Subject;

import javax.transaction.xa.XAResource;

public class ManagedConnectionImpl implements ManagedConnection {

private ConnectionEventListener connEventListener;

private ManagedConnectionFactory manConnFactory;

private boolean isDestroyed;

private PrintWriter manConnLogWriter;

// This method is called by createManagedConnection() of

// ManagedConnectionFactory.

ManagedConnectionImpl (ManagedConnectionFactory manConnFactory) {

System.out.println(“ManagedConnectionImpl(ManagedConnectionFactory)

called”);

this.manConnFactory = manConnFactory;

}

// This method is called by application server to obtain the client-side

// connection handle for this physical connection. If you want to share

// a physical connection to the EIS among various clients, you can use

// caller security information represented in Subject or

ConnectionRequestInfo

// objects to authenticate each client that shares this physical

connection

// to the backend EIS.

public Object getConnection(Subject subject, ConnectionRequestInfo

connectionRequestInfo) throws ResourceException {

System.out.println(“ManagedConnectionImpl.getConnection(Subject,

ConnectionRequestInfo) called”);

ConnectionImpl conn = new ConnectionImpl(this);

return conn;

}

// This method is called by application server to explicitly destroy the

// physical connection to the EIS.

public void destroy() throws ResourceException {

Source 17.13 The ManagedConnectionImpl class. (continued)

EJB Integration 529

23_576828 ch17.qxd 11/3/04 11:45 AM Page 529

System.out.println(“ManagedConnectionImpl.destroy() called”);

isDestroyed=true;

cleanup();

}

// The cleanup method is called by application server when it has to

// put the ManagedConnection instance back in pool. In this method’s

// implementation you should release all the client-specific

associated with

// ManagedConnection instance.

public void cleanup() throws ResourceException {

System.out.println(“ManagedConnectionImpl.cleanup() called”);

}

// RA should implement this method if it supports physical

connection sharing

// such that it can associate a different client-side connection

handle with

// the Managedconnection instance. Application server will call

this method

// based on its criteria of connection sharing.

public void associateConnection(Object connection) throws

ResourceException {

throw new NotSupportedException

(“ManagedConnectionImpl.associateConnection() not supported.”);

}

// Application server calls this method to associate

ConnectionEventListener

// object with this managed connection.

public void addConnectionEventListener(ConnectionEventListener

connEventListener){

System.out.println(“ManagedConnectionImpl.addConnectionEventListener

(ConnectionEventListener) called”);

this.connEventListener = connEventListener;

}

public void removeConnectionEventListener (ConnectionEventListener

connEventListener) {

}

public XAResource getXAResource() throws ResourceException {

throw new NotSupportedException(“Global transactions are not

supported”);

}

public LocalTransaction getLocalTransaction() throws ResourceException {

throw new NotSupportedException(“Local transactions are not

supported”);

Source 17.13 (continued)

530 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 530

}

public ManagedConnectionMetaData getMetaData() throws ResourceException {

if (isDestroyed)

throw new ResourceException (“Managed connection has already been

closed.”);

return new ManagedConnectionMetaDataImpl (this);

}

public void setLogWriter(PrintWriter manConnLogWriter) {

this.manConnLogWriter = manConnLogWriter;

}

public PrintWriter getLogWriter() {

return manConnLogWriter;

}

// This method is implemented as part of private contract between RA and

// the client-side connection API, so that client-side connection can

// communicate with ManagedConnection instance various connection related

// events such as connection close, transaction begin / commit /

rollback, and

// so on. Once we determine the type of client-side connection

event, we call

// the appropriate method on ConnectionEventListener object to provide

// a hook to application server to add its own container services.

void sendEvent(int eventType, Exception e, Object connHandle) {

System.out.println(“ManagedConnectionImpl.sendEvent(int, e,

connHandle)

called”);

ConnectionEvent connEvent = null;

if (e == null)

connEvent = new ConnectionEvent(this, eventType);

else

connEvent = new ConnectionEvent(this, eventType, e);

connEvent.setConnectionHandle(connHandle);

switch (connEvent.getId()) {

case ConnectionEvent.CONNECTION_CLOSED:

this.connEventListener.connectionClosed(connEvent);

break;

case ConnectionEvent.LOCAL_TRANSACTION_STARTED:

this.connEventListener.localTransactionStarted(connEvent);

break;

case ConnectionEvent.LOCAL_TRANSACTION_COMMITTED:

this.connEventListener.localTransactionCommitted(connEvent);

break;

case ConnectionEvent.LOCAL_TRANSACTION_ROLLEDBACK:

Source 17.13 (continued)

EJB Integration 531

23_576828 ch17.qxd 11/3/04 11:45 AM Page 531

this.connEventListener.localTransactionRolledback(connEvent);

break;

case ConnectionEvent.CONNECTION_ERROR_OCCURRED:

this.connEventListener.connectionErrorOccurred(connEvent);

break;

default:

throw new IllegalArgumentException(“Unsupported event: “ +

connEvent.getId());

}

}

ManagedConnectionFactory getManagedConnectionFactory() {

return manConnFactory;

}

}

Source 17.13 (continued)

Note the following about our implementation of ManagedConnection:

■■ The application server registers a ConnectionEventListener with the
ManagedConnection instance. We maintain this ConnectionEventListener
for later use.

■■ We implement a sendEvent() method so that the client contract’s
connection implementation, ConnectionImpl, can notify the underlying
managed connection instance when it is about to close the connection,
and other such events. The sendEvent() method in turn calls the
appropriate event notification method such as connectionClosed(),
connectionErrorOccured(), and so on, on the ConnectionEventListener object.

■■ Since we do not support transaction management system contract,
calls to the getXAResource() or getLocalTransaction() methods throw
NotSupportedException.

■■ We do not support the sharing of ManagedConnection instances among
connection handles and therefore the associateConnection() implementa-
tion throws NotSupportedException.

ConnectionRequestInfoImpl.java

Source 17.14 shows ConnectionRequestInfoImpl.java, which implements the
javax.resource.spi.ConnectionRequestInfo system contract. As can be seen from
Source 17.15, ConnectionRequestInfoImpl is a very simple implementation of
ConnectionRequestInfo since our RA does not have any connection request–spe-
cific properties.

532 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 532

package examples.out_loan_ra;

import javax.resource.spi.ConnectionRequestInfo;

public class ConnectionRequestInfoImpl implements

ConnectionRequestInfo {

public ConnectionRequestInfoImpl() {

}

public boolean equals(Object object) {

if (object == null) return false;

if (object instanceof ConnectionRequestInfoImpl) {

return true;

} else {

return false;

}

}

public int hashCode() {

return (new String(“ConnectionRequestInfoImpl”)).hashCode();

}

}

Source 17.14 The ConnectionRequestInfoImpl class.

ManagedConnectionMetaDataImpl.java

ManagedConnectionMetaDataImpl implements the javax.resource.spi
.ManagedConnectionMetaData system contract. Since its implementation is
quite similar to that of ConnectionMetaData, we will skip listing its source code.

Deploying OutboundLoanRA

During RA deployment, deployer will specify the interface and implementa-
tion classes for various client and system contracts supported by RA.

■■ If RA supports the connection management system contract,
then the deployer will have to provide interface and implementation
classes for connection factory and connection. In our case, these
will be javax.resource.cci.ConnectionFactory/example.out_loan_ra
.ConnectionFactoryImpl and javax.resource.cci.Connection/
example_out_loan_ra.ConnectionImpl, respectively. Also, the deployer will
have to provide the implementation class for ManagedConnectionFactory,
which is ManagedConnectionFactoryImpl in our case.

EJB Integration 533

23_576828 ch17.qxd 11/3/04 11:45 AM Page 533

If RA supports configuration properties for connection factories, that
will be specified during deployment. In our case, we do not have any
connection factory configuration properties.

■■ If RA supports transaction management system contract, the deployer
will have to specify whether it supports local or global transactions.

■■ If RA supports security management system contract, you can also
specify the authentication mechanism used during deployment.

■■ If RA supports the message in-flow contract, the deployer will need to
provide the message listener interface class and activation specification
JavaBean class.

■■ If RA supports message in-flow or life cycle contract, the deployer
will need to specify the ResourceAdapter implementation class.

Apart from bundling the system and client contract classes, the deployer
will also bundle the libraries that the RA uses to handle communication with
EIS. For our example, this would be the JavaLoanApp Java class. Hence, we also
bundle the JavaLoanApp class with OutboundLoanRA.

Also, if your RA loads native libraries or does socket communication, or any
such activity that warrants explicit permissions, you must set the right run-
time permissions for the application server’s JVM instance. Since Outbound-
LoanRA uses a Java class that loads the system library, we will have to
explicitly permit the underlying JVM instance to do so. One of the ways to
achieve this is by directly modifying the java.policy file in <JDK_HOME>/
jdk/lib/security folder to grant runtime permission to load native libraries.

Once the RA is deployed, the deployer will create a connection pool and
associate it with the RA’s connection factory. The deployer will use vendor-
provided administration tools for creating a connection pool. Finally, the
deployer will bind the connection pool to JNDI so that client application com-
ponents can retrieve the underlying connection factory instance from JNDI
and create the connection to the EIS.

OutboundLoanRA Deployment Descriptor

Source 17.15 shows deployment descriptor for OutboundLoanRA. Note that
connectors do not have application server–specific deployment descriptors.

<?xml version=’1.0’ encoding=’UTF-8’?> <connector

xmlns=”http://java.sun.com/xml/ns/j2ee” version=”1.5”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd”>

Source 17.15 The ra.xml.

534 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 534

<display-name>OutboundLoanRA</display-name>

<vendor-name>Vendor Name</vendor-name>

<eis-type>EIS Type</eis-type>

<resourceadapter-version>1.5</resourceadapter-version>

<license><license-required>false</license-required></license>

<resourceadapter>

<outbound-resourceadapter>

<connection-definition>

<managedconnectionfactory-class>

examples.out_loan_ra.ManagedConnectionFactoryImpl

</managedconnectionfactory-class>

<connectionfactory-interface>

javax.resource.cci.ConnectionFactory

</connectionfactory-interface>

<connectionfactory-impl-class>

examples.out_loan_ra.ConnectionFactoryImpl

</connectionfactory-impl-class>

<connection-interface>

javax.resource.cci.Connection

</connection-interface>

<connection-impl-class>

examples.out_loan_ra.ConnectionImpl

</connection-impl-class>

</connection-definition>

<transaction-support>LocalTransaction</transaction-support>

<reauthentication-support>false</reauthentication-support>

</outbound-resourceadapter>

</resourceadapter>

</connector>

Source 17.15 (continued)

Now that we have developed and deployed the RA as well as the RA con-
nection pool and JNDI resources associated with it, our RA is all set to receive
requests from client application components, such as LoanRatesEJB.

LoanRatesEJB
LoanRatesEJB is a stateless session bean that uses OutboundLoanRA to commu-
nicate with backend loan processing application, LoanApp.dll.

Developing LoanRatesEJB

LoanRatesEJB’s remote interface has a single method, getHomeEquityRate().
The getHomeEquityRate() method implementation uses the CCI client contracts
supported by OutboundLoanRA. Source 17.16 is a partial listing of the Loan-
RatesEJB bean class, LoanRatesBean.java.

EJB Integration 535

23_576828 ch17.qxd 11/3/04 11:45 AM Page 535

package examples;

import javax.ejb.CreateException;

import javax.ejb.SessionBean;

import javax.ejb.SessionContext;

import javax.naming.InitialContext;

import javax.naming.NamingException;

public class LoanRatesBean implements SessionBean {

// SessionBean methods

// Business method

public float getHomeEquityRate() {

float retVal=0;

System.out.println(“LoanRatesBean.getHomeEquityRate() called”);

InitialContext initCtx = null;

try {

// Lookup the CCI ConnectionFactory instance

initCtx = new InitialContext();

javax.resource.cci.ConnectionFactory connFactory =

(javax.resource.cci.ConnectionFactory)

initCtx.lookup(“java:comp/env/eis/LoanAppAdapter”);

// Get CCI Connection handle

javax.resource.cci.Connection myCon =

connFactory.getConnection();

// Prepare for interaction with EIS

javax.resource.cci.Interaction interaction =

myCon.createInteraction();

javax.resource.cci.MappedRecord recordIn =

connFactory.getRecordFactory().createMappedRecord(“”);

// Provide the EIS function name that you would like to execute

recordIn.put(“HomeEquityRate”,””);

// Execute the EIS function

javax.resource.cci.MappedRecord recordOut =

(javax.resource.cci.MappedRecord) interaction.execute(

null, (javax.resource.cci.Record)recordIn);

// Close CCI Connection

myCon.close();

// Return the rate of home equity loan returned by EIS

to EJB client

Object result = recordOut.get(“HomeEquityRate”);

retVal = ((Float)result).floatValue();

} catch(Exception e) {

e.printStackTrace();

Source 17.16 The LoanRatesBean class.

536 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 536

}

return retVal;

}

}

Source 17.16 (continued)

Deploying LoanRatesEJB

LoanRatesEJB should be deployed like a regular stateless session bean. The
only additional deployment configuration required is mapping the resource
reference in our code, java:comp/env/eis/LoanAppAdapter, to the actual JNDI
resource. This mapping can be done using deployment tools provided by your
application server.

Source 17.17 is a partial listing of the LoanRatesEJB standard deployment
descriptor and Source 17.18 is a partial listing of the LoanRatesEJB application
server–specific deployment descriptor. Source 17.18 shows the mapping of
coded resource reference to the actual JNDI resource.

<?xml version=’1.0’ encoding=’UTF-8’?>

<ejb-jar ...>

<display-name> LoanRatesEJB</display-name>

<enterprise-beans>

<session>

<ejb-name> LoanRatesBean</ejb-name>

...

<resource-ref>

<res-ref-name> eis/LoanAppAdapter</res-ref-name>

<res-type> javax.resource.cci.ConnectionFactory</res-type>

<res-auth> Container</res-auth>

<res-sharing-scope> Shareable</res-sharing-scope>

</resource-ref>

...

</session>

</enterprise-beans>

</ejb-jar>

Source 17.17 The ejb-jar.xml.

EJB Integration 537

23_576828 ch17.qxd 11/3/04 11:45 AM Page 537

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE sun-ejb-jar PUBLIC “-

//Sun Microsystems, Inc.//DTD Application Server 8.0 EJB 2.1//EN”

“http://www.sun.com/software/appserver/dtds/sun-ejb-jar_2_1-0.dtd”>

<sun-ejb-jar>

<enterprise-beans>

<name> LoanRatesEJB</name>

<ejb>

<ejb-name>LoanRatesBean</ejb-name>

<jndi-name> LoanRatesBean</jndi-name>

<resource-ref>

<res-ref-name>eis/LoanAppAdapter </res-ref-name>

<jndi-name>OutboundLoanJNDIName </jndi-name>

</resource-ref>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Source 17.18 The sun-ejb-jar.xml.

LoanRatesClient
LoanRatesClient standalone Java application is a client to LoanRatesEJB. Like a
typical EJB client, it looks up the EJB home object and creates the EJB remote
object, followed by an invocation to EJB remote method getHomeEquityRate().
Source 17.19 shows LoanRatesClient.java.

package examples;

import java.util.Properties;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.rmi.PortableRemoteObject;

public class LoanRatesClient {

public static void main(String[] args) throws RemoteException,

CreateException,

NamingException {

Properties env = new Properties();

env.put(“java.naming.factory.initial”,

“com.sun.jndi.cosnaming.CNCtxFactory”);

env.put(“java.naming.provider.url”, “iiop://localhost:3700”);

Source 17.19 The LoanRatesClient class.

538 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 538

InitialContext ctxt = new InitialContext(env);

Object objRef = ctxt.lookup(“LoanRatesBean”);

LoanRatesHome home = (LoanRatesHome)

PortableRemoteObject.narrow

(objRef, LoanRatesHome.class);

LoanRates loanRatesObj = (LoanRates)

PortableRemoteObject.narrow

(home.create(), LoanRates.class);

System.out.println(“getHomeEquityRate() returned: “ +

loanRatesObj.getHomeEquityRate() + “. Take a look at

application server log or console for messages

from LoanRatesEJB and

OutboundLoanRA.”);

}

}

Source 17.19 (continued)

Running the Client
To run the client, look at the Ant scripts bundled along with this example. The
following is the client-side output you will get upon running the Loan-
RatesClient.

C:\MEJB3.0\Integration>asant run_client

getHomeEquityRate() returned: 5.64. Take a look at application server

log or console for messages from LoanRatesEJB and OutboundLoanRA.

On the application server console, you should see the following output.
Make sure to run your application server in verbose mode. Note that this out-
put is for J2EE 1.4 reference implementation.

[#|2004-08-09T15:03:29.813-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

LoanRatesBean.getHomeEquityRate() called|#]

[#|2004-08-09T15:03:29.813-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

ManagedConnectionFactoryImpl.createConnectionFactory(ConnectionManager)

called|#]

[#|2004-08-09T15:03:29.813-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

EJB Integration 539

23_576828 ch17.qxd 11/3/04 11:45 AM Page 539

system.stream.out|_ThreadID=12;|

ConnectionFactoryImpl(ManagedConnectionFactory manConnFactory, ConnectionManager

connManager) called|#]

[#|2004-08-09T15:03:29.813-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

ConnectionFactoryImpl.getConnection() called|#]

[#|2004-08-09T15:03:29.823-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

ManagedConnectionFactoryImpl.matchManagedConnections(Set, Subject,

ConnectionRequestInfo) called|#]

[#|2004-08-09T15:03:29.823-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

From ManagedConnectionFactoryImpl.matchManagedConnections() -> Connection

matched|#]

[#|2004-08-09T15:03:29.823-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

ManagedConnectionImpl.getConnection(Subject, ConnectionRequestInfo) called|#]

[#|2004-08-09T15:03:29.823-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

ConnectionImpl(ManagedConnectionImpl) called|#]

[#|2004-08-09T15:03:29.823-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

InteractionImpl(Connection conn) called|#]

[#|2004-08-09T15:03:29.823-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

InteractionImpl.execute(InteractionSpec iSpec, Record in) called|#]

[#|2004-08-09T15:03:29.823-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

InteractionImpl.exec(MappedRecord in, MappedRecord out) called|#]

[#|2004-08-09T15:03:29.823-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

JavaLoanApp Constructor called|#]

[#|2004-08-09T15:03:29.823-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

Library loaded successfully.|#]

[#|2004-08-09T15:03:29.833-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

JNI Call Returned: 5.64|#]

[#|2004-08-09T15:03:29.833-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

ConnectionImpl.close() called|#]

540 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 540

[#|2004-08-09T15:03:29.833-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

ManagedConnectionImpl.sendEvent(int, e, connHandle) called|#]

[#|2004-08-09T15:03:29.843-0400|INFO|sun-appserver-pe8.0.0_01|javax.enterprise.

system.stream.out|_ThreadID=12;|

ManagedConnectionImpl.cleanup() called|#]

Carefully study the highlighted portions in the output. This will further
clear up the sequence of interactions among various objects in our integration
solution.

Extending OutboundLoanRA
Before ending our discussion of the example application, let us briefly go
through possible extensions to OutboundLoanRA.

Implementing additional system contracts can certainly augment the cur-
rent capabilities of OutboundLoanRA. A good starting point for this exercise
will be to add security management. Try component-managed EIS sign-on.
LoanApp.dll currently does not authenticate access. However, you can improve
LoanApp.dll by adding a signOn() native method. The signOn() method imple-
mentation could be as simple as logging the user name/password security cre-
dentials received from the client. At the RA end, you will be required to
implement the ConnectionSpec and ConnectionRequestInfo JavaBeans so that
they reflect the user name/password connection properties.

Another possible extension could be to augment the current outbound con-
nection management contract of OutboundLoanRA with inbound messaging
contract. Imagine a scenario in which a user submits a loan application to our
loan processing. Since it can take days to make a decision on loan application,
we want our loan application to send a message to the RA when the loan
approval decision is ready. This could be done very simply: The loan applica-
tion can create a simple text file containing the loan approval decision in a file
system location that is continuously monitored by the RA. The RA will pick up
the loan approval decision’s text file, parse it, and create an examples
.out_loan_ra.LoanApprovalMessage instance. Finally it sends this message to
the endpoint that implements examples.out_loan_ra.LoanApprovalMessageListener
within application server. You can extend this one step further by allowing the
RA to do file system monitoring with the help of Work instance!

Integration Best Practice: When to Use
Which Technology

Now that we know all the technologies for integrating EJB applications, the
question is how to decide which one to use in a given scenario. The following

EJB Integration 541

23_576828 ch17.qxd 11/3/04 11:45 AM Page 541

guidelines should help you determine the right technology for your applica-
tion integration problem on the EJB platform.

When to Use JMS and JMS-Based MDB
Java Message Service is a Java abstraction to MOM systems. All application
servers support a JMS service that listens to a messaging provider (an RA,
actually) and delivers messages from the messaging provider to JMS messag-
ing endpoints a.k.a. JMS-based MDB. Decoupled communication along with
reliable and asynchronous messaging forms the basis of this approach.

Use JMS and JMS-based MDB for application integration when:

■■ You are integrating Java application endpoints; for example, consider a
scenario where a Java application wants to integrate with your EJB
application in an asynchronous yet reliable manner. Here, your Java
application can simply create and send a JMS message to the MDB, and
it is all set.

■■ You are integrating non real-time applications. For example, processing
inventory and shipping or communication with suppliers.

■■ You need reliability and transaction support for integrating application
endpoints.

The only disadvantage to this approach is that because JMS does not define
a wire protocol, out-of-the-box integration across various JMS products is dif-
ficult and almost impossible without using MOM bridges. As a result, if your
scenario involves using different JMS products, this approach might not work
without using a bridge to translate your JMS product’s protocol to that of the
target application endpoint’s JMS product protocol.

When to Use J2EE Connectors
Use J2EE connectors for application integration when:

■■ You want to integrate with backend EIS applications without modifying
them.

■■ The quality of services is a prerequisite for integration. For example, if
you need transactional and secure access to the EIS, connectors can be
the way to go. If you want the application server to pool your outbound
connections, connector architecture can enable that. Again, if you want
the application server to host message endpoints so that they can con-
sume messages from your EIS, connector architecture is the answer.

■■ You are integrating with a widely used EIS because you are likely to
find off-the-shelf connectors for most of these. This greatly reduces the
time it takes to integrate with the EIS.

542 Chapter 17

23_576828 ch17.qxd 11/3/04 11:45 AM Page 542

When to Use Java Web Services
Web Services are becoming a predominant choice for application integration,
both within and outside the enterprise boundaries. The main reason behind
this is the ubiquitous support for Web Services protocols found in most of the
modern programming platforms and languages. The interoperability guide-
lines from organizations such as Web Services Interoperability (WS-I) further
increase the applicability of Web Services in integration space.

Think of using Web Services when:

■■ You need to quickly integrate application endpoints.

■■ The target applications for integration exist on disparate platforms.

■■ The target application endpoints are deployed behind the demilitarized
zone (DMZ) thereby requiring access through the firewalls.

Web Services provide a quick fix to the integration problem. However, they
are far from providing a robust solution for integration because of the lack of
quality of services support in the Web Services protocols. The good news is
that industry is working hard to define security, transactions, and other such
semantics for Web Services.

Summary

In this chapter we introduced integration and presented an overview of vari-
ous styles of integration. We learned how J2EE connectors provide an excellent
framework for integrating EJB with non-IIOP applications. We then learned
various best practices related to choosing appropriate technology for applica-
tion integration on the EJB platform.

In the next chapter, we learn about various performance optimizations you
can implement to boost the performance of session beans, entity beans, and
message-driven beans.

EJB Integration 543

23_576828 ch17.qxd 11/3/04 11:45 AM Page 543

23_576828 ch17.qxd 11/3/04 11:45 AM Page 544

545

In this chapter, we will discuss EJB best practices—tried-and-true approaches
relevant to EJB performance optimization. By being aware of these best prac-
tices, you will be able to architect for good performance right from the begin-
ning so that you will not be required to retrofit your design and code to
achieve the performance numbers during load/performance testing.

Let’s begin now with our collection of best practices, optimizations, tips,
and techniques for performance.

This chapter does not cover low-level EJB design patterns. We started to put
those together but realized that those patterns deserved a book of their
own. That’s what gave birth to Floyd Marinescu’s book EJB Design Patterns,
published by John Wiley & Sons and a companion to this book.

It Pays to Be Proactive!

The most important requirement for building highly optimized applications is
to specify clearly performance requirements right in the design stages. Defin-
ing performance requirements basically means outlining your performance
needs from various points of views: determining user experience under vary-
ing loads, the percentage of the system resources used, the allocation of system

EJB Performance Optimizations

C H A P T E R

18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 545

resources to achieve the desired performance, and so on. Many times we see
these requirements defined after the system is developed and is about to be
deployed—most often, on the night of load testing. QA calls the development
manager to discuss a JVM “out-of-memory” error with a concurrent load of 20
users! And more often than not, the crash takes place because some developer
forgot to release a Java container object, such as a collection, containing hun-
dreds of instances of data transfer objects returned from a stateful session
bean, after displaying its contents to the client.

To avoid this nightmare, we suggest the following:

■■ Be proactive in defining your performance expectations. This is the
only way you will know what you want from your application and
hence, how you should plan, design, and develop your application
right from the start.

■■ Design applications with performance in mind. The most effective
way to do this is by making use of the right architecture and design pat-
terns, which are not anti-performance. Hire architects with sound
knowledge of these patterns and their implications on performance
(and simplicity and code maintenance). If you do not have this exper-
tise in-house then hire competent consultants for architecting and
designing your applications. The investment required to put in place a
performance-friendly skeleton of your application at the architecture
level would pay you back later.

■■ Be proactive in educating your developers to write optimized code.
Even though you might have the best software architects or consultants
in the world to design your application, if the developers implementing
the design do not understand how to write optimized code, the cost
you incurred in hiring these architects would be in vain. Therefore we
suggest, conduct regular code reviews and find coding bottlenecks.

■■ Master the science of tuning. The first step towards mastering tuning
is to understand that tuning can and should be done at multiple levels
to achieve the highest levels of performance. In a typical J2EE enterprise
application, you can ideally tune all the layers right from the network
communications and operating system level to JVM to J2EE application
server to your application code to your database to your cluster. Thus,
the scope for tuning is much wider. If your performance requirements
are extremely stringent, we suggest you tune all the layers of this stack.
For most of the business applications, however, we have observed that
tuning J2EE application server (both Web/EJB containers), the JVM
used by the application server and Java application (in case of a Swing
client), and the database is sufficient for a tuning exercise. You can actu-
ally define a tuning methodology so that everyone can become aware of
all the steps involved in tuning all new development your organization.

546 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 546

With this in mind, let us see which best practices and optimizations lead us
towards better EJB performance.

The Stateful Versus Stateless Debate
from a Performance Point of View

Lately there’s been a lot of fuss over statelessness. The limitations of stateless-
ness are often exaggerated, as are its benefits. Many statelessness proponents
blindly declare that statelessness leads to increased scalability, while stateful
backers argue about having to rearchitect entire systems to accommodate
statelessness. What’s the real story?

Designed right, statelessness has two virtues:

■■ With stateless beans, the EJB container is able to easily pool and reuse
beans, allowing a few beans to service many clients. While the same
paradigm applies to stateful beans, if the server is out of memory or has
reached its bean instance limit, then the bean state may be passivated
and activated between method calls, possibly resulting in I/O bottle-
necks. So one practical virtue of statelessness is the ability to easily pool
and reuse components at little or no overhead.

■■ Because a stateful session bean caches a client conversation in memory,
a bean failure may entail losing your conversation. This can have severe
repercussions if you don’t write your beans with this in mind or if you
don’t use an EJB container that provides stateful recovery. In a stateless
model, the request could be transparently rerouted to a different com-
ponent because any component can service the client’s needs.

The largest drawback to statelessness is that you need to push client-specific
data into the stateless bean for each method invocation. Most stateless session
beans need to receive some information that is specific to a certain client, such
as a bank account number for a banking bean. This information must be resup-
plied to stateless beans each time a client request arrives because the bean can-
not hold any state on behalf of a particular client.

One way to supply the bean with client-specific data is to pass the data as
parameters into the bean’s methods. This can lead to performance degrada-
tion, however, especially if the data being passed is large. This also clogs the
network, reducing available bandwidth for other processes.

Another way to get client-specific data to a stateless bean is for the bean to
store data persistently on behalf of a client. The client then does not need to
pass the entire state in a method invocation but simply needs to supply an
identifier to retrieve the data from persistent storage. The tradeoff here is,
again, performance; storing conversations persistently could lead to storage
I/O bottlenecks, rather than network I/O bottlenecks.

EJB Performance Optimizations 547

24_576828 ch18.qxd 11/3/04 11:46 AM Page 547

Yet another way to work around the limitations of statelessness is for a bean
to store client-specific data in a directory structure using JNDI. The client
could later pass the bean an identifier for locating the data in the directory
structure. This is quite similar to storing data in a database. The big difference
is that a JNDI implementation could be an in-memory implementation such as
the one from the SourceForge.net Tyrex project—an effect similar to a shared
property manager, familiar to COM+ readers. If client data is stored in mem-
ory, there is no database hit.

When choosing between stateful and stateless, you should ask if the busi-
ness process spans multiple invocations, requiring a conversation. Since most
business processes are stateful anyway, you would quite probably need to
retain state on behalf of clients. So the guideline to follow is if you are short of
resources to spare on the server, choose stateless session beans and maintain
the conversation in a database or an in-memory directory. If you have enough
resources on the server system so that you would not need to passivate or acti-
vate the stateful bean instances frequently under average to high loads, then
go for stateful session beans.

Note that if you are going to maintain state, and if you’re building a Web-
based system, you may be able to achieve what you need with a servlet’s
HttpSession object, which is the Web server equivalent to a stateful session
bean and is easier to work with because it does not require custom coding. We
have found that a stateful session bean should be used over an HttpSession
object in the following situations:

■■ You need a stateful object that’s transactionally aware. Your session
bean can achieve this by implementing SessionSynchronization,
described in Chapter 12.

■■ You have both Web-based and non–Web-based clients accessing your
EJB layer, and both need state.

■■ You are using a stateful session bean to temporarily store state for a
business process that occurs within a single HTTP request and involves
multiple beans. To understand this point, consider that you are going
through a big chain of beans, and a bean deep in the chain needs to
access state. You could marshal the state in the parameter list of each
bean method (ugly and could be a performance problem if you’re using
remote interfaces). The better solution is to use a stateful session bean
and just pass the object reference through the stack of bean calls.

In summary, most sophisticated deployments are likely to have a complex
and interesting combination of the stateless and stateful paradigm. Use the
paradigm that’s most appropriate for your business problem. If you are on the
fence about stateful versus stateless, you may find that stateful session beans
are not your primary issue—until you test your code, you’re just shooting in

548 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 548

the dark. It would help to do a proof of concept for stateful session beans.
However, shooting down stateful session beans blindly is not advisable. Don’t
forget that they exist for a good reason—to take the load of managing client-
related state off your shoulders and thereby make your life easier.

How to Guarantee a Response Time
with Capacity Planning

Many types of business problems are trivial, such as basic Web sites or non-
mission critical applications. But then there are those that must not fail and
must guarantee a certain response time. For example, a trading application
needs to guarantee a response time because stock market conditions might
change if the trade is delayed. For those serious deployments, capacity plan-
ning is essential for your deployment.

The specific amount of hardware that you’ll need for your deployment
varies greatly depending on the profile of your application, your anticipated
user load, your performance requirements, and the EJB server you choose.
Most of the major EJB server vendors have strategies for capacity planning
that they can share with you.

EJB Performance Optimizations 549

WHAT IF MY STATEFUL BEAN DIES?

Bean failure is an important factor to consider. Because a stateful session bean
caches a client conversation in memory, a bean failure may entail losing your
conversation. This was not a problem with statelessness—there was no
conversation to be lost. Unless you are using an EJB product that routinely
checkpoints (that is, persists) your conversations, your conversations will be
lost if an application server fails.

Losing a conversation has devastating impacts. If you have large
conversations that span time, you’ve lost important work. And the more
stateful session beans that you use in tandem, the larger the existing network
of interconnected objects that each rely on the other’s stability. Many EJB
servers today do offer stateful recovery of Enterprise Java Beans. However, if
yours does not then your code will need to be able to handle the fail-over
gracefully. Here are some of the guidelines you can use while designing your
stateful beans to enable them to handle stateful recovery:

◆ Keep your conversations short.

◆ If the performance is feasible, consider checkpointing stateful conversa-
tions yourself to minimize the impacts of bean failure.

◆ Write smart client code that anticipates a bean failure and reestablishes
the conversational state with a fresh stateful session bean.

24_576828 ch18.qxd 11/3/04 11:46 AM Page 549

One strategy, however, works with all EJB server vendors. The idea is to
throttle, or limit, the amount of work any given EJB server instance can process
at any one time. Why would you ever want to limit the amount of work a
machine can handle? A machine can only guarantee a response time for the
clients it serves and be reliable if it isn’t using up every last bit of system
resources it has at its disposal. For example, if your EJB server runs out of
memory, it either starts swapping your beans out to disk because of passiva-
tion/activation, or it uses virtual memory and uses the hard disk as swap
space. Either way, the response time and reliability of your box is jeopardized.
You want to prevent this from happening at all costs by limiting the amount of
traffic your server can handle at once.

You can throttle (or limit) the amount of traffic your machine can handle
using a variety of means. One is by limiting the thread pool of your EJB server.
By setting an upper bound on the number of threads that can execute concur-
rently, you effectively limit the number of users that can be processed at any
given time. Another possibility is to limit the bean instance pool. This lets you
control how many EJB components can be instantiated at once, which is great
for allowing more requests to execute with lightweight beans and fewer
requests to execute with heavyweight beans.

Once you’ve throttled your machine and tested it to make sure it’s throttled
correctly, you need to devise a strategy to add more machines to the deploy-
ment in case your cluster-wide capacity limit is reached. An easy way to do
this is to have a standby machine that is unused under normal circumstances.
When you detect that the limit is reached (such as by observing message queue
growth, indicating that your servers cannot consume off the request queue fast
enough), the standby machine kicks in and takes over the excess load. A sys-
tem administrator can then be paged to purchase a new standby machine.

This algorithm guarantees a response time because each individual server
cannot exceed its limit, and there’s always an extra box waiting if traffic
increases.

Use Session Façade for Better Performance

Consider the following scenarios:

■■ A bank teller component performs the business process of banking
operations, but the data used by the teller is the bank account data.

■■ An order-entry component performs the business process of submitting
new orders for products, such as submitting an order for a new com-
puter to be delivered to a customer. But the data generated by the
order-entry component is the order itself, which contains a number of
order line-items describing each part ordered.

550 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 550

■■ A stock portfolio manager component performs the business process of
updating a stock portfolio, such as buying and selling shares of stock.
But the data manipulated by the portfolio manager is the portfolio itself,
which might contain other data such as account and stock information.

In each of these scenarios, business process components are manipulating
data in some underlying data storage, such as a relational database. The busi-
ness process components map very well to session beans, and the data com-
ponents map very well to entity beans. The session beans use entity beans to
represent their data, similar to the way a bank teller uses a bank account. Thus,
a great EJB design strategy is to wrap entity beans with session beans. This
design pattern is generally referred to as session façade.

Another benefit of this approach is performance. Accessing an entity bean
directly over the network is expensive, due to:

■■ The stub

■■ The skeleton

■■ Marshaling/demarshaling

■■ The network call

■■ The EJB object interceptor

You can minimize these expensive calls to entity beans by wrapping them
with session beans. The session beans perform bulk create, read, update,
delete (CRUD) operations on behalf of remote clients. The session bean also
serves as a transactional façade, enforcing that transactions occur on the
server, rather than involving a remote client. This makes entity beans into an
implementation detail of session beans. The entity beans are never seen by the
external client; rather, entity beans just happen to be the way that the session
bean performs persistence.

A final benefit of this approach is that your entity beans typically achieve a
high level of reuse. For instance, consider an order entry system, where you
have an order submission session bean that performs operations on an order
entity bean. In the next generation of your application, you may want an order
fulfillment session bean, an order reporting session bean, and so on. That same
order entity bean can be reused for each of these session beans. This approach
enables you to fine-tune and change your session bean business processes over
time as user requirements change.

Thus, in practice you can expect the reuse of entity beans to be high. Session
beans model a current business process, which can be tweaked and tuned with
different algorithms and approaches. Entity beans, on the other hand, define
your core business. Data such as purchase orders, customers, and bank
accounts do not change very much over time.

EJB Performance Optimizations 551

24_576828 ch18.qxd 11/3/04 11:46 AM Page 551

There are also a few caveats about this approach:

■■ You can also wrap entity beans with other entity beans, if you have a
complex object model with relationships.

■■ The value of session beans as a network performance optimization goes
away if you do not have remote clients. This could occur, for example, if
you deploy an entire J2EE application into a single process, with
servlets and JSPs calling EJB components in-process. However, the ses-
sion façade could still be used for proper design considerations and to
isolate your deployment from any particular multitier configuration. If
you’re lazy, an alternative is to use an entity bean’s home business
methods, which are instance-independent business methods that act
effectively as stateless session bean methods, except they are located on
the entity bean.

■■ Note that what we’ve presented here are merely guidelines, not hard-
and-fast rules. Indeed, a session bean can contain data-related logic as
well, such as a session bean performing a bulk database read via JDBC.
The key is that session beans never embody permanent data, but
merely provide access to data.

Choosing Between Local Interfaces
and Remote Interfaces

Local interfaces, a feature since EJB 2.0, enable you to access your EJB compo-
nents without incurring network traffic. They also allow you to pass nonseri-
alizable parameters around, which is handy. So what is the value of a remote
interface? Well, there really isn’t a value, unless:

■■ You need to access your system remotely (say from a remote Web tier).

■■ You are trying to test EJB components individually and need to access
them from a standalone client to perform the testing.

■■ You need to allow your containers more choices for workload distribu-
tion and fail-over in a clustered server environment.

For optimal performance, we recommend that you build your system using
all local interfaces, and then have one or more session bean wrappers with
remote interfaces, exposing the system to remote clients.

Note that the problem with local and remote interfaces is that the code
is slightly different for each paradigm. Local interfaces have a different inter-
face name and do not use PortableRemoteObject.narrow(), and there are no
RemoteExceptions thrown. Because of this, you need to recode your clients when

552 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 552

switching between the two paradigms. This is an unfortunate consequence of
having a programmatic approach to better performance.

To limit the amount of recoding you’ll need to do, decide whether the clients
of your beans are going to be local or remote before you start coding. For exam-
ple, if you’re building a Web-based system, decide whether your system will
be a complete J2EE application in a single process, or whether your Web tier
will be split off from your EJB tier into a separate process. We discuss the trade-
offs of these approaches in Chapter 19.

As a final note, if you are connecting to your EJB deployment from a very
distant client (such as an applet or application that gets downloaded by
remote users), consider exposing your EJB system as an XML-based Web ser-
vice, rather than a remote interface. This will be slower than a straight
RMI/IIOP call, but is more appropriate for WAN clients.

Partitioning Your Resources

When programming with EJB, we’ve found it very handy to separate the kinds
of resources your beans use into two categories: bean-specific resources and bean-
independent resources.

■■ Bean-specific resources are resources your bean uses that are tied to a
specific data instance in an underlying storage. For example, a socket
connection is a bean-specific resource if that socket is used only when
particular bank account data is loaded. That is, the socket is used only
when your bean instance is bound to a particular EJB object. Such a
resource should be acquired when a bean instance is created in
ejbCreate() or when activated in ejbActivate() and released when the
instance is removed in ejbRemove() or passivated in ejbPassivate().

■■ Bean-independent resources are resources that can be used over and
over again, no matter what underlying data your instance represents.
For example, a socket connection is a bean-independent resource if
your bean can reuse that socket no matter what bank account your bean
represents (that is, no matter what EJB object your bean instance is
assigned to). Global resources like these should be acquired when
your bean is first created, and they can be used across the board
as your bean is assigned to different EJB objects. When the container
first instantiates your bean, it associates you with a context object (such
as the setEntityContext() method); that is when you should acquire your
bean-independent resources. Similarly, when you are disassociated
with a context object (such as the unsetEntityContext() method), you
should release bean-independent resources.

EJB Performance Optimizations 553

24_576828 ch18.qxd 11/3/04 11:46 AM Page 553

Because acquiring and releasing resources may be costly operations, catego-
rizing your resources as outlined is a vital step. Of course, the stingiest way to
handle resources is to acquire them on a just-in-time basis and release them
directly after use. For example, you could acquire a database connection only
when you’re about to use it and release it when you’re done. Then there would
be no resources to acquire or release during activation or passivation. In this
case, the assumption is that your container pools the resource in question. If
not, just-in-time acquisition of resource might prove expensive because every
time you request to acquire a resource, its handle is actually being created and
every time you request to release the resource, the underlying object is actually
being destroyed. To get around this, you will need to write your own imple-
mentation that can pool the resource in question. You will then need to use this
pool manager abstraction to acquire or release the resource. The slight disad-
vantage to just-in-time resource acquisition or release is that you need to code
requests to acquire or release resources over and over again in your bean.

Tuning Stateless Session Beans

Taking into consideration the life cycle of stateless session beans, as discussed
in Chapter 4, these tuning techniques should be examined closely to achieve
best performance:

■■ Tune pool size. The pool size-related settings are made available by
your EJB server vendor and hence, you will need to specify them in the
vendor-specific deployment descriptor. It controls the number of state-
less session bean instances in the pool. Some products will enable you
to specify a range for pool size. In this case, mostly, you would also be
able to specify the resize quantity of your pool. When the server runs
out of pooled bean instances to service further client requests, resize
quantity will specify the number of new instances a server should cre-
ate at a time, until the maximum of the pool size range is reached.

For example, consider the range for pool size is initial=50 and maxi-
mum=100, and the resize quantity is 10. Now if at a given point in time
all 50 instances are busy servicing client requests, then when the 51st
request comes for that stateless session bean, the EJB container will cre-
ate 10 more instances of the bean, make available one of these newly
created instances to the client and pool the remaining 9 instances for
future requests. This resizing of the pool will continue happening until
the maximum pool size range is reached, that is 100. So then what hap-
pens when at a given point in time all 100 instances are servicing
requests? The 101st client request will have to wait for one of the previ-
ous 100 clients to release the bean so that the container can make this

554 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 554

underlying bean instance available to our 101st client. The client
request thus will have to be queued by the container.

Also some containers will provide you with a pool idle timeout setting.
It basically specifies the maximum time that a stateless session bean is
allowed to be idle in the pool before removing it from the pool. Pool
resize quantity setting will play a role here too. It will specify the num-
ber of beans that the server will destroy once they have reached idle
time limit. Hence, an increase or decrease in the maximum limit of the
pool size should mean an appropriate change in the resize quantity too
to maintain a good balance.

Make sure that you set the initial and maximum values for the pool size
such that they are representative of the normal and peak loads on your
system. Setting a very large initial or maximum value is an inefficient
use of system resources for an application that does not have much con-
current load under normal and peak conditions, respectively. Also this
will cause large garbage collection pauses. At the same time, setting a
very small initial or maximum value compared to the typical loads is
going to cause a lot of object creation and object destruction.

■■ Efficient resource caching. As discussed earlier, it is a good practice to
cache bean-independent resources in setEntityContext() and release the
cache in unsetEntityContext() methods of the bean life cycle. However, if
you cache a resource, such as a database, connection in the previous
methods within a stateless session bean deployment with large pool
size and heavy concurrent client access, chances are that container will
run out of free connection instances in the connection pool very soon;
the container might need to queue the request for connection resource.
To avoid this, it is better to obtain connection resources from the con-
nection pool just-in-time in such situations.

Tuning Stateful Session Beans

Taking into consideration the life cycle of stateful session beans as discussed in
Chapter 4, these tuning techniques should be examined closely to achieve best
performance:

■■ Tune cache size. The stateful session bean life cycle as defined by the
EJB standard is such that stateful session beans are cached but not
pooled. Beans are cached when the number of concurrent users request-
ing the services of stateful session bean exceeds that of the maximum
allowable number of stateful session bean instances. During caching the
state of the bean is stored in the disk (a.k.a. passivation) for later use by
its client and the bean instance is made available for use to another

EJB Performance Optimizations 555

24_576828 ch18.qxd 11/3/04 11:46 AM Page 555

client. The cache and other stateful session bean–related tuning settings
are EJB server specific and so they will go in the vendor-specific
deployment descriptor. Most of the vendors allow you to specify the
maximum cache size for stateful session beans.

Some vendors will allow you to specify cache resize quantity that
works similar to the pool resize quantity for stateless session beans. The
container can use a variety of algorithms to select beans for passivation,
and if the container is good enough, it will let you choose the algorithm
for passivation. These algorithms could be the least recently used
(LRU), first in first out (FIFO), or not recently used (NRU) techniques.

The cache idle timeout setting will let you specify the time interval after
which an idle bean will be passivated. Some containers will also let you
specify the removal timeout value, which sets the time interval after
which the passivated state of the bean is removed from the disk thereby
freeing the disk resources. A good coding practice is for your client code
to explicitly remove the bean instance by calling remove() on EJB object.
This way the state, on behalf of your client, will not unnecessarily be
maintained on the server until the container passivates it and finally
removes it.

Again, tune the cache, taking into consideration the number of concur-
rent users that will access your stateful session bean under typical and
peak conditions. Setting a large maximum value for cache size in com-
parison to the typical loads and peak loads of concurrent users respec-
tively will lead to inefficient usage of memory resources; whereas
setting a small maximum value for cache size will lead to a lot of passi-
vation and activation of bean instances and hence serialization and
deserialization, thereby straining on the CPU cycles and disk I/O.

■■ Control serialization. Serialization consumes CPU cycles and I/O
resources. More serialization leads to more consumption of resources.
The same is the case for deserialization, which takes place during the
activation of stateful session beans. It is a good practice to keep the
amount of serialization and deserialization to a minimum. One way to
achieve this is by explicitly instructing the container to not serialize the
state that you would not need after activation. You can do so by mark-
ing such objects as transient in your stateful session bean class.

Tuning Entity Beans

Taking into consideration the life cycle of entity beans as discussed in Chapter
6, the following tuning techniques and best practices should be examined
closely to achieve best performance:

556 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 556

■■ Use CMP. Again we want to reiterate our stand of considering the use
of CMP 2.x. If you have had bad memories of using CMP in the EJB 1.x
days, reconsider their use again. They have totally changed! They are
not just easy to use, but also offer a lot of avenues for boosting perfor-
mance. Most of the CMP implementations today provide various
options for tuning the performance of CMP by enabling lazy loading of
entity data, lazy loading of relationship data, and so on, which we will
discuss in the points to follow. To gain the most from CMP, choose an
EJB server that provides a wide array of CMP tuning parameters.

■■ Provide a local interface for entity beans. Avoid calling entity beans,
especially the ones that return lots of data via finder methods say,
directly from remote clients. The reason is that all the data returned
from such entity beans will have to be marshaled to the remote client.
Design so that entity beans are called by clients, session beans prefer-
ably, from within the same JVM. Also, colocating entity beans with their
callers enables calling via their local interfaces and hence, pass-by-refer-
ence semantics.

■■ Tune pool size. Entity bean life cycle, as defined by EJB standard, is
such that they are pooled as well as cached. The pooling of entity beans
is quite similar to that of stateless session beans. Most of the EJB servers
have a provision to specify vendor-specific pool settings, such as initial
pool size (also known as steady pool size in some products), maximum
pool size, pool resize quantity, and pool idle timeout. The best practices
for tuning the entity bean pool are the same as discussed previously for
stateless session beans.

■■ Tune cache size. The caching of entity beans is similar to the caching of
stateful session beans in that the tuning settings for stateful session
beans and entity beans for a given vendor are the same. Most of the EJB
servers will provide some common cache tuning options such as maxi-
mum cache size, cache resize quantity, cache idle timeout, removal
timeout, and so on. Apart from the best practices for tuning cache that
we discussed for stateful session beans, you should also:

■■ Provide a bigger cache for entities that are used a lot and provide a
smaller cache for entities that are not used very much.

■■ Keep the maximum limit of the pool size the same as the maximum
cache size, because while associating data to the entity bean
instance, the container brings the entity bean instance from the pool.
Hence, a pool smaller than cache can lead to a situation where
clients are waiting on the container to get ahold of the entity bean
which in turn is waiting on the entity bean pool queue for its turn to
get ahold of a bean instance.

EJB Performance Optimizations 557

24_576828 ch18.qxd 11/3/04 11:46 AM Page 557

While tuning the entity bean pool and cache, always keep in mind that in
most of the deployments the number of entities is mostly going to be larger
than the number of session beans taking into consideration finder methods
that return large numbers of entity stubs. Hence, pool and cache sizes of
entity beans are usually much larger than that for stateless and stateful
session beans.

■■ Use lazy loading. If you do not need all the data of your entity the first
time you access it, choose to lazy load the unneeded data upon request
from the client. This will optimize memory consumption on your sys-
tem as well as the use of network bandwidth. If you are using BMP
then you will need to code for lazy loading in your bean class by
putting relevant SQLs in the appropriate getXXX() methods. If you are
using CMP, your container will have to support lazy loading for your
entity beans.

Lazy loading helps a lot when accessing relationship data. For example,
you can load the data for an Employee:Paychecks one-to-many relation-
ship only when the client actually wants the paycheck information of that
given employee and not when a client is just interested in getting the
basic employee information. We discuss the implementation of lazy load-
ing of relationship data for BMP in Chapter 15. For CMP, you will have to
depend on a container to enable lazy loading of relationship data.

Remember though that there is always a tradeoff when using lazy load-
ing for core entity data—your bean can end up accessing the database
quite a number of times if the client requests data chosen for lazy load-
ing often. To get around this issue, you need to closely observe the way
client applications use your entity bean and then select the less fre-
quently requested data for lazy loading.

■■ Mark entity beans as read-only, read-mostly, or read-write. If your
entity bean is used only for viewing the underlying database data but
never used for changing the database data, then you should consider
marking them read-only. This way you avoid using the unnecessary
calls to ejbStore() on your bean at the end of each transaction. Note that
if a method on such a read-only bean is accessed within a transaction,
ejbLoad() is always called to synchronize the state with the underlying
database. If you are very sure that the data for your entity will never
change or if you do not care much about displaying up-to-date data to
the client, you should access the methods on read-only entity beans
outside the transaction.

On the other hand, if your entity beans change less frequently, you can
set a refresh timeout value on such beans by marking them read-mostly.
Here, ejbLoad() on your beans would be called any time a client accesses
the bean at the end of the refresh timeout period.

558 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 558

Thus, marking the entity beans as read-only, read-mostly, or read-write,
you can control if and when the ejbLoad() and ejbStore() methods get
called. Of course, the container has to allow these settings.

■■ Choose the right semantics for transactions. Be sure your transactions
run on the server, are as short as possible, and encapsulate all the entity
bean operations you’d like to have participating in that transaction.
This is important because the synchronization with underlying data-
base occurs at the beginning and end of transactions. If you have a
transaction occurring for each entity bean get/set operation, you are
performing database hits on each method call. The best way to perform
transactions with entity beans is to wrap all your entity bean calls
within a session bean method and mark that session bean method as
transactional. Here you will also have to mark the entity bean methods
with the container-managed transaction attribute of Required. This cre-
ates a transaction in the session bean that encapsulates all entity beans
in the same transaction.

■■ Choose the right transaction isolation level. Isolation levels are
explained with a lot of details in Chapter 12. In short, isolation levels
help maintain integrity of concurrently accessed data. You should
choose an optimum isolation level for your application. Isolation levels
are set at the database connection (or connection pool) level and not in
your entity bean deployment descriptor. Hence, the chosen isolation
level will apply for all database access—from a single bean, multiple
beans, one J2EE application, or multiple J2EE applications—via that
connection pool. Some of the best practices for selecting the right isola-
tion level are:

■■ Use the lowest possible isolation level, for example READ_
UNCOMMITTED for beans that represent operations on data that is
not critical from a data integrity standpoint. If you do not care about
reading uncommitted data or others updating the rows that you are
reading or inserting new data into the data set you are accessing, go
for this isolation level.

■■ Use READ_COMMITTED for applications that intend to always
read the data that is committed. However, your applications still
have to be prepared to live with unrepeatable read and phantom
read problems.

■■ Use REPEATABLE_READ for applications that intend to always
read and reread the same data. However, your applications still can
get newly created rows when they try to reread the same data.
Understand that your database achieves this behavior by locking the
rows you are reading so that nobody else can update these rows.
However, other users can still read your data.

EJB Performance Optimizations 559

24_576828 ch18.qxd 11/3/04 11:46 AM Page 559

■■ Use SERIALIZABLE for applications that want to hold exclusive
access to data. The cost of using this isolation mode is that all
requests to read and modify this data will be serialized by your
database. Hence, others will have to wait to read/update the data
that you are accessing. You should only use this isolation level in
cases that warrant for single user data access.

■■ Finally, set transaction isolation levels only when you are fully
aware of your application’s semantics. Also note that not all data-
bases support all the transaction isolation levels.

■■ Use the appropriate commit option. Commit options enable you to
specify what the container should do to a bean after the transaction in
which the bean participates is completed. EJB standard defines three
commit options, for example, A, B, and C. In commit option A, when a
transaction completes, the bean is kept in the ready state, meaning the
bean has its identity intact. This means that the next request to the con-
tainer for the same primary key will not require the container to do
anything since the corresponding bean is already in the ready state. In
commit option B, when a transaction completes, the bean is cached;
however, the bean’s identity is retained. Thus, the next request to the
container for the same primary key will not require the container to
associate a bean instance with the primary key since a bean correspond-
ing to the primary key is already available. However, the ejbLoad()
method would be called to synchronize the data from the database. In
commit option C, when a transaction completes, the bean is passivated,
meaning the bean state is serialized and the bean instance is returned to
the pool. Hence, the next invocation for the same primary key will
require the container to take a free bean instance from the pool and
associate it with the primary key and then associate (deserialize) the
bean’s state. Also, the bean’s ejbLoad() method will be called to synchro-
nize the bean’s state with the database.

Hence, in commit option A no ejbLoad(), ejbActivate(), or ejbPassivate()
methods are executed during a subsequent client request given that the
bean is kept in the ready state. This is the fastest way to service client
requests. However, you should not set this commit option for entity
beans bound to tables with a large number of records. Also, don’t use
this option if data is a candidate for concurrent access. This commit
option requires exclusive access to data and so for concurrent environ-
ments this commit option might not work.

In commit option B, no ejbActivate() or ejbPassivate() methods are exe-
cuted during a subsequent client request given that the bean’s state is
maintained across the transactions. However, ejbLoad() is required to
synchronize the state with the database since the bean does not have
exclusive access to the underlying data. In deployments where entity

560 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 560

caching is used a lot, commit option B works much better. It is much
more efficient.

In commit option C, all three methods—ejbActivate(), ejbPassivate(), and
ejbLoad()—are called by a container upon the next client request for the
same primary key. This adds to some latency while servicing client
requests since the container puts back the beans into the pool after
transaction completion or method invocation on the bean. This way
instances are used better. This option works the best in environments
where caching is not a requirement. Caching of entities is not required
for deployments where different clients work with different pieces of
data.

■■ Use JDBC access when retrieving large amounts of data. Entity beans
work very well when working with small to medium-sized data sets.
But in our experience, when working with larger data sets, for example,
working in use cases where a single SELECT statement is going to
retrieve thousands of records, it is better not to use entity beans. Code
such data access by using JDBC from session beans. You can use a Data
Access Object (DAO) abstraction in between to place all the JDBC code.
Again, using JDBC has another benefit. If you were to use JDBC 3.0,
you could make use of a CachedRowSet implementation to get discon-
nected rowset functionality. This boosts performance by not maintain-
ing a connection to the database while you are traversing the large set
of data.

■■ Use JDBC optimizations for BMP. There are quite a few JDBC opti-
mizations that you can employ to obtain improved performance when
working with BMP.

■■ Choose the optimal database driver for accessing data. This applies
also when working directly with data from session beans or other J2EE
components. Know the differences between the four types of JDBC
drivers. Most importantly, avoid using type 1 JDBC drivers a.k.a. JDBC-
ODBC drivers. They tend to give the least performance because of the
fact that all the JDBC calls are translated twice—JDBC to ODBC and
ODBC to database-specific calls. Use type 1 drivers only when your
database does not support a JDBC driver, which is an unlikely situation.
Today, you can find various types of JDBC drivers for almost all major
databases. Another criterion for selecting JDBC driver is to get a driver
that supports the latest JDBC standard. This is because with each ver-
sion of the JDBC standard, the sophistication of its SPI keeps increasing,
thereby providing better performing data access to the database. For
example, all JDBC 2.0 and above drivers provide connection pooling
support. Hence, if you are using a driver below 2.0 you will not gain
the performance enhancement due to connection pooling. Another
example—JDBC 3.0 driver supports PreparedStatement object pooling.

EJB Performance Optimizations 561

24_576828 ch18.qxd 11/3/04 11:46 AM Page 561

Anybody who has worked with JDBC would know that prepared state-
ments are pre-compiled SQL statements and so they boost performance
dramatically especially when the same pre-compiled SQL is used multi-
ple times. However, creating the PreparedStatement object imposes some
overhead. To avoid incurring this overhead each time you use the pre-
pared statement, you can pool it using a JDBC 3.0 driver.

■■ Use batch updates. If your BMP entity bean method issues multiple
updates to the database by calling executeUpdate() methods, then you
should explicitly turn the automatic commit option off by calling setAu-
toCommit() method. By doing this your transaction is committed only
when the commit() method is called. Not doing so will result in database
roundtrips for each executeUpdate() call.

■■ Use batch retrievals. If your BMP entity bean issues SQLs that will
eventually fetch large amounts of data, you should optimize the data
retrieval by using the batch retrieval feature of Statement. By setting
fetch size on the Statement interface to a large number, the driver will
not have to go to the database frequently to fetch the data. You should
set the fetch size taking into consideration your system resources also.

■■ Choose the right Statement interface. JDBC provides three main types
of statement abstractions: Statement, PreparedStatement, and
CallableStatement. Statement is to execute SQL statements with no input
and output parameters. PreparedStatement should be used when you
want pre-compilation of SQL statement that accept input parameters.
CallableStatement should be used when you need pre-compilation of
SQL statements that support both input and output parameters. You
should use CallableStatement for most of your stored procedures.

■■ Use other CMP optimizations. Remember—one of the main reasons to
use CMP besides ease of development is to leverage performance
enhancement techniques implemented by the container for entity
beans. Apart from those discussed previously, following are the two
other tips that you can employ while using CMP, given that your con-
tainer supports them.

■■ Instruct your container to persist fields in bulk. For example,
WebLogic has the notion of field groups. This empowers you to
define groups of fields (even across relationships) that persist
together, reducing the number of database roundtrips required.

■■ Instruct your container to have your finder methods automatically
load your bean, rather than having finding and loading functions
happen separately, requiring two database roundtrips. The only
time you should not use this option is if you’re not going to read
data from your entity bean (for example, setting fields, but not get-
ting fields).

562 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 562

Tuning Message-Driven Beans

Now let us examine some best practices and techniques to boost message-
driven bean performance:

■■ Tune pool size. MDB is essentially a stateless session bean whose onMes-
sage() method is invoked by the container upon arrival of a message.
Hence, to reduce the overhead of creation (and the release) of MDB bean
instances upon each message arrival, the container pools them. The pool
tuning settings are pretty much the same as stateless session bean. A
container can let you specify one or all of the initial pool size, maximum
pool size, resize quantity, and pool idle timeout settings.

Use these settings to match the message processing loads under typical
and peak conditions. For better throughput under high traffic condi-
tions, maintain a large pool of MDB bean instances. Needless to say,
these settings go into the vendor specific deployment descriptor.

■■ JMS-specific tuning. If your MDB consume JMS messages, one impor-
tant performance tuning you can do is select the right acknowledgment
mode. You set the acknowledgment mode in the MDB deployment
descriptor. Chapter 9 discusses the various acknowledgment modes in
detail. Use Auto_acknowledge mode when you do not want to receive
duplicates and thereby avoid inefficient use of network bandwidth.
Note that here the JMS engine makes sending the acknowledgment top
priority. Hence, throughput might suffer in scenarios where a lot of JMS
messages arrive and need to be processed by the MDB. On the other
hand, if you want your JMS engine to leave everything in order to send
acknowledgment, you should consider Dups_ok_acknowledge mode.

Tuning Java Virtual Machine

Don’t ignore the impact of a nicely tuned JVM on which your EJB server is run-
ning. Each application server comes with a different JVM and hence, different
tuning parameters. However, some of the settings remain common across
most of the JVMs. In our experience, 95 percent of the JVM tuning exercise
involves tuning the garbage collector. The garbage collector is a piece of code
within the JVM that releases the memory claimed by objects whose references
have gone out of scope or for objects whose references are explicitly set to null.
Understand that you have no control over when the garbage collector runs—
it will run when the JVM thinks it should and when your underlying OS
schedules the GC thread to run. There are two things you should do to work
well with the JVM: make your code JVM friendly, and use JVM proprietary

EJB Performance Optimizations 563

24_576828 ch18.qxd 11/3/04 11:46 AM Page 563

switches to further tune the garbage collector and set the heap space related
settings. Let us examine both of these:

■■ Write JVM friendly code. This entails writing Java code that releases
objects in a timely manner by setting their references to null. By setting
the references to null, you are declaring to the JVM that you no longer
need the object and so the garbage collector should reclaim its memory
allocated in the JVM heap space. Also, you should refrain from imple-
menting final() methods on your Java objects, because finalizers might
not be called before the object reference goes out of scope and hence,
the object might never get garbage collected (because the finalizer
hasn’t been executed).

Also, do not use System.gc() if you can avoid it, because it does not
guarantee that the garbage collector would be executed upon your
request. If you understand the semantics of System.gc() you know that it
is basically meant to request the JVM to run the garbage collector and
thereby reclaim the memory; at the end of the call, however, your
request may or may not have been granted; it all depends on whether
JVM thinks that it is time to run the garbage collector. We are amazed to
see developers with many years of Java experience putting System.gc()
calls all over in their code.

Yet another example of writing JVM-friendly code is the use of weak
references when writing implementations for caching or similar func-
tionality. Weak references allow your code to maintain references to an
object in a way that does not prevent the object from being garbage col-
lected if need be. You can also receive notifications when an object to
which you hold a weak reference is about to be garbage collected. Thus,
if the JVM is running very low on memory, your weak reference to the
live object will not stop the JVM from garbage collecting the object.

These are just a few examples of writing JVM friendly code. If you read
some of the classic Java performance books, you can find many more
techniques.

■■ Tune the JVM via switches. Each JVM implementation, and there are
about a dozen of them, provides vendor-specific switches to further
tune the virtual machine. To effectively use these switches though, you
will need to understand the implementation of the JVM. For example,
all recent Sun JVMs support a technology, called HotSpot, which
employs a concept termed generational garbage collection to effectively
garbage collect the memory without introducing huge garbage collector
caused pauses in the application. Ultimately the goal of garbage collec-
tion is to reduce those inevitable system pauses during the period when
the garbage collector is running. So in order to efficiently work with a
Sun JVM, you should understand how generational garbage collection

564 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 564

works, various algorithms for garbage collection supported by the Sun
JVM, when to use which algorithm for garbage collection, and so on.
The same holds true for most of the other JVMs. For example, BEA
WebLogic products use the BEA JRockit JVM. Thus, if you are a BEA
shop, you should understand how JRockit works in order to be able to
tune it properly.

Most of the JVM implementations also allow setting the heap memory
size available to the virtual machine. The heap requirements for server
applications obviously would be more than that of client applications.
You should tune the heap size so that it is not too small or too large for
your application. A small JVM heap would cause the JVM to run
garbage collection more frequently thereby introducing unexpected
pauses, albeit short, in your application. On the other hand, a large JVM
heap will not cause frequent garbage collection but whenever garbage
collection happens it takes a good while for it to scour through the large
heap space and reclaim the memory, thereby introducing a longer pause.

Bottom line—thou must know thy JVM!

Miscellaneous Tuning Tips

Now let us see some other miscellaneous tips to further help your optimiza-
tion exercises:

■■ Send output to a good logging/tracing system, such as a logging mes-
sage-driven bean. This enables you to understand the methods that are
causing bottlenecks, such as repeated loads or stores.

■■ Use a performance-profiling tool, OptimizeIt or JProb, to identify bot-
tlenecks. If your program is hanging on the JDBC driver, chances are
the database is your bottleneck.

■■ Tune the JDBC connection pool using various options provided by
your EJB server. Some servers provide options to specify initial pool
size, maximum pool size, pool resize quantity, maximum wait time the
caller will have to wait before getting a connection timeout, idle time-
out period, transaction isolation level, and so on. A larger connection
pool will provide more connections to fulfill requests although it would
consume more resources on the EJB server and also on the database
server. On the other hand, a smaller connection pool will provide a
fewer number of connections to fulfill requests, but it also consumes
fewer resources on database and EJB servers. Also some EJB servers can
enable you to specify a connection validation option, which, if set to
true, essentially checks whether the connection instance is a valid

EJB Performance Optimizations 565

24_576828 ch18.qxd 11/3/04 11:46 AM Page 565

instance, at the time of the request. Remember that setting this option to
true will add some latency during the getConnection() method.

■■ Avoid putting unnecessary directories in the CLASSPATH. This will
improve the class loading time.

■■ Utilize the RMI-IIOP protocol specific tuning settings. Also, many
servers provide a means to tune the thread pool of server. You can use
these settings to have better control on the overall number of threads in
your EJB server.

566 Chapter 18

DON’T FORGET TO TUNE THE WEB SERVER

Most of the time, EJBs sits behind Web applications. Hence, it is important to
tune the Web applications accessing your EJB application since an under-
performing Web application can lead to bad user experience as well. Although
Web application tuning entails a lot more details, following are some of the
common and useful tips that you should use to boost performance:

◆ Explicitly turn HTTP session support off for stateless Web applications.
Session management does add to overhead and so you should turn it off
when not using it. Use the JSP directive <%page session=”false”%> to
turn session off. Also don’t store very large objects in HTTP session. Also
release sessions when you are done using them by calling
HTTPSession.invalidate().

◆ Set optimal values for various HTTP keep-alive settings. The HTTP 1.1
protocol refers to the keep-alive connections as persistent connections.
Keep-alive connections are essentially long-lived connections that allow
multiple requests to be sent over the same TCP connection. In some
cases, enabling keep-alive connections has produced a good reduction in
latency.

◆ Turn off JSP recompilation, especially if your JSPs are not changing fre-
quently.

◆ Use JSP and servlet caching techniques made available by your Web
server. Also cache servlet instance independent resources in Servlet.init()
method for efficient utilization of resources.

◆ Don’t use the single thread model for servlets, because they have been
deprecated. This means that all servlets are designed to be multi-
threaded. Hence, you should carefully avoid using class-level shared vari-
ables. If you do have to, synchronize the access to these class-level
object references for ascertaining integrity.

24_576828 ch18.qxd 11/3/04 11:46 AM Page 566

Choosing the Right EJB Server

Finally, you need to choose an EJB server that offers the best performance
numbers and optimization techniques. The following list details the criteria
through which you should evaluate the performance and tuning support pro-
vided by your EJB server:

■■ CMP Support. Make sure CMP optimizations, such as lazy loading,
entity fail-over recovery, various pooling and caching strategies, and so
on, are supported by your EJB server. This is relevant, of course, when
you are planning to use CMP.

■■ Load balancing and clustering. Most of the EJB servers provide cluster-
ing support for session beans and entity beans, whereas only some
servers provide clustering and stateful recovery for stateful beans and
entity beans. Also, not every application server provides load balanc-
ing, especially for message-driven beans. This could be an important
consideration for high-throughput message consumption as well as fail-
over support for message-driven beans.

■■ Throttling of resources. Throttling capabilities can help a great deal
during capacity planning. Most of the high-traffic deployments do
throttle resources. If you are one of such deployments, check with the
vendors about whether their product provides throttling support. The
more types of resources you throttle, the better tuning you will have.

■■ Various types of tuning facilities. Tuning options for various types of
beans are not the only thing you should seek. You should make sure
that your vendor provides comprehensive tuning options for your Web
server (if you are using a Web server from the same vendor), thread
management, CPUs, resources such as connection pools, JMS connec-
tions, topics/queues, IIOP tuning, JVM tuning, and so on.

■■ Good SPECjAppServer numbers. There is a bit of history behind
SPECjAppServer benchmarks; for example, they are based on the
ECPerf benchmark standard created by the Java community. SPEC-
jAppServer benchmark is from the reputed Standard Performance Eval-
uation Corporation (SPEC) performance benchmarking organization.
SPECjAppServer benchmark is for measuring performance of J2EE
application servers. It is a great tool for gauging the performance of
your EJB product. You should always insist to see SPECjAppServer
numbers for the version of EJB server that you are buying. They will
give you a very good idea about the price/performance of the EJB
server in question. Refer to specbench.org/jAppServer/ for further
information on these benchmark numbers.

EJB Performance Optimizations 567

24_576828 ch18.qxd 11/3/04 11:46 AM Page 567

Summary

In this chapter, we reviewed a series of performance optimizations and best
practices when working on an EJB project. We hope that you refer back to these
strategies while working with EJB—after all, an ounce of prevention is worth
a pound of cure.

568 Chapter 18

24_576828 ch18.qxd 11/3/04 11:46 AM Page 568

569

In this chapter, we’ll talk about clustering technology, which addresses many of
the challenges faced by large, high-capacity systems. This chapter also
explores many issues relating to EJB and large systems and provides you with
a broad understanding of the issues as well as solutions.

Specifically, we’ll cover the following topics:

■■ Approaches and characteristics of large-scale systems with J2EE appli-
cation servers

■■ Approaches to instrumenting clustered EJBs

■■ Issues related to designing clustered EJB systems

■■ Issues that impact EJB performance in a clustered system.

Clustering can be a very involved technology, encompassing network com-
ponents such as load balancers and traffic redirectors at different layers in the
protocol stack. The technologies that we will look at here are the ones that EJB
developers may have to be aware of, that is, application-level techniques.

Overview of Large-Scale Systems

The number of systems being developed is rapidly increasing year after year.
Some of these systems are small, targeted at a specific, well-defined user group

Clustering

C H A P T E R

19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 569

that is understood when development of the system begins. Other systems are
large, targeted at a diverse, massive user group that evolves over time. Given the
variety of systems that can be designed, what makes a system large scale? And,
more importantly, how can EJB technology operate in a large-scale system?

This section discusses some of the principles behind large systems and
defines terminology that will be used throughout the chapter. This section also
provides some background and history of theories applicable to large-scale
systems in the past.

What Is a Large-Scale System?
Unfortunately, there is no complete computer science definition of a large-
scale system. Since requirements for systems vary wildly, what may be con-
sidered large for one project is insignificant for another project.

For the purposes of this book, we will define a large-scale system as one that
requires the use of more than one application server that typically operates in
a cluster. A cluster is a loosely coupled group of servers that provide unified
services to their clients. Clients that use services deployed into a cluster are
typically unaware that their requests are being serviced by a cluster and typi-
cally have no control over deciding which servers in the cluster process their
requests. Servers in a cluster may operate on one or more computers, each of
which may have one or more processors. Additional, typical features of large-
scale systems that are not considered here include the use of multiple data-
bases, firewalls, or Web servers.

Many organizations fail to estimate the load that their systems will require
and so design their system with only small-scale characteristics in mind.
While current project schedules may not leave room for planning far into
the future, we recommend that you always assume that you will need a
large-scale system eventually. With this in mind, you should anticipate ways
of scaling up the system and always have a path to follow if your user load
increases, due to future business forces that may be out of your control.

Essential requirements on large-scale systems are often summarized by the
following three properties (collectively called RAS):

■■ Reliability gauges whether the system performs at a constant level,
even if the stresses on that system change. While this may sound a lot
like scalability at first, reliability is not the same as performance or scal-
ability. The most important word of this definition is constant. For
example, if the simplest request takes 10 ms to complete with one user,
the system is reliable if the same request takes 10 ms with 1,000,000 con-
current users. The measure of reliability can take many different forms:

570 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 570

It can be as broad as supporting a certain number of registered users, or
as specific as requiring the round-trip time for a single method invoca-
tion to be within a discrete range. For every component added to a sys-
tem, the number of scenarios that can cause a disruption in reliable
service increases and thus makes reliability of the overall system harder
to ensure. Depending on the type of architecture employed, a cluster
may improve reliability; for example clustering might scale up better to
increasing demands, or reduce reliability through adding extra com-
plexity that may turn out to make behavior less consistent.

■■ Availability measures the percentage of time that your system is avail-
able for use by its clients. A measurement of availability is not related to
the effectiveness of servicing those requests; rather, it focuses on
whether the services are accessible. A system may be unavailable for a
variety of reasons, such as network blockage, network latency, mainte-
nance downtimes, or total system failure. The principle of availability
states that if the probability of a single application server being unavail-
able is 1/m, the probability an application server will be available is
1–1/m. If there are n application servers in a cluster, the probability of
the system being available is (1–1/m)n. The value of (1–1/m)n decreases
as n increases, implying that a cluster will always be more available
than a single server. A popular way of phrasing how available a system
is to its clients is to count the number of nines: A system has an avail-
ability of five nines if it is available 99.999 percent of the time, whereas
four nines means 99.99 percent of the time. With four nines, a system is
unavailable no more than 52 minutes throughout the year. This time is
reduced to just 5 minutes with five nines. (How often can you restart an
application server in this time?)

■■ Serviceability measures how manageable your system is. System man-
agement occurs at a variety of levels, including runtime monitoring,
configuration, maintenance, upgrades, and so on. The principle of ser-
viceability states that two application servers are more complex to ser-
vice than a single application server. This implies that a cluster is
inherently more difficult to service than a non-clustered system.

The reason we talk about clustering so prominently here is that clustering
addresses two of these issues at the same time: availability and load balancing,
which addresses the scalability-related part of reliability. The underlying prin-
ciple is that of redundancy. If you have many redundant copies of a resource
you can spread the load between them. At the same time, redundant resources
enable you to lose one or more and still be able to operate. Clustering is the
prime technology to provide redundancy.

Clustering 571

25_576828 ch19.qxd 11/3/04 11:46 AM Page 571

An important takeaway point of the preceding discussion is that increasing
the reliability of a system impacts its availability and serviceability. A similar argu-
ment can be made for attempting to improve the availability or serviceability of a sys-
tem. It is important to appreciate that there is no such thing as a perfect system.
Any system that has a high level of availability will likely not have a high level
of reliability and serviceability. You just need to be aware of the trade-offs.

Basic Terminology
When working on large-scale projects, engineers and developers tend to use a
variety of terms freely in relation to clusters and large-scale system without
always using those terms precisely. Here are definitions for terms used in this
chapter:

■■ A cluster is a loosely coupled group of servers that provide a unified,
simple view of the services that they offer individually. Servers in a
cluster may or may not communicate with one another. Generally, the
overall goal of employing a cluster is to increase the availability or reli-
ability of the system.

■■ A node is a single server in the cluster.

■■ Load balancing distributes the requests among cluster nodes to opti-
mize the performance of the whole system. A load-balancing algorithm
can be systematic or random.

■■ A highly available system can process requests even in the face of fail-
ing nodes.

■■ Fail-over lets another node in the cluster continue processing when the
original node cannot process the request due to failures. Failing over to
another node can be coded explicitly. Alternatively, it can be performed
automatically by the underlying platform, which transparently reroutes
communication to another server.

■■ Request-level fail-over occurs when a request that is directed to one
node for servicing cannot be serviced and is subsequently redirected to
another node. This may not be sufficient if session state is shared
between clients and servers. In this case, the session state must also be
reconstructed at the server node.

■■ Single access point simplicity is the idea that clients generate requests
to the cluster rather than individual nodes of the cluster. The requests
are transparently directed to a node in the cluster that can handle the
request. The client’s view of the cluster is a single, simple system, not a
group of collaborating servers.

572 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 572

■■ Transactions per second (TPS) measures the number of transactions
executed by a system in a second. A single request can cause zero, one,
or more transactions to occur. TPS is a measure of how well the sys-
tem’s transaction management performs and is commonly used to com-
pare the performance of different systems or algorithms.

■■ Requests per second (RPS) measures how many requests can be
processed and responded to in a second. In a typical system, a number
of threads are responsible for processing messages arriving into the sys-
tem and placing those messages into a processing queue. A separate pool
of threads is responsible for taking messages off the processing queue
and actually executing the appropriate service. RPS is a measure of how
many messages can be serviced off of the processing queue in a second.

■■ Arrivals per second (APS) measures how many incoming messages
from clients can be taken from a connection and placed onto a process-
ing queue in a second.

■■ Throughput measures how many requests can be fully serviced in a
given time period. This measure includes the processing of arrivals and
the handling of requests. If the throughput of a system is high, the sys-
tem is capable of processing many requests in a given amount of time.
Throughout can be measured in the number of requests for an applica-
tion server, but is sometimes also given as a data rate, for example in
MByte per second.

■■ Invocations per second (IPS) measures how many component invoca-
tions can be made in a second. IPS usually applies to the number of EJB
invocations that can be made in a second.

Partitioning Your Clusters
Now that we’ve gotten the definitions out of the way, let’s look at the different
choices you have for clustering a J2EE system.

Modern J2EE servers contain a Web server and an application server. This
means that in a Web-based system, the following configurations are possible:

■■ A collocated architecture runs the Web server components (servlets
and JSP files) and application server components (EJBs) on the same
machine.

■■ A distributed architecture separates the Web server components and
application server components onto different physical machines.

The differences between the two architectures are shown in Figure 19.1.

Clustering 573

25_576828 ch19.qxd 11/3/04 11:46 AM Page 573

Figure 19.1 Collocated versus distributed server architecture.

The collocated versus distributed server debate is important as the chosen
architecture has many ramifications. A distributed architecture is invariably
more complex to set up and maintain because distribution introduces new
classes of problems such as increased latency and additional failure modes. It
can also give more flexibility in certain areas, such as scalability and security,
as we discuss below. Whether this flexibility is worth the added complexity
must be carefully evaluated. A collocated architecture is sufficient and simpler
to operate in many situations—and hence recommended whenever applica-
ble.

The pros and cons of collocated versus distributed servers are listed in
Table 19.1.

Web Container

Server

EJB Container

Web Container

Server

EJB Container

Web Container

Web Server

EJB Container

Application Server

574 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 574

Table 19.1 Collocated Versus Distributed Server Architecture

FEATURE COLLOCATED DISTRIBUTED WINNER?

Reliability High, because there is Low, because there are Collocated
no remote inter-process more machines involved
communication. with a single request.
Everything is in a single Hence, there are more
process, so there are factors that can cause
few factors that can unpredictable behavior,
cause unpredictable such as network
behavior. connections

Availability High, because any Higher than no cluster Collocated
machine can fail-over at all, but lower than in
to any other machine. the collocated setting,

because there are
When the whole cluster typically fewer machines
fails, the entire site that can provide for
is down. fail-over in a given tier

(assuming we have the
same absolute number
of machines as in the
collocated case).

Because we actually
have a cluster for each
tier, failure of a complete
cluster for one tier may
still leave the other
tier intact.

Serviceability High, because each box Low, because the Web Collocated
is identical (simpler), server cluster must be
and there is no network maintained differently
connection between than the application
the Web servers to server cluster. There is
bother with. also a network

connection between
the tiers.

Network The Web server The Web server Collocated
efficiency components can call components must

EJB local interfaces. call the EJB remote
Local communication interfaces, which means
means no sockets to more marshaling
traverse between the overhead. Remote
Web servers and inter-process
application servers. communication between

Web servers and
application servers slows
things down significantly.

(continued)

Clustering 575

25_576828 ch19.qxd 11/3/04 11:46 AM Page 575

Table 19.1 (continued)

FEATURE COLLOCATED DISTRIBUTED WINNER?

Efficient use High, because a J2EE Low, because you need Collocated
of hardware server can be used for to predetermine how

whatever purposes it is many machines to
needed at a given point devote to Web server
in time (Web server tasks, and how many
tasks or application machines to devote to
server tasks). application server tasks.

This may not be exactly
optimal, and your load
characteristics may
change over time.

Security You cannot place a You can place a firewall Distributed
firewall between your between the Web
Web server and servers and application
application server servers to further
because they are restrict accesses from
in-process. Therefore, Web components to EJBs.
your EJB components
are more exposed than
in the distributed case.

Serving quick If the application servers If the application servers Distributed
static data, are overloaded, static are overloaded, static
or simple data (such as HTML data (such as HTML
Web requests and images) are served and images) can be
that do not up slowly because served up quickly
involve EJB the Web servers are because the Web
components competing for hardware servers are dedicated.

resources with the
application servers.

Conflicts over High because the Web Low, because the Web Distributed
ownership team and EJB team use team and EJB team use
and the same boxes, which different boxes. They
management could mean conflicts don’t interfere with
responsibility if you’re in a political each other as much.

environment.

Load You need to set up a You need to set up a Equal
balancing separate load-balancing separate load-balancing

box in front of the J2EE box in front of the Web
servers. Examples servers. Examples include
include a software a software load-balancer
load-balancer running running on a cheap
on a cheap Linux box, Linux box, or a hardware
or a hardware load-balancer such as a
load-balancer such as a local director.
local director.

576 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 576

To determine which architecture is most appropriate you have to consider a
large number of factors. We generally favor the collocated approach because it
is simpler. However, the arguments for a distributed server architecture tend
to become more important the larger your system is.

■■ Static data. Static data can be served faster in a distributed architecture,
but this is not an issue for companies that actually run a separate Web
server box just for static data. That static Web page server could also
make use of a Storage Area Network (SAN), a network of hard drives to
increase throughput.

■■ Scalability. The separation between Web and EJB servers enables you
to fine-tune each set of servers separately and more precisely to the
actual requirements of the applications. For example, you may have
applications that use servlets and JSP files only sparingly, but create sig-
nificant load on EJB servers so that adding to the number of EJB servers
more directly enhances the overall performance. This argument tends
to be less important in smaller systems where the differences among the
interaction patterns between clients and Web components and EJBs
may not be significant.

■■ Security. The fact that you can have a firewall in distributed server sys-
tems (between the Web servers and application servers) is important. It
may seem difficult to create a malicious RMI-IIOP request that targets
exposed EJBs, but it really is not difficult for anyone who really tries.
Hence, your beans, especially entity beans that represent persistent
data, should never be directly reachable without first passing through
security controls. A firewall is a necessary first line of defense at the
perimeter, but it is not sufficient. (See Chapter 13 for details on addi-
tional security controls.) Moreover, a separation of the Web and EJB
servers reduces the chance that an attacker can exploit weaknesses,
such as buffer overflows, in server implementations and thereby gain
control of the entire server machine. Such vulnerabilities are frequently
found in Web Server implementations. The captured server would then
be used to stage additional attacks, for example on your databases,
because internal firewalls allow traffic from the server. Again, these
considerations become more important the larger your system is, as the
business value of your assets tends to increase as well.

Remember that we recommended you always keep the option of scaling
your systems up, so when choosing the collocated approach, you should be
prepared to switch to a distributed architecture later when it becomes
necessary.

Clustering 577

25_576828 ch19.qxd 11/3/04 11:46 AM Page 577

Instrumenting Clustered EJBs

Although the actual technology that your J2EE server uses is proprietary, most
application servers have similar approaches to clustering. Let’s look at the pos-
sible options that application server vendors have for clustering EJBs of all
types. We’ll then look at the specifics of clustering stateless session, stateful
session, entity, and message-driven beans.

How EJBs Can Be Clustered
There are many places in the system where vendors can provide clustering logic
(such as load balancing or fail-over logic):

■■ JNDI. A vendor could perform load balancing logic in the JNDI con-
texts that are used to locate home objects. The JNDI context could have
several equivalent home objects for a given name and spread traffic
across numerous machines. Some vendors let you deploy an applica-
tion to all machines in the cluster at the same time.

■■ Container. A vendor could provide clustering logic directly within the
container. The containers would communicate with one another behind
the scenes using an interserver communication protocol. This protocol
could be used to exchange state or perform other clustering operations.
For example, if a ShoppingCart stateful session bean container has
filled up its cache and is constantly activating and passivating EJBs to
and from secondary storage, it might be advantageous for the container
to send all create() invocations to another container in a different server
that hasn’t reached its cache limit. When the container’s burden has
been reduced, it can continue servicing new requests.

■■ Home stub. This is the first object accessed by remote clients and runs
locally on a client’s virtual machine. Since stub code is generated by a
vendor tool, the underlying logic in a stub can be vendor-specific so
that the stub knows about multiple equivalent copies of the home. Ven-
dors can instrument method-level load balancing and fail-over schemes
directly in a smart stub. Every create(), find(), and home method invoca-
tion can have its request load balanced to a different server in the clus-
ter; it doesn’t matter which machine handles each request.

■■ Remote stub. This object is the client’s proxy representing a specific
enterprise bean instance. It can perform the same types of load balanc-
ing and fail-over as a home stub can, but vendors have to be careful
about when they choose to do so. Remote stubs must load balance and
fail-over requests to instances that can properly handle the request with-
out disrupting the system.

578 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 578

The most common scenario is for stubs to be generated at development
time through a utility, such as a vendor-specific EJB compiler. This isn’t the
only option, however. Some application servers can use interception
technology, such as the JDK 1.3 Proxy class, to automatically generate
remote home and remote stub logic dynamically at runtime. The JBoss
application server is an example of a server that has an EJB container using
this approach.

Whether an application server uses interception technology or creates
custom classes for the stubs and skeletons does not alter the places where
cluster-based logic can be inserted. In the following discussions, we
continue to reference home stubs, remote stubs, or containers irrespective
of how or when these pieces are generated.

One potential drawback of vendor-specific logic on the client side is the loss
of portability: When moving clients to a different vendor’s products, even
standalone RMI-IIOP clients need to be redeployed using the new vendor’s
tools. Porting applications to a different server creates significant amount of
work on the server side, however, so this issue is a comparatively minor one.

The different options that are available to developers and vendors provide a
vast array of configurations with which clusterable EJB may be instrumented.
By now, you must be thinking, “How do I know what to use, when, and
where?” The answer lies within the capabilities of any single application
server. The rest of this chapter discusses the various issues that application-
server vendors face when attempting to provide a clusterable infrastructure
for stateless session, stateful session, entity, and message-driven EJBs.

Load balancing and fail-over logic doesn’t exist for local interfaces.
Remember that local interfaces do not receive traffic from the network.
Parameters must be marshaled by reference rather than by value
serialization. If the client is local to the bean, then any failure of either
component will likely cause the other to fail, too. Nothing can be done to
save such a situation. Thus, our discussion applies only to remote clients.

The Concept of Idempotence
An idempotent (pronounced i-dim-po-tent, not i-dimp-uh-tent) method is one that
can be called repeatedly with the same arguments and achieve the same results.

An idempotent method in a distributed system doesn’t impact the state of
the system. It can be called repeatedly without worry of altering the system
so that it becomes unusable or provides errant results. Generally any methods
that alter a persistent store are not idempotent since two invocations of the
same method will alter the persistent store twice. For example, if a sequencer

Clustering 579

25_576828 ch19.qxd 11/3/04 11:46 AM Page 579

is stored in a database and m1() increments the sequencer, two calls to m1() will
leave the sequencer at a different value than if m1() was invoked a single time.
An idempotent method leaves the value in the persistent store the same no
matter how many invocations of m1() occur.

Remote clients that witness a failure situation of a server-side service are
faced with a perplexing problem: Exactly how far did the request make it
before the system failed? A failed request could have occurred at one of three
points:

■■ After the request has been initiated, but before the method invocation on
the server has begun to execute. Fail-over of the request to another
server should always occur in this scenario.

■■ After the method invocation on the server has begun to execute, but
before the method has completed. Fail-over of the request to another
server should occur only if the method is idempotent.

■■ After the method invocation on the server has completed, but before
the response has been successfully transmitted to the remote client.
Fail-over of the request to another server should occur only if the
method is idempotent.

Why is this important? A remote stub that witnesses a server failure never
knows which of the three points of execution the request was in when the fail-
ure occurred. Even though failures of requests that haven’t even begun
method execution should always fail-over, a client can never determine when
a failed request is in this category.

Thus, remote stubs can automatically fail-over only requests that were sent
to methods flagged as idempotent. In comparison, fail-over of non-idempo-
tent methods must occur programmatically by the client that originated the
request. If your EJB server vendor is a major player, it will likely give you the
ability to mark an EJB component’s method as idempotent or nonidempotent
using proprietary container descriptors.

You might think that all methods that are marked to require a new
transaction are idempotent. After all, if failure happens, the transaction will
roll back, and all transactional state changes (such as transactional JDBC
operations) will be undone. So why can’t the stub fail-over to another bean
to retry the operation?

The answer is that container-managed transactions have an inherent flaw,
which we first discussed in Chapter 12. What if the transaction commits on
the server, and the network crashes on the return trip to the stub? The stub
would then not know whether the server’s transaction succeeded and would
not be able to fail-over.

580 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 580

Stateless Session Bean Clustering
Now, let’s take a look at how we can cluster each type of EJB component. We
begin with stateless session beans.

Load Balancing

All Java object instances of a stateless session bean class are considered identi-
cal. There is no way to tell them apart, since they do not hold state. Therefore
all method invocations on the remote home stub and remote stub can be load
balanced. Some EJB servers also give you flexibility here, and allow you to pin
stubs so that they direct requests to a single server only. Some vendors even
allow you to configure subsets of methods on a single stub to be pinned or
load balanced. This flexibility in load balancing stateless session bean
instances is what drives the perception that stateless session EJBs are the most
scalable types of synchronous EJB components.

Fail-Over

For stateless session beans, automatic fail-over on remote home stubs can always
occur. Recall that stateless session bean home stubs have only one method,
which is an empty create() method. This corresponds to the bean’s ejbCreate()
method. But your container does not call ejbCreate() when the client calls
home.create()—the container can call ejbCreate() whenever it feels like kicking
beans into the pool, as we saw in Chapter 4. Therefore, your ejbCreate() methods
should not modify your system’s state and should be coded as idempotent.

Automatic fail-over on remote stubs can occur only if the called method is
idempotent. If your method is nonidempotent, or if your vendor does not sup-
port automatic fail-over, you might be able to fail-over manually by writing
code to retry the method. You need to be careful, however, and factor business
rules and other logic into the decision as to whether a fail-over request should
be made.

For example, the following pseudo-code manually fails-over any method
invocation that is not automatically done so by the remote home or remote stub.

InitialContext ctx = null;

SomeHomeStub home = null;

SomeRemoteStub remote = null;

try {

ctx = ...;

home = ctx.lookup(...);

// Loop until create() completes successfully

boolean createSuccessful = false;

while (createSuccessful == false) {

Clustering 581

25_576828 ch19.qxd 11/3/04 11:46 AM Page 581

try {

remote = home.create();

} catch (CreateException ce) {

// Handle create exception here.

// If fail over should occur, call continue;

continue;

} catch (RemoteException re) {

// Handle system exception here.

// If fail over should occur, call continue;

} catch (Exception e) {

// Home stub failure condition detected.

// If fail over should occur, call continue;

continue;

}

// If processing gets here, then no failure condition detected.

createSuccessful = true;

}

boolean answerIsFound = false;

while (answerIsFound == false) {

try {

remote.method(...);

} catch (ApplicationException ae) {

// Handle application exception here.

// If fail over should occur, call continue.

} catch (RemoteException re) {

// Handle server-side exception here.

// If fail over should occur, call continue.

} catch (Exception e) {

// Failure condition detected.

// If fail over should occur, call continue.

continue;

}

// If processing gets here, then no failure condition detected.

answerIsFound = true;

} // while

} catch (Exception e) { }

582 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 582

If we wanted it to do so, our EJB component could also assist with this fail-
over decision by checking the system state before continuing.

Stateful Session Bean Clustering
Stateful session beans are clustered a bit differently than their stateless cousins.
The major EJB server vendors support replication of state. It works like this:
When a stateful session bean is created, the state must be copied to another
machine. The back-up copy isn’t used unless the primary fails. The bean is
routinely synchronized with its backup to ensure that both locations are cur-
rent. If the container ever has a system failure and loses the primary bean
instance, the remote stub of the bean fails-over invocations to another
machine. That other machine can use the back-up state and continue process-
ing. A new backup is then nominated, and the state begins to replicate to that
new backup. This all occurs magically behind the scenes after you configure
your EJB server to replicate state, using your EJB server’s proprietary descrip-
tors or administrative console.

Stateful replication should be used with caution. It will limit your
performance. Instead, you may want to consider placing critical,
transactional, and persistent data in a database via session beans plus JDBC
or entity beans. Stateful session beans should be used for session-oriented
(conversational) data that would not adversely impact the system if the data
were lost.

Replication of stateful data typically occurs at one of two points:

■■ At the end of every method. This is not ideal since unnecessary replica-
tion of unmodified data can frequently occur.

■■ After the commit of a transaction. For reasons touched upon in Chap-
ter 12, this is ideal. Transactions give you an all-or-nothing fail-over
paradigm. By replicating on transactional boundaries, your stateful ses-
sion bean state is consistent in time with other changes to your system
state (such as performing JDBC work).

Most EJB servers perform stateful fail-over in one of two ways:

■■ In-memory replication. The state could be replicated in-memory across
the cluster. In-memory replication is fast. The downside is that most EJB
servers limit the replication to only two machines, since memory then
becomes a scarce resource.

■■ Persistent storage to a shared hard drive or database. This approach is
slower than in-memory replication, but every server in the cluster has
access to the persistent state of the replicated bean.

Clustering 583

25_576828 ch19.qxd 11/3/04 11:46 AM Page 583

Load Balancing

With stateful session beans, remote home stubs can freely load balance create()
requests to different servers in the cluster. These factory methods do not apply
to an individual instance in a container but can be serviced by any container in
the cluster.

However, remote stubs cannot load balance as easily. Your client requests can
be sent only to the server that has your state. Note that if your stateful session
bean is replicated across multiple servers, a remote stub could conceivably load
balance different requests to different servers. This wouldn’t be ideal, how-
ever, since most vendors have a designated primary object that requests are
sent to first. The effort involved with load balancing requests in this scenario
outweighs any benefits.

Fail-Over

You might think that fail-over can always occur with stateful session beans if
the state is replicated across a cluster. After all, if something goes wrong, we
can always fail-over to the replica.

However, this is not the case. If your bean is in the middle of a method call, we
still need to worry about idempotency. Your bean might be modifying the state
elsewhere, such as calling a database using JDBC or a legacy system using the
J2EE Connector Architecture. Your stub can fail-over to a backup only if the
method is idempotent. The only time your EJB server can disregard idempo-
tency is if your container crashed when nobody was calling it, either between
method calls or between transactions, depending on how often you replicate.

For stateful session beans, automatic fail-over on a remote stub or remote home
stub can occur only if your methods are idempotent. Most methods are not
idempotent, such as a create() method, which performs JDBC work, or a set()
method. However, stateful session beans can have some idempotent methods!
Any method that does not alter the state of the system or alters the value of the
state stored in the stateful session EJB is an idempotent method. For example, if
a stateful session EJB has a series of get() accessor methods to retrieve the values
of state stored in the server, these get() accessor methods would be idempotent.

If your method is not idempotent, or if your container does not support
replication, you can manually fail-over, similar to our approach to stateless
session beans.

Entity Bean Clustering
Now that we’ve seen session beans, let’s see how entity beans are clustered.

584 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 584

Load Balancing

If you’re coding your EJB deployments correctly, you will wrap entity beans
with a session bean façade. Therefore, most access to entity EJBs should occur
over local interfaces by in-process session beans, rather than remote clients.
Thus, the need for load balancing goes away. Note that most containers do
support load-balancing for entity beans through stubs, which is similar to the
way it works for session beans. But you’ll probably never take advantage of it.

Some container vendors provide a means for declaring a BMP entity bean as
read-only in the vendor-specific deployment descriptor. If the container
finds a read-only entity bean, it can load balance each and every call as no
updates to a persistent state will ever occur. This is a proprietary feature,
however.

Fail-Over

Since you should always access entity beans using local interfaces, fail-over
makes little sense. Consider this: If you called an entity bean using a local
interface and that failed-over to another machine, you’d suddenly be using its
remote interface, changing the client API and entailing pass-by-value rather
than pass-by-reference.

If you are accessing entity beans remotely, then as with all other bean types,
you can automatically fail-over entity beans only if the methods are
idempotent. This usually means get(), finder(), and possibly some ejbHome()
business methods.

Entity beans don’t have the same replication needs as stateful session
beans. This is because entity beans are routinely synchronized with a
database via its store and load operations. Thus, an entity bean is backed
up on a regular basis by design. From this perspective, you can think of an
entity bean as a stateful session bean that is always replicated by the
container on transactional boundaries through store and load operations.
Those automatic load and store operations are the most important
differences between stateful session beans and entity beans.

Since entity beans are backed up on transactional boundaries, transparent
fail-over can only occur in-between transactions (and not between methods
that are part of a larger transaction). If you have a transaction committing
on every method call (for example, through the Requires New transaction
attribute), fail-over can occur at the method granularity. However, this is not
a recommended approach, since your session beans should initiate the
transaction and serve as a transactional façade.

Clustering 585

25_576828 ch19.qxd 11/3/04 11:46 AM Page 585

Caching

Because entity beans are basically Java objects that represent database data,
they are in themselves a middle tier cache for that database. It is a tricky and
technically complicated task for an application server to support this cache
well. It is also a common misperception that caching always improves the per-
formance of a system. Caching makes a system perform better only when the
average overhead associated with updating the cache is less than the overhead
that would be needed to access individual instances repeatedly between cache
updates. Since the amount of synchronization needed to manage a cache in a
cluster is high, a cache generally needs to be accessed three or four times
between updates for the benefits of having the cache to outweigh not having it.

Containers provide many different types of caching algorithms. Each of
these algorithms has the same principle behind it: to reduce the frequency of
ejbLoad() and ejbStore() methods, which are normally called on transactional
boundaries.

You set up these caches using proprietary container tools or descriptors. No
Java coding should be required.

Read-Only Caches

A read-only cache contains a bunch of read-only entity beans. This is a very use-
ful cache because most enterprise data is read-only. This type of caching has
enormous benefits.

Since read-only entity beans never change, their ejbStore() methods are
never called, and they are never called with a transactional context. If your
entity bean methods are participating in a read-only cache, they need to have
Never or Not Supported as their transactional attribute.

Read-only caches implement an invalidation strategy that determines when
the data in the read-only instance is no longer valid and should be reloaded
from the persistent store. Common algorithms include:

■■ Timeout. Every X seconds, the cache is invalidated and the read-only
entity bean is reloaded immediately or upon the next method invoca-
tion. You set the time-out interval based on your tolerance for witness-
ing stale data.

■■ Programmatic. Your vendor provides a home stub or remote stub with
invalidate() or similar methods that allow a client to programmatically
invalidate entity beans.

■■ System-wide notification. When someone changes entity beans in a
read/write cache, the container invalidates those entity beans that also
reside in a read-only cache elsewhere.

586 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 586

It doesn’t take long for you to perform operations on a read-only entity
bean. The lock on the entity bean needs to be held just long enough to perform
the method call that gets you the data you need. Thus, each server’s read-only
cache typically keeps a single entity bean instance in memory for each primary
key. This saves overhead involved with creating multiple instances and man-
aging the concurrent access.

Distributed Shared Object Caches

A distributed shared-object cache is an advanced EJB server feature that few ven-
dors provide today. It is a cluster-wide cache for read/write data. This imme-
diately introduces an obvious problem: cache consistency. How does the
container stay in sync with the database? What if someone updates the data-
base behind your back? You’ll need to refresh your cache.

A distributed shared object cache could theoretically detect collisions at the
database level. This might be detected through database triggers, although
this gets very hairy. The idea is that when someone updates the database
behind your back, a trigger is fired. The cache is notified by this trigger and
updates its contents so that read-only clients can access the latest data. Because
each of the servers receives the notification, updating of the data can occur
concurrently across the cluster.

A distributed shared object cache also needs to stay in sync with other
caches in the cluster. It needs to replicate itself to other nodes on regular inter-
vals, similar to the concept of stateful session bean replication. It also needs to
implement a distributed lock manager that locks objects in memory, similar to
how a database locks database rows. Additionally, if a nonreliable messaging
infrastructure, such as IP multicast, is used to send notification messages
between servers, a system runs the risk of having two caches trying to lock the
same data concurrently; their notification messages might cross in mid-air! An
algorithm that allows the pausing of other systems during the period where
critical events and notification messages are generated needs to be imple-
mented. As you can see, this convergence of state across multiple nodes is very
difficult to implement.

Because of these issues, we do not recommend using a distributed shared
object cache for most systems. However, if you’d like to give it a shot, we
recommend strongly testing your system for a variety of failure conditions
before going live.

Read-Mostly Caches

Some application servers provide an exciting read-mostly algorithm. This pow-
erful idea allows you to have read-only entity beans that are also updated

Clustering 587

25_576828 ch19.qxd 11/3/04 11:46 AM Page 587

every now and then, without having the burden of a true distributed shared
object cache. The idea is that for any given entity bean class, some instances
will be read-only, and some will not be cached at all (read/write).

■■ When you perform a read operation, you use a cached, read-only
entity bean for performance.

■■ When you perform a write operation, you use a regular, noncached
entity bean. When you modify a regular entity bean and a transaction
completes, all of the read-only entity bean caches become invalidated.
When the read-only entity beans are next used, they need to reload
from the database.

This read-mostly pattern has some interesting characteristics:

■■ Each cache uses a different JNDI name. For example, a read-only
cache might have RO appended to the JNDI name, while a read/write
cache might have RW appended to the JNDI name. This is somewhat
annoying.

■■ This pattern requires only the use of a read-only cache, which almost
all application servers have. You don’t need to deal with the complexity
of a true distributed shared object cache.

When using a read-mostly algorithm, be sure that your container uses a reli-
able communications protocol when invalidating the read-only cache. If a
message is accidentally lost, you could be working with stale data.

Message-Driven Bean Clustering
Message-driven beans behave differently than session and entity beans do and
thus have different implications in a cluster. Since message-driven beans do
not have home or remote interfaces, they don’t have any remote stubs or skele-
tons that can perform load balancing and fail-over logic on their behalf.

Message-driven beans are consumers of messages; they behave in a pull sce-
nario grasping for messages to consume, rather than a push scenario in which
a remote client sends invocations directly to the consumer. See Chapter 9 for a
full discussion of this behavior.

Message-driven bean clustering is really about JMS clustering. A message-
driven bean is dependent upon the clusterable features of the JMS server and
destinations that it binds itself to. Message-driven beans achieve load balanc-
ing by having multiple EJB servers of the same type bound to a single JMS
queue for message consumption. If four messages arrive concurrently at the
queue and four containers of the same message-driven bean type are bound to
the destination, each container is delivered one of the messages for consump-
tion. Each container consumes its message concurrently, achieving a pseudo-
load-balancing effect.

588 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 588

Fail-over of message-driven beans is integrated into the very nature of the
beans themselves. Fail-over occurs any time a message that is being processed
is acknowledged as unsuccessful to the JMS server. An unacknowledged mes-
sage is placed back on the destination for reconsumption. The message-driven
bean that consumes the message a second (or third, fourth, and so on) time
need not be the one that consumed it the first time.

In some advanced JMS server implementations, JMS destination replication
allows nonpersistent messages to be replicated across servers in a cluster. Mes-
sage-driven beans that bind to a replicated destination detect any server fail-
ures and automatically rebind themselves as a consumer to the server hosting
the replicated destination.

Other EJB Clustering Issues

This final section discusses some miscellaneous issues about J2EE clustering
that can impact the behavior of a system.

First Contact
When a client wants to use an EJB component, whether it is a session, entity, or
message-driven bean, the client must always first connect to the JNDI tree:

■■ Clients that want to use a session or entity bean look up their home stub.

■■ Clients that want to send a JMS message to be consumed by a message-
driven bean must look up a JMS ConnectionFactory and Destination object.

Since all EJB clients use JNDI, naming server clustering ultimately has an
impact on the behavior of EJB components in a cluster, too. What kind of clus-
tering enhancements can be made to naming servers, and how does this
impact EJBs? There are two types of clustered naming servers:

■■ Centralized. The naming server is hosted on a single server. All EJB
servers register their same EJB components on the single naming server,
and all clients look up EJB components on the single naming server.
The naming server can even distribute clients to the identical servers in
the cluster.

■■ Shared, replicated. Each node in a cluster hosts its own JNDI naming
server that contains replicated objects hosted on other servers in the
cluster. The naming servers replicate their contents—including home
stubs, JDBC DataSource objects, JMS ConnectionFactory object, JMS Desti-
nation objects—to the other naming servers in the cluster. Thus, every
naming server has a copy of every other naming server’s objects in the
tree. In a scenario in which the same EJB component is deployed on

Clustering 589

25_576828 ch19.qxd 11/3/04 11:46 AM Page 589

every server in the cluster, each naming server has a copy of the home
stub representing each server. If a server in the cluster crashes, all of the
other naming servers that are still active merely have to remove from
their naming server the objects hosted on the other machine.

Initial Access Logic
When an application server provides a centralized naming server, the logic that
clients use to get access to the cluster is simple: They hard-code the DNS name
or IP address of the centralized naming server into all of their InitialContext
creation calls.

But what about J2EE vendors that support a shared, replicated naming
server? Clients can connect to any server in the cluster and make a request for
a service hosted anywhere else in the cluster. Architects have a variety of
options available to them.

■■ DNS load balancing. This allows multiple IP addresses to be bound to
a single name in a network’s Domain Name Service (DNS). Clients that
ask for an InitialContext pass in a DNS name in the URL of the naming
server. Every translation of the DNS name results in the generation of a
different IP address, which is part of a round-robin list for that name in
the DNS server. Using this technique, every client InitialContext request
is transparently directed to a different server. Networks support this
feature or they do not—it is not dependent upon the capabilities of your
application server. Generally, this is a low-level technique that can
cause difficult network problems and needs to be well understood and
implemented. We do not recommend it for your average network.

■■ Software proxies. Software proxies maintain open connections to a list
of servers that are preconfigured in a descriptor file. Software proxies
can maintain keep-alive TCP/IP connections with each of the servers to
provide better performance instead of attempting to reconnect every
request. These software proxies immediately detect any server crash or
unresponsiveness because its link is immediately lost. Software proxies
can also support a wider range of load balancing algorithms including
round-robin, random, and weight-based algorithms.

■■ Hardware proxies. Hardware proxies have capabilities similar to soft-
ware proxies but often can outperform their software counterparts.
Hardware proxies can also double as firewalls and gateways.

590 Chapter 19

25_576828 ch19.qxd 11/3/04 11:46 AM Page 590

Summary

In this chapter, we discussed the major challenges and solutions for working
with EJB in a clustered system. We discussed what makes a system large and
the major characteristics that large systems exhibit. We then compared the
collocated and distributed approaches to clustering. We analyzed the type-
specific behavior that can be exhibited by stateless session, stateful session,
entity, and message-driven beans in a cluster. And finally, we discussed cluster
deployments of EJB, clustered naming servers, and initial access logic to nam-
ing servers. So pat yourself on the back! You’ve just learned a great deal about
clustering. Stay with us now and we’ll learn all about how to get your EJB proj-
ect started the right way.

Clustering 591

25_576828 ch19.qxd 11/3/04 11:46 AM Page 591

25_576828 ch19.qxd 11/3/04 11:46 AM Page 592

593

To be successful with an EJB/J2EE project, you must plan and understand a
great deal beyond the technologies themselves. You must overcome a wealth
of project management challenges, including designing the object model,
dividing up your team, and educating your team.

This chapter is a guide for how to get started on your EJB project; it has links
to external resources that you should consider in your project. They are taken
from real-world experiences and intended to help you build enterprise Java
systems. As you read the chapter, you may find project management issues
that you have not considered. If this happens, consider weaving these issues
into your project plan, or highlight the issues for future reference when you
begin an enterprise Java project. While we may not answer every question for
each issue, we will point you towards external resources to help you find your
own answers.

Get the Business Requirements Down

Before embarking on a J2EE project, try to lock down as many of the business
requirements as possible. Your approach might look as follows:

1. Build a complete list of requested features. This is the phase in which
you ask questions about user interface requirements, legacy integration

Starting Your EJB Project
on the Right Foot

C H A P T E R

20

26_576828 ch20.qxd 11/3/04 11:46 AM Page 593

requirements, use-case analysis, and so on. If your feature list is incom-
plete, you should consult with any subject matter experts you can
access.

2. Weigh each feature based on corporate and business goals, as well as
the time anticipated for its implementation. Prioritize the list by feature
weight.

3. Gain stakeholder support for the feature list to avoid future bickering.

4. Secure a committed project budget from stakeholders.

You should now have a fairly complete basis for designing an object model.

Decide Whether J2EE Is the Right Choice

Once you have the business requirements, you need to settle on a platform for
development and deployment. This is a big decision and depending on the
size and scope of the project, mostly this decision is made at CIO/CTO level.
Making a wrong choice here can very easily lead to project failures. Platform
selection depends on many factors—scalability requirements, available sys-
tem infrastructure, project timelines, project budget, and most importantly,
platform technologies. For your project you should evaluate J2EE platform
with the criteria. J2EE may be appropriate, but then again, it may not. Spend
the time for the appropriate research on the various alternatives up front and
see what best suits your requirements. But to select J2EE, or any platform for
that matter, for the sake of it might not prove to be the right choice.

The software development world is clearly divided into two camps: Java and
.NET. Both, the Sun Microsystems–led Java community and the Microsoft-led
.NET community, have accepted this reality of bipolar world, and yet both
are trying hard to outperform each other in terms of the facilities they
provide to the developers. This competition can only be good for us. We
believe neither J2EE nor .NET is going to serve as panacea to all the
problems experienced in software development. At the end of the day,
understanding a project’s architectural or platform requirements is what is
going to help you make the right choice between the two.

To help you with this decision, we will outline some of the areas where J2EE
clearly wins and others where .NET, the most concrete alternative to the J2EE
platform available today, wins. Let us first discuss the areas where J2EE has a
clear lead.

594 Chapter 20

26_576828 ch20.qxd 11/3/04 11:46 AM Page 594

■■ Availability of choices. J2EE is a set of openly developed specifications
that are available free for anyone to implement on any platform. As a
result, an ecosystem comprising hundreds of vendors is thriving on
J2EE platform today. You can choose any of these vendors to provide
you with J2EE middleware; a vendor that best matches your needs of
scalability, high-availability, management or administration tools,
licensing cost or lack thereof. This is one of the main reasons for the
wide success of the J2EE platform in enterprise computing.

The strength of J2EE is actually the biggest weakness of .NET plat-
forms. The core .NET framework minus C# and Common Language
Runtime/Common Language Interfaces (CLR/CLI), is not available for
anyone to implement but Microsoft. Microsoft submitted C# and
CLR/CLI to ECMA and later to ISO for standardization. Hence, a ven-
dor wanting to implement C# CLR/CLI-based virtual machine on
another platform can do so. However, .NET, the way we all know it and
use it, is much more than just C# and CLR/CLI. It is a set of enterprise
services, libraries, and object models, including ADO.NET, ASP.NET,
managed components, security services, directory services, transaction
services, and much more; and these are not available for infrastructure
vendors to implement on other operating environments such as UNIX,
Linux, and so on. So you do not have the choice to run a full-fledged
.NET application on a highly available UNIX system or a “good
enough” Linux system, unless you think C# is .NET in which case you
can use Mono or the dotGNUs C# CLR/CLI-based virtual machines on
a variety of UNIX and Linux systems.

■■ Ecosystem. Multiple vendors providing J2EE middleware has another
benefit too: faster innovation. All vendors contribute their technological
ideas to the Java Community Process (JCP), a sanctuary that furthers
the J2EE platform through standardization. As a result, you are not
dependent on a single vendor for thought leadership. Also, this ecosys-
tem of J2EE vendors makes your investment in J2EE much safer. In case
your vendor falters financially, you can always switch to another ven-
dor’s J2EE product. This switch may not be easy, but it at least is an
alternative in the J2EE world.

Ecosystem, or lack thereof, is yet another weakness of the .NET plat-
form, where you depend on Microsoft for innovation and for the safety
of your infrastructure investment. If for some reason Microsoft stops
supporting a given technology (case in point, COM), you are left with
only one option—migrate your applications to the new technology that
it is planning to support.

Starting Your EJB Project on the Right Foot 595

26_576828 ch20.qxd 11/3/04 11:46 AM Page 595

■■ The open source factor. J2EE and Java in general are open source,
friendly platforms. Most of the open source projects use Java as a lan-
guage and platform for development and deployment. This is no small
strength. Open source, as we are witnessing today, is changing the con-
ventional software industry very rapidly. It is no longer a phenomenon
involving a bunch of geeks and academics. Today, many corporations
are considering open source product deployment in their IT infrastruc-
tures. Some choose open source because it is free, as in “free beer”;
whereas many choose open source to increase their control over the
code they are deploying. The numerous Java- and J2EE-based open
source projects are a definite plus. If you ever decide to develop a full-
fledged J2EE application and deploy it on an open source J2EE plat-
form, you have not just one but multiple choices today, including JBoss
and Apache Geronimo. Both of these should be J2EE 1.4–certified from
Sun Microsystems. Hence, you get not just the benefits of an open
source model but also J2EE compliance.

Although, in the past year or so, we are starting to see an increasing
number of open source developments for the .NET platform, the open
source–led innovation in .NET still lags behind that in Java and J2EE.
Some of the notable .NET-based open source projects are the Novell-led
Mono, Free software dotGNU, NAnt hosted at sourceforge.net, and
NHibernate, also hosted at sourceforge.net.

Both Mono and dotGNU projects are backed by enthusiastic software
developers who want to provide an alternative to the Microsoft .NET
implementation in an open source way. The only shortcoming of these
projects is that they are not really .NET. Other than the fact that Mono
and dotGNU provide CLR/CLI-based C# virtual machine, there is not
much similarity between them and the Microsoft implementation of
.NET. As a result, companies planning to implement an enterprise
application on the Microsoft .NET platform by using Mono or dotGNU,
experience vast differences in terms of platform semantics and APIs.
Switching from one to another would be similar to learning a whole
new platform. Nonetheless, the Mono and dotGNU efforts are interest-
ing and worth following if you are interested in the Microsoft .NET
implementation alternatives.

■■ Performance and scalability. J2EE is a platform-agonistic industry stan-
dard. As a result, you find implementations of J2EE on multiple hard-
ware and software platforms. Some of these hardware and software
platforms have been quite successful in high-performance and through-
put systems space. Most of the UNIX-based systems fall into this cate-
gory. Hosting J2EE applications on such systems inherently makes J2EE
applications highly scalable and fast. Besides this, pretty much all the
leading players in high-performance space have some or the other J2EE

596 Chapter 20

26_576828 ch20.qxd 11/3/04 11:46 AM Page 596

offering. As a result, their J2EE products reflect the years of experience
they have had with high-performance and high throughput systems.

The Middleware Company recently did a study comparing the perfor-
mance of various J2EE application servers with Microsoft .NET. The
results of this study are documented extensively and are available for
free at middlewareresearch.com/endeavors/030730J2EEDOTNET/
endeavor.jsp, for your use.

The following list details some of the areas that .NET handles better than J2EE:

■■ Great tools. Tools have always been a forte of Microsoft and will
remain so for a considerable amount of time. J2EE industry does have
many tools to offer; however, Microsoft surpasses these offerings,
mostly. Good tools enable the faster development of applications. In
our experience, typical development times for Microsoft .NET applica-
tions tend to be less than for J2EE applications of equal complexity.
J2EE vendors are realizing this shortcoming and are changing it by con-
tinuously updating their tool sets. Also, open source Java-based devel-
opment tools such as Eclipse and Netbeans are providing good
alternatives in this space.

■■ Time to market. Ease of development coupled with support for better
tools amounts to a shorter time to market for your .NET-based applica-
tion or product. This is an important consideration, especially for pro-
jects with time constraints. However, you always have to balance faster
development with better scalability and potentially better performance.
J2EE makes simple development more complex and complex develop-
ments simpler. The converse of that is quite true for .NET, meaning,
.NET makes simple development simpler and complex developments
more complex.

■■ Support for multiple languages. Believe it or not, this is a plus for
Microsoft .NET in certain situations. Especially when you have to port
legacy code to managed environments, such as the one provided by
.NET, multiple language support can come quite handy. Although this
port is not very straightforward, Visual Studio .NET supports many tools
and add-ons that can simplify porting, for example, legacy code to .NET.

■■ Simplicity. One of the recurring complaints we keep hearing from J2EE
as well as the Java community is that J2EE is gradually turning into a
behemoth. With each passing day, some new Java Specification Request
(JSR) is initiated in the JCP. It is quite impossible for developers, mostly
busy in day-to-day development activities, to follow up with all these
actions in the J2EE and Java space. From this standpoint, the .NET plat-
form is easier to live with. Developers mostly need to keep track of
upcoming .NET products and their features, and they are all set with
the latest and the greatest in the .NET world!

Starting Your EJB Project on the Right Foot 597

26_576828 ch20.qxd 11/3/04 11:46 AM Page 597

Table 20.1 Resources to Help You Decide If J2EE Is Appropriate

RESOURCE DESCRIPTION

TheServerSide.com Keeps you up-to-date with various news
(www.TheServerSide.com) bulletins and articles about the J2EE space.

J2EE and .NET Application A number of studies and resulting research
Server and Web Services reports comparing performance of J2EE
Performance Comparison application servers with Microsoft .NET. The
(middlewareresearch.com/ Middleware Company did these studies.
endeavors/030730J2EEDOTNET/
endeavor.jsp)

“J2EE vs. Microsoft.NET” Whitepaper comparing J2EE and Microsoft.NET.
whitepaper by Roger Sessions Microsoft.NET wins.
(www.objectwatch.com)

“J2EE and .NET” article An article by one of the authors providing
by Rima Patel Sriganesh various perspectives.

As you may have realized by now, choosing between J2EE and .NET is not
a simple task by any means. The safest route is to diversify your investments
in both these IT infrastructures. That way you will not have to depend on
either of these two camps alone. However, we do believe that both J2EE and
.NET are going to coexist as viable platform choices for a foreseeable period.
Table 20.1 lists external resources to further help you make a sound decision.

Staff Your Project

If your CIO decides to do project development in-house, then you will need to
staff the J2EE project. With the limited resources of a typical IT organization
these days, you will often not find a sufficient number of people available for
the project and even if there are people available, they might not have enough
experience developing with J2EE technology. Don’t despair; many organiza-
tions are in the same position. You have several options:

■■ Hire full-time experienced J2EE employees. Full-time experienced
employees are the most cost-effective way to staff a development team.
Especially if you foresee a lot of new in-house J2EE development in the
near to mid-term future, it is advisable to build the required J2EE exper-
tise within the organization. One of the ways to build this expertise is to
hire new people. However, candidates for full-time employment, partic-
ularly those with significant J2EE skills, are often difficult to find. You
must have a solid recruiting process.

598 Chapter 20

26_576828 ch20.qxd 11/3/04 11:46 AM Page 598

■■ Educate existing developers on J2EE. For organizations with existing
development teams, a much easier alternative to hiring full-time J2EE
experts is to educate your existing staff on Java and J2EE through train-
ing provided by firms. You can fill in holes in your staff by hiring Java
developers or computer science graduates who are eager to learn J2EE.

■■ Hire short-term consultants. Consultants hired for several days or
weeks can help you with specific issues such as choosing a J2EE appli-
cation server; selecting tools, standards, and guidelines; resolving inter-
nal debates; providing an unbiased architectural review of your project;
aiding project initiation and planning; and mentoring in a specific tech-
nology. Short-term consultants are a bit pricey but provide significant
benefit to your project when used effectively for that expertise. Because
of their cost, engage these experts for short-term use only. All project
teams can benefit from bringing in one or more consultants at the onset
of a project.

■■ Hire long-term contractors. Long-term contractors are a happy
medium between full-time employees and consultants. They’re paid
more than employees but often significantly less than consultants. They
are often easier to hire because most developers perceive contracting as
high paying yet low risk, therefore more people choose this career path
and typically have the experience that you require. (Today’s J2EE con-
tractor was yesterday’s full-time J2EE employee somewhere else.)
Using contractors is an effective way to fill out your project team when
you don’t have enough full-time employees with J2EE experience and
don’t want to pay consulting rates for a significant portion of your staff.
Skills that you should demand of your contractors include expertise in
the specific application server that you are using, experience on one or
more projects of similar scope, and ideally, experience on one or more
projects of a similar nature.

If you decide to go the training or contracting route, the authors of this book
may be able to help you. See Table 20.2.

Table 20.2 J2EE-Related Service Vendors

VENDOR SERVICE FOCUS

The Middleware Company Provides training, consultants, and
(www.middleware-company.com) contractors for Java, EJB, J2EE, and XML

projects.

Ronin International Provides consultants and contractors for
(www.ronin-intl.com) object-oriented and component-based

architecture and software process
development.

Starting Your EJB Project on the Right Foot 599

26_576828 ch20.qxd 11/3/04 11:46 AM Page 599

Design Your Complete Object Model

Once your team is assembled and has a good level of J2EE understanding, you
are empowered to flesh out your object model. Ideally you should minimize
risk by working hand-in-hand with an external J2EE expert who has built such
systems in the past.

Whenever you inject a new object into this object model, all layers should be
considered. Ignoring the user interface, the business layer, or the data layer
could lead to false assumptions that bite you down the line.

See Table 20.3 for suggested resources when building a J2EE object model.

Table 20.3 Resources for Building Your J2EE Object Model

RESOURCE DESCRIPTION

TheServerSide.com Design Patterns section is invaluable resource for
(www.TheServerSide.com) building J2EE systems.

Chapters 11, 16, 18, Chapter 11 discusses various EJB design and
and 22 of this book development best practices. Chapter 16 discusses

various persistence-related best practices. Chapter
18 discusses best practices relevant to
performance optimizations. Chapter 22 is a sample
design and development for a complete EJB/J2EE
system.

“EJB Design Patterns” Patterns for building EJB object models.
by Floyd Marinescu, published
by John Wiley & Sons

“Core J2EE Patterns” Patterns for building J2EE systems (includes Web
by John Crupi, et al. published tier and EJB tier patterns).
by Addison-Wesley

J2EE Blueprints Best practices guide for J2EE systems.
(http://java.sun.com/j2ee/
blueprints)

600 Chapter 20

26_576828 ch20.qxd 11/3/04 11:46 AM Page 600

Implement a Single Vertical Slice

After you have defined an initial architecture, you need to start building to
that architecture. We recommend implementing an initial vertical slice of the
system. A vertical slice is a subset of the use-cases in your system. For exam-
ple, if you’re putting together an e-commerce site, you might have the vertical
slice be the search engine or the product catalog. A vertical slice should
demonstrate usage of all the relevant J2EE technologies in tandem—you
would want to show that a browser can connect to a Web server running
servlets, which in turn interacts both with EJBs that access your back-end data-
base and with JSPs to generate HTML to return to the browser. A vertical slice
is not just EJBs. Developing an initial vertical slice offers several benefits:

■■ Provides experience developing J2EE software. By developing an end-
to-end vertical slice, you learn how to work with all of the technologies,
tools, and techniques that you are going to apply on your project. You
have to start somewhere, and it’s better to discover and address any
problems as early in your project as possible.

■■ Provides experience deploying J2EE software. The first time you
deploy a J2EE application can be confusing. You have several types of
nodes to potentially install and configure Web servers, application
servers, database servers, security gears, and so on. You can safely gain
this experience by internally deploying your initial vertical slice into
your staging area.

■■ Reduces unsoundness risk. By developing an initial vertical slice, you
show that the technologies you have chosen all work together, thereby
eliminating nasty integration surprises later in your project. Remember
the old cliché: Everything works well in management presentations, but
not necessarily in reality.

Starting Your EJB Project on the Right Foot 601

REUSE OF J2EE COMPONENTS

In our experience, it is a myth that J2EE components achieve high reuse across
projects. Components are often copied-and-pasted, but not reused in the true
O-O sense.

For large organizations building complex J2EE systems, we recommend
investing in a J2EE best practices task force. This task force enforces coding
standards across all projects, such that all teams speak the same vocabulary for
objects in their system, and that correct design patterns are applied in projects.
The benefits of this task force include easing communication between projects
and enabling developers to easily transition between projects with minimal
ramp-up time.

If you choose the path of reuse, we recommend using the best practice
specified in Chapter 11 to achieve your goal.

26_576828 ch20.qxd 11/3/04 11:46 AM Page 601

■■ Proves to your project stakeholders that your approach works. At the
beginning of a project, your stakeholders may support you because
they have faith that your team can deliver what you have promised; but
their support will be even stronger if you show that you can actually
deliver. Furthermore, developing and then deploying (at least inter-
nally) an initial vertical slice can be incredibly important to your project
politically because your detractors can no longer claim that it isn’t
going to work.

■■ Answers the question: Will it scale? The vertical slice is a real working
piece of your system and should demonstrate how well your design
scales under load. You can stress test this slice before building the rest
of your system. This reduces risk, especially in situations where you
may have questions about whether your object model will work (for
example, will EJB entity beans scale?).

■■ Gets the design patterns right early on. Building the vertical slice gives
you experience with what works and what doesn’t work with J2EE. For
example, you’ll have an opportunity to compare and contrast different
model-view-controller (MVC) implementation paradigms. This leads to
the discovery of a common technical vision. Once you’ve locked down
that implementation paradigm, you can apply those best practices to
other vertical slices and enable developers to implement them faster.

602 Chapter 20

DO YOU START FRESH OR EVOLVE YOUR INITIAL SLICE?

Once you have developed your initial vertical slice, you need to make an
important decision: Do you throw it away to start fresh on future vertical slices,
or do you continue to evolve it into your system? The answer depends on the
quality of your work. If it is of poor quality—either because you rushed or
simply because you were new to the technologies or techniques and made
some fundamental mistakes—you should consider starting afresh. There’s
absolutely nothing wrong with starting fresh because you still would gain all
the benefits. On the other hand, if the quality of your initial vertical slice is
good enough, you can and should consider keeping the code (or at least
applicable portions of it) and use it as a base from which to develop your
system. This is something that the rational unified process refers to as building
the skeleton first. Also, XP refers to this technique of developing vertical slices
and then expanding upon it famously as iterative programming.

26_576828 ch20.qxd 11/3/04 11:46 AM Page 602

Choose an Application Server

The choice of an application server is important to your project. Although your
J2EE applications may be portable between vendors, the differences make it
painful to switch vendors.

Companies that are eager to get started with their EJB development should
go with one of the current market leaders. But companies who want to reduce
risk before jumping into purchasing a J2EE server should spend the time to
research whether the vendor they’re thinking about using is right for them.
This is applicable for both large and small projects. Our recommended process
is as follows:

1. List the features you want in an application server. A consultant can
help you build this list.

2. Weigh and prioritize the feature list.

3. Eliminate all vendors that don’t meet the majority of your criteria.

4. With the two or three vendors left, download and deploy your initial
vertical slice into those application servers. You can then measure how
well these application servers handle your specific business problem, as
well as their general usability.

In all cases, we recommend you do not purchase your application server
until you’ve deployed your vertical slice into the application server. You may
find the application server does not behave as the vendor’s marketing propa-
ganda promised. Download that free evaluation copy and deploy that real,
working slice of your system into the server to see for yourself.

The following are suggested resources for choosing an application server:

■■ Chapter 21 of this book provides a guide to choosing an EJB server.

■■ TheServerSide.com application server matrix (theserverside.com/
reviews/matrix.tss).

■■ Research reports from various analyst firms. We recommend you own
an updated copy of Gartner’s Application Server Evaluation Model
(ASEM) and Server Magic Quadrant report.

Divide Your Team

Dividing your J2EE team is one of your most critical decisions. When assem-
bling a J2EE project team, you have two basic choices:

Starting Your EJB Project on the Right Foot 603

26_576828 ch20.qxd 11/3/04 11:46 AM Page 603

■■ Horizontal approach. Have folks specialize in different technologies.
For example, you’d have a JSP team, a servlets team, an EJB session
beans team, and an EJB entity beans team. Members of your team
become specialists in specific technologies.

■■ Vertical approach. Have folks specialize in vertical business use cases.
For example, you’d have a search engine team, a product catalog team,
and a payment processing team. Team members become generalists and
gain experience with all the J2EE technologies involved in that domain,
such as servlets, JSP, and EJB.

You can also use a hybrid approach, which is a combination of the two.
Table 20.4 describes the horizontal, vertical, and hybrid approaches to team
organization with their advantages and disadvantages. Table 20.5 lists several
recommended resources for building project teams.

Table 20.4 Team Organization Strategies

STRATEGY ADVANTAGES DISADVANTAGES

Horizontal—Your team • The same team uses the • Specialists do not gain
is composed of same API across all exposure to other APIs,
specialists in particular vertical use cases. This resulting in disconnects
J2EE APIs. ensures consistency in between layers.

design patterns, paradigms, • Requires strong planning
and frameworks used. to achieve parallel

• Specialists become development. Need to
proficient with their API, define rock-solid
yielding rapid application interfaces between
development. layers.

• Retention issues arise.
Specialists do not have a
concept of ownership of
a use case. They only
understand only a single
part of J2EE, and so their
skills grow more slowly.

Vertical—Your team is Smooth end-to-end • Generalists need to know
composed of generalist development on an many technologies and
developers who gain individual use-case basis. are typically highly paid
experience with every • Parallel development is and difficult to find.
J2EE technology. They easy if use cases are • Generalists typically do
focus on a specific separated well. Each not have the specific
problem domain or developer works on his technical expertise
use case. own use case. Developers required to quickly solve

have a concept of detailed problems.
ownership of a use case. • Subject matter experts
They gain a wider range must work with several
of skills. Good for developer groups,
retention. increasing their burden.

604 Chapter 20

26_576828 ch20.qxd 11/3/04 11:46 AM Page 604

Table 20.4 Team Organization Strategies

STRATEGY ADVANTAGES DISADVANTAGES

• Good for educating • Design patterns,
developers on different paradigms, and
technologies used in your frameworks used may
system to give them a change between use
broader picture. cases.

• If use cases are
interdependent, it is
difficult to partition the
team.

Hybrid—Your team is • The same team uses the • Requires planning and
made up of both same API across all structure early on in the
generalists and specialists. vertical use cases. This project.
The generalists ensures consistency in • Requires an
have authority over one design patterns, understanding and
or more use-cases. They paradigms, and buy-in from the team
support API specialists frameworks used. that the generalists have
who work on many • Specialists become authority within their use
use cases within a proficient with their API, cases.
particular API. yielding rapid application • Must still spec out

layers for specialists to interfaces between
develop in parallel. developments.

• Individual use cases
are implemented
consistently.

Table 20.5 Recommended Resources for Building a Project Team

RESOURCE DESCRIPTION

Peopleware: Productive Project This book is the de facto classic within the
and Teams, 2nd Edition, information technology industry for how to
Tom Demarco and Timothy Lister, build and manage a software project team.
1999, Dorset House Publishing

Constantine on Peopleware, This book presents a collection of writings
Larry L. Constantine, about the software aspects of software
1995, Yourdon Press development, including developer

productivity, teamwork, group dynamics, and
developer personalities. This is a good book
to read for anyone trying to understand how
to organize and then manage a bunch of
software “geeks.”

(continued)

Starting Your EJB Project on the Right Foot 605

26_576828 ch20.qxd 11/3/04 11:46 AM Page 605

606 Chapter 20

Table 20.5 (continued)

RESOURCE DESCRIPTION

Organizational Patterns for Teams, The paper describes a collection of patterns
Neil B. Harrison, 1996, Pattern for building a software development team,
Languages of Program Design 2, including Unity of Purpose, Diversity of
pages 345—352, Addison-Wesley Membership, and Lock ‘Em Up Together.
Publishing Company

The Unified Process Inception This book describes a collection of activities
Phase, Scott W. Ambler & and and best practices for the Rational Unified
Larry L. Constantine, 2001, Process (RUP) Inception phase, including
CMP Books, www.ambysoft.com advice for building your project team.

ExtremeProgramming.Org A Web site that discusses how to start
working on new projects that follow XP
methodology.

So which approach is better? The answer depends on the goals for your
project:

■■ If your goal is to get your project completed quickly and in a consis-
tent manner, our experience has shown us that the horizontal or hybrid
approach is superior. Design patterns, paradigms, and frameworks are
kept consistent across the board. Specialists build a core competency in
their API, yielding rapid application development.

■■ If your goal is to invest in the education of your developers to reduce
retention issues or to give them a broader long-term skill set, the verti-
cal approach works well. Developers gain experience with every tech-
nology in J2EE. The downside is consistency of design patterns across
use cases. In a day and age when good software professionals are hard
to find, let alone keep, this is an important consideration.

Invest in Tools

A number of tools are worth a look when building your EJB/J2EE deployment.
These include testing tools (JUnit, MockObjects, and so on), profiling tools
(JProbe or OptimizeIt), UML modeling tools (Borland Together J or IBM Ratio-
nal Rose), IDEs (Eclipse, NetBeans, IBM Websphere Studio, Sun Microsystems
Java Studio Enterprise, Oracle JDeveloper, or Borland JBuilder), and more.
Chapter 11 discusses the subject of tools further.

Rather than describe each and every tool that’s out there, we are providing
a resource that is updated very frequently by the users of TheServerSide.com
who post reviews of various tools and other J2EE products at theserverside.com/
reviews/index.tss.

26_576828 ch20.qxd 11/3/04 11:46 AM Page 606

Invest in a Standard Build Process

An easy choice when picking tools is a tool to help you with a standard build
process. If you decide to use a standard build process, you must use some sort
of build scripts, written in some scripting language. The build tool does not
take the place of your build process—it only acts as a tool to support it. What
characteristics would you like to have in this scripting language?

■■ Widely understood. It would be nice if your developers (who are more
often than not doing the builds) already understood the technology
behind the language.

■■ Functional. The scripting language needs to support a wide array of
functionality out of the box, especially for Java features.

■■ Extensible. Since no two projects are the same, and projects use all sorts
of different technology, it would be useful if you could add functional-
ity to the scripting language to handle your particular needs.

■■ Cross-platform. In an enterprise environment, you usually are develop-
ing on a Windows machine and doing testing and quality assurance on
a non-Windows box. You want your build scripts to be as cross-platform
as your code.

The Apache group’s Ant build tool (http://jakarta.apache.org) combines
ideas from Java and XML to achieve these goals. Many of our clients are using
Ant successfully, and we highly recommend it. Chapter 11 discusses various
best practices that involve usage of Ant tool.

Next Steps

With your initial vertical slice in place, you are in a position to continue your
construction efforts by developing additional slices of your system. For each
vertical slice, you effectively run through a miniature project life cycle—flesh-
ing out its requirements, modeling it in sufficient detail, coding it, testing it,
and internally deploying it. This approach reduces your project risk because
you deliver functionality early in the project; if you can deploy your system
internally, you can easily make it available to a subset of your users to gain
their feedback. Furthermore, your development team gains significant lifecycle
experience early in the project, giving developers a better understanding of
how everything fits together.

Starting Your EJB Project on the Right Foot 607

26_576828 ch20.qxd 11/3/04 11:46 AM Page 607

Summary

In this chapter, we gained greater insight into how to start our EJB projects on
the right foot. We learned about a time-tested process that has worked for
other organizations to reduce risk and lead to a win-win situation for all par-
ties involved. Armed with this knowledge, you should be able to confidently
begin work on your EJB project.

608 Chapter 20

26_576828 ch20.qxd 11/3/04 11:46 AM Page 608

609

Throughout this book, we’ve explained the concepts behind EJB programming
and put the concepts to practice in concrete examples. But perhaps an even
more daunting task than learning about EJB is choosing from the legion of con-
tainer/server product vendors out there—currently more than 30 such prod-
ucts. For the uninformed, this is a harrowing task. What should you be looking
for when choosing an EJB product? That is the focus of this chapter.

To make the best use of this chapter, first ask which application server fea-
tures are most important to you in your deployment, including specific fea-
tures that you need (such as support for a particular database). Once you’ve
listed your requirements, assign a weight to each feature. For example, if trans-
parent fail-over is important in your deployment, you might rank it a 7 of 10.
Once you’ve weighed each feature, you can begin evaluating application
server products and create a scorecard for each product.

Once you’ve reduced your list of servers to two or three, we recommend
that you deploy code into those servers and test them for yourself. You should
measure both quantitative data (how many transactions per second can the
server support?) as well as qualitative data (how easy is the server to use?). See
Chapter 20 for more details on how choosing an EJB server fits into a larger EJB
development process.

The remainder of this chapter discusses our criteria for choosing an EJB
server.

Choosing an EJB Server

C H A P T E R

21

27_576828 ch21.qxd 11/3/04 11:47 AM Page 609

This chapter does not recommend a particular EJB server. Why not? Because
by the time this book fell into your hands, the information would already be
out of date. Instead, we are hosting a complete review section on
application servers and other J2EE products at theserverside.com/reviews/
index.tss that contains a lot of useful information.

J2EE Standard Compliance

Perhaps the most important issue to think about when choosing an EJB con-
tainer/server product is compatibility. When you make your purchase deci-
sion, you need to write code and purchase beans that are compatible with your
container/server product. If in the future you decide to switch to a different
vendor’s product, the transition will surely not be free and it will always
involve some migration headaches. While the EJB standard defines the inter-
faces that should make products compatible, realistically, every vendor’s prod-
uct will differ from the next in some semantic ways, which will impact your
deployment. Ideally, you want to make the right choice on your first purchase.

J2EE v1.4 ships with a compatibility test suite, which verifies that a particu-
lar vendor’s product is indeed compatible with the J2EE 1.4 specifications,
including EJB 2.1. You can verify compatibility by looking for a J2EE seal of
approval, which Sun Microsystems stamps on J2EE-compliant products.

Pluggable JRE

Some containers are hard-coded to a specific version of the Java Runtime Envi-
ronment (JRE). Other vendors are more flexible, supporting many different
JREs. This may be important to you if you have existing applications that
depend on specific JRE versions.

Conversion Tools

Does the EJB server ship with tools to migrate old J2EE code into the latest ver-
sion? Consider that even though J2EE 1.4 sounds new today, it won’t be new
tomorrow. You may need to upgrade your application in the future to a new
version of J2EE, and your vendor’s historical support of migration tools is
most indicative of whether it will support such migration in the future.

610 Chapter 21

27_576828 ch21.qxd 11/3/04 11:47 AM Page 610

Complex Mappings

Be sure your EJB server enables you to perform any complex database map-
pings that you may need, such as mapping to stored procedures and mapping
to complex JOIN statements across a relational database, as well as the ability
to write custom SQL if necessary.

Third-Party JDBC Driver Support

Some servers do not allow the substitution of JDBC drivers—or if they do, they
may disable features, such as connection pooling. Be sure your vendor sup-
ports your database connection needs.

Lazy Loading

Lazy loading means to load entity bean data on demand. This is important for
large object graphs where the user may only need access to a small portion of
the graph. Note, however, that your EJB server should allow you to tune lazy
loading on a per-bean basis, so that you can load an entire object graph if you
know you need that entire graph.

Deferred Database Writes

A deferred database write means to defer JDBC write operations until trans-
action commit time. This is important, because if you have a transaction
involving many EJB components and thus many database writes, it is counter-
productive to perform many network roundtrips to the database. The superior
approach is to perform one large write at transaction commit time.

Pluggable Persistence Providers

Some EJB containers provide proprietary APIs for plugging in third-party per-
sistence modules, such as a module that persists your entity beans to an object
database rather than a relational database. Other possibilities include persist-
ing to a file, persisting to a relational database using a simple object-relational
mapping, persisting to a relational database using a complex object-relational
mapping, or persisting using user-defined persistence routine (which may
implement persistence through a legacy application).

Choosing an EJB Server 611

27_576828 ch21.qxd 11/3/04 11:47 AM Page 611

If you’re planning on plugging in a third-party persistence engine into your
container, be sure that you can gain transactions and connection pooling.

In-Memory Data Cache

If you are using entity beans (and many deployments will, now that they can
be accessed in a high-performance way through local interfaces), be aware that
entity bean performance is not equal between application servers.

Some application servers work in a pass-through mode, which means that
any entity bean operations are passed through to the database, resulting in a
low-level database transaction. Other vendors implement smart caching of
entity beans, allowing some operations to occur in memory rather than at the
database level. For example, if you’re merely reading the same data over and
over again from an underlying storage, you should not need to hit the data-
base on every method call. The difference between pass-through and caching
application servers is tremendous. Some vendors have reported a 30-fold or
more performance increase over the pass-through application server.

There is even a third-party marketplace for such caching providers. For exam-
ple, Javlin is a product that plugs into an EJB server to add caching support.

Integrated Tier Support

Throughout this book, we’ve concentrated on EJB as a server-side component
model. Now in many deployments, Web components written with servlet and
JSP technology need to access the EJB layer. Some EJB servers offer the ability
to run servlets and JSPs in the same JVM that you run your enterprise beans. If
you want this style of deployment, look for this feature.

Scalability

Your EJB server should scale linearly with the amount of resources thrown at
it. If you add extra machines with equal power (memory, processor power,
disk space, and network bandwidth), the number of concurrent users your
server-side deployment can support and the number of transactions your sys-
tem can execute per second should increase linearly. Be sure to ask your EJB
server vendor for case studies and customer references to back up its scalabil-
ity story.

612 Chapter 21

27_576828 ch21.qxd 11/3/04 11:47 AM Page 612

Other questions to ask include:

■■ How long does it take for the EJB server to start up or restart? This is
important for development as well as for production deployment. If the
restart cycle is long, it makes it inconvenient to develop and debug with
the EJB server. In production, a slow startup cycle affects the availabil-
ity of the application to the clients.

■■ Can the EJB server recover from backend database loss and restart? For
example, if the EJB server temporarily loses connectivity to the data-
base, does it need to be restarted to reestablish connectivity to the data-
base, or can it do so automatically?

High Availability

High availability is critical for server-side deployments. You want the highest
level of confidence that your EJB server won’t come down, and you can look
for a number of things to increase your confidence. Your EJB server vendor
should have compelling numbers indicating the availability of its product and
backed up by existing customers. Realize, too, that your EJB server is only as
available as the operating system and hardware that it’s deployed on. Be sure
to ask your EJB server vendor which operating systems and hardware config-
urations they support. See Chapter 19 for further discussion on this subject.

Security

A typical EJB deployment leverages predefined security schemes that are
already available in existing systems. For example, an IT shop may store user
information in an LDAP server, in which case you should be able to use this
LDAP user information (credentials, and so on) in your EJB deployment.
Many EJB products offer assistance with importing and exporting user data
from existing data stores such as directories, databases, and so on. Thus you
won’t have to write code from scratch for migrating this data into your data
repository, thereby saving you time when deploying EJB products. Some sys-
tems can even tap into existing security systems—they get the user and autho-
rization information from the existing security service.

Standardized support for the Java Authentication and Authorization Ser-
vice (JAAS) will enable you to plug in different security providers.

Choosing an EJB Server 613

27_576828 ch21.qxd 11/3/04 11:47 AM Page 613

Other questions include:

■■ Can the server integrate with LDAP in real-time for authentication and
authorization?

■■ Does the security system support SSL?

■■ Can a firewall be placed between the servlet container and the EJB con-
tainer? Between a third-party Web server and the servlet container? Can
it be an application proxy-type firewall or only a packet filtering firewall?

See Chapter 13 for further discussion on securing EJB applications.

IDE Integration

An essential component of any development is an easy-to-use Integrated Devel-
opment Environment (IDE), such as IBM Websphere Studio, BEA WebLogic
Workshop, Sun Microsystems Java Enterprise Studio, or Oracle Jdeveloper.
IDEs can assist in code management, automate programming tasks, and aid in
debugging, among many other things. Some IDEs also help in modeling EJB
applications.

Most of the IDE vendors these days are also EJB container/server vendors—
examples are IBM, BEA, Sun, and Oracle. As a result, IDEs from such vendors
are often well integrated with their server products, enabling seamless devel-
opment and deployment experience. The end result is compelling: The IDE
can aid in coding, debugging, and deploying your beans by working together
with the application server. Other EJB server vendors who do not have their
own IDE are forming strategic alliances with IDE vendors to gain a competi-
tive edge in the marketplace.

Some useful EJB specific features to look for in IDEs include:

■■ Automatic creation of home and remote interfaces from bean

■■ Automatic identification of business methods

■■ Creation and editing of deployment descriptors

■■ Construction of Ejb-jars, Web archives (.wars), and enterprise archives
(.ears) from within the IDE

■■ Direct deployment from the IDE to the J2EE server

■■ Debugging into the container via the Java remote debug protocol

See Chapter 11 for more discussion on tools.

614 Chapter 21

27_576828 ch21.qxd 11/3/04 11:47 AM Page 614

UML Editor Integration

The diagrams in this book were drawn using the Unified Modeling Language
(UML), the de facto standard for communicating development architectures
between programmers. A number of visual UML editors are on the market,
such as IBM Rational Rose and Borland Together J. Many of these UML editors
enable you to visually design EJB components, and then automatically gener-
ate and deploy those components into the EJB server of your choice, yielding
rapid application development. Be sure to ask your EJB server vendor about
which UML editors support their servers.

Intelligent Load Balancing

A common deployment scenario involves a set of machines, all working
together to provide an n-tier solution.

The variety of ways to load balance requests across a set of machines include
random, round-robin, active load balancing, weighted load balancing, and
custom algorithms (see Chapter 19 for more on this).

In the long run, if you have many requests hitting your servers, the particu-
lar load-balancing algorithm that you choose will likely not matter, as long as
your server supports some algorithm. Load-balancing algorithms become par-
ticularly important in two cases: if you have a heterogeneous hardware situa-
tion and need to skew the load to one machine; or if you only have a few,
heavy-duty requests coming into your system. If you’re among these cases, be
sure that your EJB server supports the load-balancing algorithms you require.

Stateless Transparent Fail-over

When your application server crashes, there should be a transparent rerouting
of all requests to a different application server. The natural place to put this
process is in intelligent client-side proxies, which intercept all network-related
problems and retry methods on alternative application servers or in the object
request broker runtime. Transparent fail-over is fairly easy to implement if you
restrict the client to invoke only on a stateless server and assume that all trans-
actional resource updates can be rolled back.

Choosing an EJB Server 615

27_576828 ch21.qxd 11/3/04 11:47 AM Page 615

Clustering

A more advanced level of transparent fail-over is a stateful transparent fail-
over or clustering. With clustering, your application server is replicating a con-
versational state across servers. If an application server crashes, another server
can pick up the pieces since it has replicated state. If your application server
supports clustering for Web components (servlets, JSP scripts) and for enter-
prise beans, you can completely eliminate single points of failure from your
deployment, ensuring uninterrupted business processes.

An extension of clustering is application partitioning—configuring compo-
nents to run only on particular nodes within a cluster. High-end servers pro-
vide tools for managing this complexity. Chapter 19 discusses this subject
further.

Java Management Extension (JMX)

JMX is a J2EE API for monitoring a deployment. If your EJB server supports
JMX, you can write an application that monitors your EJB server. Your appli-
cation could set properties in your EJB server as well; for example, it could
modify the current thread pool, redeploy an EJB component, and so on. If you
want to write an application that performs advanced monitoring or control
over your EJB deployment, JMX is the way to go.

Administrative Support

A Web-based administrative console allows system administrators to monitor
your deployment from afar. Web-based consoles are superior to thick client
administrative consoles because you can easily access your system from any
machine, and firewalls don’t get in the way.

Command line–based administration is also important. It is necessary to
allow the automation of deployment and management. After all, your auto-
mated testing process will need to deploy beans quickly into a server. It is
inappropriate to require a human to click a Web-based console to achieve this.
Common tasks that need to be automated from the command line include:

■■ Start, stop, and restart the EJB server

■■ Deploy, redeploy, and undeploy an application

■■ Configure other EJB server resources such as connection pools

616 Chapter 21

27_576828 ch21.qxd 11/3/04 11:47 AM Page 616

Hot Deployment

Hot deployment means redeploying EJB components into a running EJB server
without shutting down the EJB server. This feature may be necessary if you are
in a 24x7 environment where even a small amount of downtime during sched-
uled maintenance is unacceptable.

Instance Pooling

Instance pooling is the pooling and reuse of EJB components. Advanced EJB
servers can pool and reuse any type of component, be it a stateful or stateless
session bean, CMP or BMP entity bean, or message-driven bean. Look for flex-
ibility in configuring this pool size, including configurable rules for dynami-
cally increasing and decreasing its size under various load conditions.

Automatic EJB Generation

Some EJB servers ship with wizard-like or command line tools to automati-
cally generate EJB components for you. For example, you could supply the
name of an entity bean, along with the names and types of its persistent fields.
From this, the tool should be able to generate your bean class, component
interfaces, home interfaces, deployment descriptor, and Ejb-jar file. If EJB
servers do not support this feature natively, you should see if a popular code
generation utility, such as XDoclet, supports the generation of code and
deployment descriptors for your specific EJB server. Refer to Chapter 11 for
more on code generation for EJB.

Clean Shutdown

What happens when you want to take down an application server for mainte-
nance for rebooting the machine the application server is installed on, upgrad-
ing the application server, or installing some software on the machine? In this
situation, if you simply kill the process, any connected clients’ work would be
lost, potentially resulting in critical errors.

This leads to another area of value that EJB products can provide: a clean
way to shut the application server down without having a gross impact on
clients. For example, the EJB application server may simply have a routine that
refuses to accept connections from new clients and instead reroutes these
requests to other application server instances and waits for all existing clients
to gracefully disconnect.

Choosing an EJB Server 617

27_576828 ch21.qxd 11/3/04 11:47 AM Page 617

Real-Time Deployment

Starting up and shutting down an EJB application server is usually a fairly
heavyweight operation. If you’re debugging an EJB application, having to
restart the EJB application server each time you regenerate your beans is a has-
sle. Having to shut down an application server to deploy new beans has an
even greater impact, because that application server cannot service clients
when it is down.

An enhanced value that some EJB products can provide above and beyond
the EJB specification is a mechanism for deploying enterprise beans in real
time. This means the ability to deploy and redeploy beans without shutting
down a running application server.

Distributed Transactions

In Chapter 12, we examined transactions in depth and noted how multiple
processes on different physical machines could participate in one large trans-
action. This is known as a distributed transaction, and it is a fairly heavyweight
operation. It necessitates the use of the distributed two-phase commit protocol, a
reliable but cumbersome dance that transaction participants must take part in
for a distributed transaction to succeed.

If you require distributed transactions, make sure your EJB server supports
them, and also supports a clean recovery in case of transactional failure. For a
two-phase commit transaction to work, you also need to have the same trans-
action service deployed on all participant machines or to have interoperable
transaction services.

Superior Messaging Architecture

If you are using messaging in your system, realize that not all messaging archi-
tectures were created equal. Some messaging architectures do not enable you
to cluster your JMS destinations, which creates single points of failure. Other
messaging architectures cannot support as many messages per second as
others. Be sure to get these statistics from your EJB server vendor.

You also might want to look for additional quality of services (if you need
them) such as synchronous and asynchronous delivery, publish/subscribe
and point-to-point, acknowledgment (ACK) and negative acknowledgment
(NACK) guaranteed message delivery, certified delivery, and transactional
delivery.

618 Chapter 21

27_576828 ch21.qxd 11/3/04 11:47 AM Page 618

Provided EJB Components

Some EJB servers ship EJB components as optional packages with their
servers. This can include personalization components, marketing components,
e-commerce components, vertical industry specific components, and many
more. Making use of any of these components may help shorten your devel-
opment cycle.

If, on the other hand, you plan to use a third-party bean provider’s compo-
nents, you should ask if the components are certified on the EJB servers you
have chosen. If not, you run the risk of incompatibility.

Web Services

Web Services technologies (SOAP, WSDL, and UDDI mainly) enable you to
integrate with existing systems seamlessly. Evaluate the support for these Web
Service protocols in terms of SOAP performance, tools support, and so on
from your vendors.

Workflow

Advanced EJB servers, as well as third-party independent software develop-
ers, are shipping J2EE-based workflow engines. A workflow engine enables
you to model business processes. A business process could span EJB compo-
nents, existing enterprise systems, partner facing systems, and more. A work-
flow engine typically has a flow of control that can change depending on the
state of the current system. These flows are designed visually using a graphi-
cal workflow design GUI. This is extremely useful for involving business ana-
lysts in the development of business processes.

Currently the standard framework for supporting workflow protocols on
J2EE platform, Java Business Integration (JBI), is a work in progress within the
Java Community Process. JBI is expected to release in around spring of 2005.
Until then, any workflow solution you find will remain proprietary. When
shopping for a workflow engine, ask your vendor the following:

■■ Does the workflow engine integrate with J2EE?

■■ Is the workflow engine itself written in J2EE, so that you are not inject-
ing foreign technology into your deployment?

■■ Does the workflow engine integrate with your existing infrastructure
such as message-oriented middleware or does it require you to buy
new infrastructure?

Choosing an EJB Server 619

27_576828 ch21.qxd 11/3/04 11:47 AM Page 619

■■ Does the workflow engine allow for long-lived business processes that
may take days, weeks, or even months? One example is a workflow
that begins with purchasing a book on a Web site, then leads to fulfill-
ing that book, and finally handles a possible return shipment of the
book. That business process could span quite some time.

Open Source

Some EJB servers are open source code servers, similar to Linux, in that any-
one can contribute to their development. Examples are JBoss, OpenEJB, and
Apache Geronimo.

If you choose an open source code EJB server, be sure you choose one for the
right reasons—you’d like more fine-grained control over the code base, you
are running a nonmission critical deployment, or you’d like to foster the open
source code community.

The wrong reason is usually price. Realize that the total cost of ownership of
your deployment includes far more than just the licensing cost of the applica-
tion server. The total cost of ownership includes hardware costs, software
costs, costs to employ developers, costs to train developers, and opportunity
costs if your system is not ideal. Unless you are strapped for cash, we recom-
mend you take price out of the equation.

Specialized Services

EJB vendors provide numerous other features to differentiate their products.
Some of these features do not impact your code at all. For instance, your bean
code should always remain the same no matter what load-balancing scheme
your application server uses. Other features may require explicit coding on
your part, such as ERP integration. When choosing a product, ask yourself
how much explicit coding you would need to write to a particular vendor’s
proprietary API. The more of these APIs you use, the less portable your EJB
code becomes.

Some examples of special features offered in EJB products are:

■■ Optimized mechanisms for pooling and reusing sockets, multiplexing
many clients over a single socket

■■ Specialized JVM switches for added performance

■■ Advanced systems management integration to professional monitoring
tools

620 Chapter 21

27_576828 ch21.qxd 11/3/04 11:47 AM Page 620

As you can see, the emergence of these services becomes one of the chief
advantages of EJB as a competitive playing field that encourages vendors to
provide unique qualities of service.

Nontechnical Criteria

There are a host of nontechnical criteria to consider as well:

■■ Reputable vendor. Does the vendor have a brand name and a history
in distributed transaction processing systems space? How large is the
firm? How many years has it been in operation?

■■ High-quality technical support available after hours. If a crisis situa-
tion ensues in the middle of the night, will your vendor be available to
resolve problems?

■■ Verifiable customer success stories. Look for large, well-known (ide-
ally Fortune 500) companies implementing solutions with the vendor’s
product. Don’t hesitate to ask tough questions to get beyond the mar-
keting hype.

■■ Training and consulting services available. The company should have
its own internal training and consulting services or should have chan-
nel partnerships with other firms to provide those services to you. Be
sure that the vendor’s training or consulting department is adequately
staffed to provide the care you need, and that the vendor is not over-
burdened with other projects.

■■ Historical velocity to meet standards. Looking back in time, how close
has the vendor’s release cycle been to the J2EE specifications’ release
cycle? The shorter, the better.

■■ Free evaluation copy. Any deserving vendor should let you evaluate a
product free of charge for either a limited time period or as a stripped-
down product version. Otherwise, rule that vendor out immediately.

Summary

In this chapter, you’ve surveyed the criteria for making an EJB application
server purchase decision. The EJB specifications (as well as the products that
implement it) are evolving rapidly. The features offered in the marketplace are
likely to change over time. For the latest information about EJB products and
news, check out the following resources:

Choosing an EJB Server 621

27_576828 ch21.qxd 11/3/04 11:47 AM Page 621

■■ TheServerSide.com. TheServerSide.com maintains an application
server comparison matrix, a very useful tool for evaluating appli-
cation servers (theserverside.com/reviews/matrix.tss). There
are also ECPerf/SPECjAppServer benchmark results to compare
the performance of different application servers available on
middlewareresearch.com.

■■ Online whitepapers. Some research firms offer reviews they have per-
formed on EJB products. An example of such a site is TechMetrix.com.

■■ The Sun Microsystems Web site. The http://java.sun.com/j2ee/
licensees.html page has a list of current J2EE licensees that you can refer
to, to find out whether your vendor is one of them. J2EE licensees are
the ones to provide J2EE standard compliant application server.

■■ Magazine article reviews. Some Java-based print magazines offer com-
parisons of EJB products as well. Examples here include Java Developer’s
Journal and JavaPro.

622 Chapter 21

27_576828 ch21.qxd 11/3/04 11:47 AM Page 622

623

In this chapter, we will show you how to design and build a complete
EJB/J2EE system. In particular, you’ll learn how to use entity beans, session
beans, and message-driven beans together, and how to call EJB components
from Java servlets and JavaServer Pages (JSP). We will use container-managed
persistence (CMP) and also expose a stateless session bean as a Web Service for
integration with other applications.

We will first motivate our deployment by describing the business problem.
We’ll then design the example system. The complete source code is available
on the book’s accompanying Web site at www.wiley.com/compbooks/roman.
The code is fully commented and ready to run. As we go through the design,
we will point out implementation alternatives that you can use for your own
experiments.

The Business Problem

Jasmine’s Computer Parts, Inc. is a fictitious manufacturing company that
makes a wide variety of computer equipment, including motherboards,
processors, and memory. Jasmine, the company’s owner, has been selling her
products using direct mail catalogs, as well as a network of distributors and
resellers.

EJB-J2EE Integration: Building a
Complete Application

C H A P T E R

22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 623

Jasmine wants to lower the cost of doing business by selling her computer
parts directly to the end customer through a Web-based sales model. Jasmine
has given us a high-level description of the functionality of the e-commerce
solution. She’d like the following features in the system we provide for her:

■■ User authentication. Registered users would first log in to the Web site
to access the complete catalog. Only registered users should be able to
browse and purchase from her online store.

■■ An online catalog. Users should be able to browse her complete prod-
uct line on the Web and view details of each product.

■■ Shopping cart functionality. While browsing the catalog, a user should
be able to choose the products he or she wants. The user should be able
to perform standard shopping cart operations, such as viewing the cur-
rent shopping cart or changing quantities of items already picked out.

■■ Specialized pricing functionality. Users who order items in bulk
should get a percentage discount. For example, if I order five memory
modules, I get a 10 percent discount on that memory. In addition, regis-
tered users who frequent the store should get additional discounts.

■■ Order generation. Once the user is happy with his or her selections and
has committed to ordering the products, a permanent order should be
generated. A separate fulfillment application (which we won’t write)
would use the data in the orders to manufacture the products and ship
them. The user would be able to return to the Web site later to view the
status of current orders.

■■ Billing functionality. Once the user has placed the order, we should bill
it to him or her. If the user does not have enough funds to pay, the order
should be cancelled.

■■ E-mail confirmation. After the order has been placed and the credit
card debited, a confirmation e-mail should be sent to the user.

This is definitely going to be a full-featured deployment!

A Preview of the Final Web Site

To give Jasmine an idea of what the final product should be like, our sales team
has put together a series of screenshots. The screenshots show what the e-com-
merce system will look like when an end user hits the Web site. These example
screens do not yet contain any artwork or corporate design items because we
focus on functionality here.

624 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 624

Figure 22.1 shows a user logging into the system initially. Our authentica-
tion will be through login names and passwords.

When the user has been recognized, he or she is presented with a Web store-
front. The Web storefront is the main page for Jasmine’s online store (see Fig-
ure 22.2). From the Web storefront, the user can jump to the catalog of products
that Jasmine offers (see Figure 22.3). A user who wants to view details about a
product can check out the product detail screen (see Figure 22.4). The user can
also add the product to the current shopping cart—a temporary selection of
products that the user has made but has not committed to purchasing yet.

Figure 22.1 A user logging into Jasmine’s Computer Parts.

EJB-J2EE Integration: Building a Complete Application 625

28_576828 ch22.qxd 11/3/04 11:47 AM Page 625

Figure 22.2 The Web storefront for our online store.

626 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 626

Figure 22.3 Browsing the online catalog.

EJB-J2EE Integration: Building a Complete Application 627

28_576828 ch22.qxd 11/3/04 11:47 AM Page 627

Figure 22.4 Viewing a particular product.

Once the user has made product choices, the user can view a cart for the cur-
rent selections (and make any last-minute changes), as shown in Figure 22.5.
When the user clicks the button to purchase the selection, he or she is billed
and a new order is generated. Finally, the user is given the order number for
future reference (see Figure 22.6).

628 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 628

Figure 22.5 Viewing and modifying a cart.

EJB-J2EE Integration: Building a Complete Application 629

28_576828 ch22.qxd 11/3/04 11:47 AM Page 629

Figure 22.6 Making a purchase.

Scoping the Technical Requirements

While meeting Jasmine’s requirements, we’d like to develop an extensible
infrastructure that she can add to in the future. That means making the right
abstractions to loosen the coupling between our components. Ideally, Jasmine
should be able to plug in a different implementation of any part of the system
with very few modifications.

Our deployment will be partitioned into three tiers:

■■ The presentation tier involves one or more Web servers, each responsi-
ble for interacting with the end user. The presentation tier displays the
requested information in HTML to the end user; it also reads in and
interprets the user’s selections and makes invocations to the business
tier’s EJB components. The implementation of the presentation tier uses
servlets and JSP technology.

■■ The business logic tier consists of multiple EJB components running
under the hood of an EJB container or server. These reusable compo-
nents are independent of any user interface logic. We should be able to,

630 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 630

for example, take our business tier and port it to a different presentation
tier (such as a disconnected salesforce’s laptop) with no modifications.
Our business tier is made up of session beans, entity beans, and mes-
sage-driven beans. To allow Jasmine to integrate the pricing functional-
ity with other applications, we will additionally expose this bean as a
Web Service.

■■ The data tier is where our permanent data stores reside. The databases
aggregate all persistent information related to the e-commerce site. Jas-
mine has relational databases already in place, so we need to map any
persistent data to relational tables.

The Business Logic Tier
Let’s begin designing our EJB model. The major beans are shown in Figure
22.7. We’ll explain this UML diagram as we go.

We will co-locate our servlets and JSP files in the same process as our EJB
components, allowing us to exclusively use efficient local interfaces. As you
can see from this diagram, we are following the design strategy of hiding all
entity beans behind a session bean façade as recommended multiple times in
this book.

Figure 22.7 The major EJB components in our system.

Customer
(Entity Bean)

Order Processor
(Message-Driven Bean)

Order
(Entity Bean)

Cart
(Stateful SB)

Pricer
(Stateless SB)

Cart Line Item
(class)

Product
(Entity Bean)

Order Line Item
(Entity Bean)

stores product
selections for is placed for

verifies credit card for,
sends email conf for,
and marks as permanent

can transform itself into

is composed of

computes prices of computes prices of

is composed of

represents
a permanent
order of

represents
a temporary
selection of

*

1

1

1

1

*

1 1 1 *

*

1

Arrows indicate
relationship
directionality

EJB-J2EE Integration: Building a Complete Application 631

28_576828 ch22.qxd 11/3/04 11:47 AM Page 631

Entity Beans

We will begin the explanation of our system design with the persistent data
and the entity beans that we will create to access this data. We will also men-
tion the session beans that we provide as façades for the entities. Internally, all
entity beans use container-managed persistence (CMP) for storage and rely on
container-managed relationships (CMR).

Products and Catalog

First, we need to model the products that Jasmine is selling. A product could
be a motherboard, a monitor, or any other component. Products should be per-
sistent parts of the deployment that last forever. Our product abstractions
should represent the following data:

■■ The unique product ID

■■ The product name

■■ A description of the product

■■ The base price of the product (indicating the price of the product, with
no discounts or taxes applied)

Jasmine should be able to add and delete products from the system using a
separate tool that connects to the database; we don’t provide this functionality
in our Web shop. Because products are permanent, persistent parts of the sys-
tem, they are best modeled as entity beans. Our product entity bean should
have methods to get and set the above fields. We also have a catalog session
bean that functions as a façade for this entity bean, serving as a transactional
networked façade.

Rather than entity beans, we could have used Java classes to represent the
entities in our system, such as products, customers, and so on. However,
many of these nouns (especially products) are prime candidates to be
cached by the container. This means that by going with entity beans, our
performance would actually improve. Because we are using local interfaces,
the access time is comparable to a local object access.

Customers and UserManager

Next, we need to represent information about Jasmine’s customers. A cus-
tomer represents an end user—perhaps an individual or a corporation that
purchases goods from our Web site. Our customer abstraction contains the fol-
lowing data:

■■ Customer ID

■■ The customer’s name (also used as the customer’s login name for our
Web site)

632 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 632

■■ The customer’s address

■■ The customer’s password (used to verify the customer’s identity)

We also have a UserManager session bean that wraps this entity bean, again
serving as a transactional networked façade that allows us to retrieve user
names and compare passwords that users supply with those that we have on
record.

New customers, products, and so on can be added to the system in many
ways. Jasmine could have users log in through a separate Web site and
input their name, address information, password, and other profile data. We
could also develop a custom maintenance tool (standalone or Web-based)
for adding new products. To keep this example simple, we’ll manually insert
direct database data, but feel free to extend this for your purposes.

Orders

Next, we need to model a permanent order for goods. We’ll define an order
abstraction for this purpose. An order is a shopping cart that has been con-
verted into a work request. Shopping carts are explained in this section and are
the session bean access points for orders. An order represents a real business
action that needs to take place, such as the production of goods. Generating an
order and billing a customer go hand in hand.

An order contains the following information:

■■ The ID of this order (which the user can use to check on order status)

■■ The customer for which this order is generated (used for shipping
address information)

■■ The products and quantities that should be ordered (as with carts, best
represented as separate information; contained in order line items,
described shortly)

■■ The subtotal and taxes on the order

■■ The date the order was placed

Orders are permanent, persistent objects. You want an order’s state to be
around even if your deployment crashes for any reason because an order
means money. Therefore, orders are best depicted as entity beans. In compari-
son, carts are not permanent—they represent temporary interactions with the
customer. You don’t want to write a cart’s data to a database during a customer
interaction, but you do want to keep track of the user’s information—hence
the stateful session bean is best applied for carts.

EJB-J2EE Integration: Building a Complete Application 633

28_576828 ch22.qxd 11/3/04 11:47 AM Page 633

Order Line Items

For convenience of manipulation, we break up our notion of an order into
individual line items, where each line item represents data pertaining to a sin-
gle product the user has ordered. An order has a one-to-many relationship
with its constituent line items. Our order line item abstraction contains the fol-
lowing data:

■■ The ID of this order line item

■■ The product that this order line item represents (used by manufacturing
to reveal which product to make)

■■ The quantity of the product that should be manufactured

■■ The discount that the customer received on this product

Because order line items are permanent, persistent objects, they are best rep-
resented as entity beans. At first, you might think an order line item is too
small and fine-grained to be an entity bean and might better be represented as
Java classes for performance. However, with EJB 2.0 local interfaces and by
properly tweaking your EJB server, it is possible to have both fine-grained and
large-grained entity beans. Chapter 18 has more detail about how to optimize
such entity beans for performance.

Session Beans

You have seen the central entities that make up our domain model, but so far
there has not been much activity in our Web shop. The actual shopping func-
tionality that our Web shop provides is accessed through the shopping cart
session bean, with which users interact. The business function of calculating
the prices for carts by adding up the individual items and applying personal
and bulk discounts is modeled in a separate Pricer session bean.

Carts

We need to keep track of the selections a customer has made while navigating
our catalog by modeling a shopping cart. Each customer who has logged in
should have his or her own temporary and separate cart in which to work.
Therefore, our carts need to hold client-specific state in them. They should not
be persistent, because the user can always cancel the cart.

This naturally lends itself to the stateful session bean paradigm. Each cart
stateful session bean holds conversational state about the user’s current cart. It
enables us to treat the entire cart as one coarse-grained object. A new cart
needs to be generated every time a user logs in. Each cart bean contains the fol-
lowing information:

634 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 634

■■ The customer we authenticated at the login screen. We need to store
customer information so that we know who to bill, what discounts to
apply, and where to ship the manufactured products.

■■ The products and quantities that the customer currently has selected.
This data is best represented in its own separate bean, called a Cart Line
Item, described later in this chapter.

■■ The subtotal for the cart, taking into account all the prices of the prod-
ucts the user wants as well as any discounts the user gets.

■■ The taxes charged. This is added to the subtotal for the final grand total.

In addition to this data, the cart beans will be smart and will know how to
generate permanent orders from themselves. We describe orders a bit later.

When making shopping cart-like functionality, you have several choices. You
can use session beans (as we are) for temporary shopping carts. You can
also use servlets or JSP session objects, which is appropriate if your
shopping cart is primitive in functionality and shouldn’t be reused for other
graphical user interfaces.

A final choice is to use entity beans and to keep the shopping cart data in
the database. The entity bean approach is appropriate for persistent
shopping carts, where you’d like the user to retrieve the shopping cart when
returning later. This might be useful if it requires complex configuration to
get an item into a shopping cart, such as custom configuring a laptop
computer. The downside to the entity bean approach is you need to write a
shopping cart cleaning program that routinely sweeps abandoned shopping
carts from the database.

Cart Line Items

As the user navigates the Web site, he or she will add products to the cart. For
convenience of manipulation, we’d like to separate a cart into individual line
items, where each line item represents data pertaining to a single product the
user has currently selected. A cart has a one-to-many relationship with its con-
stituent line items.

Cart line items contain the following data:

■■ The ID of the line item

■■ The product that the user wants to buy

■■ The quantity of that product

■■ Any discounts the customer gets from the base price of the product

EJB-J2EE Integration: Building a Complete Application 635

28_576828 ch22.qxd 11/3/04 11:47 AM Page 635

The cart line item is specific to one customer and is not persistent. It is best
modeled as either a stateful session bean or a Java class that hangs off the cart.
We’ll choose to make it a Java class because there is no middleware that we
need when a cart calls a line item. Furthermore, we may need to marshal the
line item out to a servlet or JSP so that the contents can be displayed to a user.
By modeling our line items as classes to begin with, we can achieve this easily.

Pricer

Because Jasmine wants customized pricing, we need the concept of a pricer—
a component that takes a cart as input and calculates the price of that cart
based on a set of pricing rules. A pricing rule might be, “Customer X gets a 5
percent discount” (a frequent-buyer discount) or, “If you purchase 10 mother-
boards, you get a 15 percent discount” (a bulk discount). These pricing rules
could be read in from a database or set via EJB environment properties (see
Chapter 10). The implementation on the companion Web site uses this latter
approach. It is a useful exercise to move the frequent buyer discount informa-
tion to the customers database instead.

Our pricer takes a cart as input and computes the subtotal (before taxes) of
that cart. It figures out the subtotal by computing a discount for each cart line
item in that bean and subtracting the discounts from the total price.

Our pricer works on any cart and holds no client-specific state. Once the
pricer has computed a price on a cart, it is available to perform another compu-
tation on a different cart. It is also not a persistent object—it would not make
sense to save a price, because a pricer simply performs logic and holds no state.
This means our pricer fits into the EJB world best as a stateless session bean.

Finally, Jasmine considers reusing the pricing logic in other applications,
such as in her mail order processing system. Consequently, we need to plan in
advance for integrating this component with other, potentially non-EJB sys-
tems. We therefore also expose the pricer stateless session bean as a Web Ser-
vice to allow for easy integration.

Order Processor

The last challenge we face is how to generate orders in our system. We’d like for
the user to continue browsing the Web site when he has placed the order,
rather than waiting to see if his credit card is approved. This is similar to the
Amazon.com one-click functionality. We’d also like to e-mail the user after-
wards indicating whether the order was successfully placed.

The best paradigm to achieve this is messaging. When the user wants to
order the shopping cart, we could send a JMS message containing the shop-
ping cart reference. Then later, the message will be processed off the queue by
an order processor message-driven bean. This order processor is responsible for

636 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 636

querying the shopping cart, checking the user’s credit card, checking inven-
tory, e-mailing the user a confirmation, and creating the order (entity bean).

The challenge of sending data through JMS is that we cannot marshal EJB
stubs in a JMS message. Thus, we couldn’t send a shopping cart stub as a seri-
alized bit-blob in a JMS message. This is a fundamental problem with mes-
sage-driven beans: It’s very challenging to send data into a message-driven
bean that comes from another bean.

An alternative is to use EJB object handles (described in Chapter 10), which
are serializable stubs. However, this might not work either, since the stateful
session bean cart might time-out before the JMS message was processed.

Another alternative is to create a custom, serializable representation of the
shopping cart, perhaps by using serializable Java objects. The problem here is
we’d need to create all these extra Java classes, which is very annoying.

The best solution for us is to submit the order before sending a JMS message.
We’d then mark the order status as unverified. The order processor receives the
primary key of the order, retrieves the order entity bean from the database,
checks the credit card, sends the confirmation e-mail, and then changes the
order status to submitted.

Our notion of an order can be easily extended to include order status, such
as Manufacturing or Shipping and other order fulfillment information. It would
also be interesting to e-mail the order status to the end user at regular intervals
using the JavaMail API. Since we do not fulfill orders, we leave this as an exer-
cise to the reader.

The Presentation Tier
Our next task is to design our presentation tier, which displays the graphical
user interface to the end user. For our presentation tier, we will use a few Java
servlets and JSP files to interact with a client over HTTP. The following sec-
tions contain a brief introduction to servlets and JSP technologies. You can
safely skip this if you are already familiar with these technologies.

What Are Servlets?

A servlet is a Java object that runs within a Web container and reacts to Hyper-
text Transfer Protocol (HTTP) requests by sending HTTP responses. Requests
contain data that the client wants to send to the server. A response is data that
the server wants to return to the client to answer the request. A servlet is a Java
object that takes a request as input, parses its data, performs some logic, and
issues a response back to the client (see Figure 22.8).

Figure 22.9 illustrates an HTTP servlet running inside a J2EE server, and
Source 22.1 shows an example of an HTTP servlet.

EJB-J2EE Integration: Building a Complete Application 637

28_576828 ch22.qxd 11/3/04 11:47 AM Page 637

Figure 22.8 The basic servlet paradigm.

Figure 22.9 HTTP servlets.

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloWorld extends HttpServlet

{

public void service(HttpServletRequest req, HttpServletResponse rsp)

throws ServletException, IOException

{

PrintWriter out = rsp.getWriter();

out.println(“<H1>Hello World</H1>”);

}

}

Source 22.1 A sample HTTP servlet.

HTTP Servlet

3: perform logic

J2EE Server

Client Browser

1: send HTTP request

2: call servlet with
the request information

4: return response
information to
servlet engine

5: send HTTP response

Servlet
1: receive request 3: issue response

2: perform logic

638 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 638

As you can see, HTTP servlets are very straightforward. They have a simple
method called service() that responds to HTTP requests. In that method, we
write some HTML back to the browser. If properly configured, the J2EE server
will pool and reuse this servlet to service many HTTP requests at once.

We can also do trickier things—respond differently to different types of
HTTP requests, maintain user sessions, read input parameters from Web forms
(using the HttpServletRequest object), and call EJB components.

The great thing about servlets is that they are written in Java and therefore
can be debugged just like any other Java code. The downside to servlets is that
they require Java knowledge. It is therefore inappropriate to use servlets to
write large amounts of HTML back to the user, because that HTML is inter-
laced with Java code, as we saw in Source 22.1. This makes it very challenging
for Web designers to get involved with your deployment.

What Are JavaServer Pages?

A JavaServer Page (JSP) is a flat file that is translated at runtime into a servlet.
JSP files are generally useful for presentation-oriented tasks, such as HTML
rendering. You don’t need to know Java to write a JSP file, which makes JSP
files ideal for Web designers. A sample JSP is shown in Source 22.2.

<!doctype html public “-//w3c/dtd HTML 4.0//en”>

<html>

<body>

<H1>Hello World</H1>

</body>

</html>

Source 22.2 A sample JSP.

As you can see, this just looks like HTML and is easily maintained by a
graphic designer. You can do fancy things as well, such as interlacing Java code
with JSP, managing user sessions, and so on. Just about anything you can do in
a servlet can be done with JSP. The difference is that a JSP file is a flat file that
is translated into a servlet later. The code in Source 22.2 would be translated
into a servlet with out.println() statements for the HTML code.

How Do I Combine Servlets, JSP, and EJB Components?

You have several choices when architecting your Web-based system. Here are
just a few examples.

■■ The JSP files can have embedded Java code that calls EJB components.
For example, we could interlace the following code into a JSP file:

EJB-J2EE Integration: Building a Complete Application 639

28_576828 ch22.qxd 11/3/04 11:47 AM Page 639

<html>

<H1>About to call EJB...</H1>

<%

javax.naming.Context ctx = new javax.naming.InitialContext();

Object obj = ctx.lookup(“MyEJBHome”);

...

%>

</html>

When this JSP is translated into a servlet, the Java code would be
inserted into the generated servlet. This is a bad idea, because the JSP
files cannot be easily maintained by a graphic designer due to the large
amount of Java code in the JSP file.

■■ The JSP files can communicate with EJB components via custom tags.
You can design custom JSP tags that know how to interact with EJB com-
ponents, called JSP tag libraries. Tag libraries are appealing because once
you’ve designed them, graphic designers can call EJB components by
using familiar tag-style editing rather than writing Java code. The tags
then call Java code that understands how to invoke EJB components.

■■ Servlets can call EJB components and then call JSP files. You can
write one or more Java servlets that understand how to call EJB compo-
nents and pass their results to JSP files. This is a Model-View-Controller
(MVC) paradigm, because the EJB layer is the model, the JSP files are
the view, and the servlet(s) are the controller—they understand which
EJB components to call and then which JSP files to call (see Figure
22.10). The advantage of this paradigm is that it pushes most of the Java
code into servlets and EJB components. The JSP files have almost no
Java code in them at all and can be maintained by graphic designers.

■■ You can go with an off-the-shelf Web framework. Several off-the-shelf
Web frameworks aid in building Web-based systems, such as Jakarta
Struts.

JSP Files in Our E-Commerce Deployment

We will choose an MVC paradigm for our e-commerce deployment. We will
have servlets that perform the controller processing, call our EJB components,
and select the appropriate JSP file based on the results of the EJB layer pro-
cessing.

To fulfill Jasmine’s requirements, we’ll define the following servlets and JSP
files:

640 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 640

Figure 22.10 The EJB-JSP-Servlet Model-View-Controller paradigm.

■■ A login page. The login page will be the first page that the user deals
with when going to Jasmine’s Web site. It is responsible for reading in
the user’s name and then retrieving the appropriate customer entity
bean that matches that name. It compares the user’s submitted pass-
word with the permanent password stored with the customer entity
bean. If the passwords match, a new cart stateful session bean is created
for this customer. The customer information is stored in the cart so the
cart contains the user’s billing and shipping information. If the pass-
words don’t match, an error is displayed and the user is given another
chance to enter a password.

J2EE Server

2: call appropriate
EJB components

Web Browser

Servlets

Business layer
(EJBs)

Login JSP

Main page JSP

Product detail
JSP

Catalog JSP

View Cart JSP

Order
Confirmation

JSP

1: HTTP request

3: Choose the
appropriate JSP.
Pass the data obtained
from the business layer
to the JSP.

4: Construct HTML
Return the HTML on the HTTP response

EJB-J2EE Integration: Building a Complete Application 641

28_576828 ch22.qxd 11/3/04 11:47 AM Page 641

■■ A Web storefront page. The user who gets through the login page is
redirected to the Web storefront, which is the main page for Jasmine’s
store. This is the main navigation page for Jasmine’s store. It links to the
catalog page and the view cart page.

■■ A catalog page. To start adding products to the cart, the user can
browse the list of available products by going to the catalog page. The
user can also view details of a particular product, in which case we
direct the user to the product detail page.

■■ A product detail page. When the user wants information about a par-
ticular product in the catalog, the product detail page shows that infor-
mation. From this screen, the user can add the product to his or her cart.

■■ A view cart page. This page enables the user to view and modify the
shopping cart. This means deleting items or changing quantities. Every
time the user changes something, we recalculate the price of the cart by
calling the pricer stateless session bean.

■■ An order confirmation page. Finally, when the user is happy, he or she
can convert the cart stateful session bean into an order entity bean. The
user is then shown his or her order number, which is extracted from the
order bean. We then send a JMS message to the OrderProcessor bean,
which asynchronously processes the order.

This completes the design for our presentation tier. The flow of control for
our pages is depicted in Figure 22.11. Note that the JSP files do not directly call
each other: servlets receive all requests, call the appropriate EJB components,
and route the results to the appropriate JSP file for the HTML to be rendered.

Once we’ve developed the application, we need to package and deploy it. A
J2EE application is packaged this way:

■■ An Ejb-jar file (.jar) contains EJB components.

■■ A Web archive file (.war) contains Web components, such as servlets,
JSP files, HTML, images, and JSP tag libraries.

■■ An enterprise archive file (.ear) is a J2EE application that contains a .jar
file and a .war file. This is the unit of deployment you care most about,
because it represents a J2EE application.

Each of these files follows the ZIP rules for compression. The idea is that you
first create the Ejb-jar file, then the Web archive, and then zip them up together
into an enterprise archive. You deploy the enterprise archive into your appli-
cation server using its tools, or perhaps by copying it into the appropriate
folder. For code examples of how to build and deploy these archives, see the
book’s accompanying source code.

642 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 642

Figure 22.11 State diagram for our Web shop.

Example Code

Before concluding this chapter, let’s look at an example of a servlet calling EJB
components and then calling a JSP file, so that you can grasp how this MVC
paradigm is achieved. As a final piece of code, we will also look at the pricer
Web Service and bean interfaces.

We’ll take the example of logging into our site. Source 22.3 shows the login
JSP code.

H Login

authenticate user
by quering the Customer

entity bean

Web
Storefront

Catalog

Product Detail

View Cart

Order
Confirmation

Generate the Order,
send JMS message to
process order

return user to
main page

get info on a
Product

Add Product
to user's Cart

update Product
quantities in the

user's Cart

show receipt

EJB-J2EE Integration: Building a Complete Application 643

28_576828 ch22.qxd 11/3/04 11:47 AM Page 643

<%--

This JSP displays a login screen. When the user fills out

the login screen, it will submit it to the Login Servlet,

which will verify the user’s credentials by calling

EJB components.

if verification is unsuccessful, the login servlet will return

the user to this page to re-enter his credentials.

if verification is successful, Jasmine’s main page will be

displayed.

--%>

<html>

<head>

<title>Jasmine’s Login page </title>

</head>

<body>

<%-- Include the title, which is “Jasmine’s Computer Parts”--%>

<jsp:include page=”title.jsp” />

<%-- Indicate the error page to use if an error occurs --%>

<jsp:directive.page errorPage=”error.jsp” />

<%-- Display the login form --%>

<h4>Please Login<h4>

<p>

<form action=”/jasmine/login” method=”get”>

<table>

<tr>

<td>Name:</td>

<td>

<input type=”text” name=”Login” value=”Ed Roman” size=”19”>

</td>

</tr>

<tr>

<td>Password:</td>

<td>

<input type=”text” name=”Password” value=”password” size=”19”>

</td>

</tr>

<tr>

<td></td>

<td>

<input type=”submit” value=”Submit Information”>

</td>

</tr>

Source 22.3 The login JSP.

644 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 644

</table>

</form>

<%

// get whether the person logged in successfully

Boolean failed = (Boolean) request.getAttribute(“loginFailed”);

if (failed != null) {

if (failed.booleanValue() == true) {

%>

<p>

Could not log in! Please try again.

<p>

<%

}

}

%>

</body>

</html>

Source 22.3 (continued)

Source 22.4 shows our login servlet.
The login servlet is self-documenting. It cracks open the request, figures out

which EJB components to call, and selects the appropriate JSP file.

package examples;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.naming.*;

/**

* This is the very first servlet the client deals with.

* It’s a Login authentication servlet. It asks the user

* for his name and password, and passes it to the UserManager

* stateless session bean for verification.

* If the user authenticates properly, reference to a new

* Cart is saved in his HttpSession object, and the user can

* begin to add items to his cart and shop around.

*/

public class LoginServlet extends HttpServlet {

/*

* UserManager home object for authenticating user

Source 22.4 The login servlet. (continued)

EJB-J2EE Integration: Building a Complete Application 645

28_576828 ch22.qxd 11/3/04 11:47 AM Page 645

*/

private UserManagerHome userManagerHome;

/*

* Cart home object for creating a new cart when

* the user logs in.

*/

private CartHome cartHome;

/**

* The servlet engine calls this method once to

* initialize a servlet instance.

*

* In the body of this method, we acquire all the

* EJB home objects we’ll need later.

*/

public void init(ServletConfig config) throws ServletException {

super.init(config);

try {

/*

* Get the JNDI initialization parameters.

* We externalize these settings to the

* servlet properties to allow end-

* users to dynamically reconfigure their

* environment without recompilation.

*/

String initCtxFactory =

getInitParameter(Context.INITIAL_CONTEXT_FACTORY);

String providerURL =

getInitParameter(Context.PROVIDER_URL);

/*

* Add the JNDI init parameters to a

* properties object.

*/

Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY, initCtxFactory);

env.put(Context.PROVIDER_URL, providerURL);

/*

* Get the initial JNDI context using the above

* startup params.

*/

Context ctx = new InitialContext(env);

/*

Source 22.4 (continued)

646 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 646

* Look up the UserManager and Cart Home Objects

* we need via JNDI

*/

userManagerHome = (UserManagerHome)

ctx.lookup(“UserManagerHome”);

cartHome = (CartHome) ctx.lookup(“CartHome”);

}

catch (Exception e) {

log(e);

throw new ServletException(e.toString());

}

}

/**

* The servlet engine calls this method when the user’s

* desktop browser sends an HTTP request.

*/

public void service(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

/*

* Set up the user’s HttpSession

*/

HttpSession session = request.getSession(true);

/*

* Retrieve the login name / password from the

* URL string.

*/

String loginName = request.getParameter(“Login”);

String password = request.getParameter(“Password”);

boolean isLogin=false;

/*

* If user has not tried to log in yet, present

* him with the login screen.

*/

if ((loginName == null) || (password == null)) {

writeForm(request, response, false);

}

/*

* Otherwise, the user has been to this screen

* already, and has entered some information.

* Verify that information.

*/

else {

Source 22.4 (continued)

EJB-J2EE Integration: Building a Complete Application 647

28_576828 ch22.qxd 11/3/04 11:47 AM Page 647

/*

* Uses the UserManager Stateless Session bean to

* authenticate the user credentials.

*/

try {

UserManager userManager=userManagerHome.create();

isLogin= userManager.validateUser(loginName,password);

}

catch (Exception e) {

writeForm(request, response, true);

e.printStackTrace();

return;

}

/*

* If the passwords match, make a new Cart Session

* Bean, and add it to the user’s HttpSession

* object. When the user navigates to other

* servlets, the other servlets can access the

* HttpSession to get the user’s Cart.

*/

if (isLogin) {

try {

Cart cart = cartHome.create(loginName);

session.setAttribute(“cart”, cart);

/*

* Call the main page

*/

RequestDispatcher disp =

this.getServletContext().getRequestDispatcher(“/wsf.jsp”);

disp.forward(request, response);

return;

}

catch (Exception e) {

log(e);

throw new ServletException(e.toString());

}

}

}

/*

* If there was no match, the user is

* not authenticated. Present another

* login screen to him, with an error

* message indicating that he is not

* authenticated.

*/

writeForm(request, response, true);

Source 22.4 (continued)

648 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 648

}

/**

* Writes the Login Screen (private use only)

*

* @param showError true means show an error b/c client

* was not authenticated last time.

*/

private void writeForm(HttpServletRequest request,

HttpServletResponse response,

boolean showError)

throws ServletException, IOException {

/*

* Set a variable indicating whether or not we failed to

* log-in. The JSP will read this variable.

*/

request.setAttribute(“loginFailed”, new Boolean(showError));

/*

* Forward the request to the login JSP

*/

RequestDispatcher disp =

this.getServletContext().getRequestDispatcher(“/login.jsp”);

disp.forward(request, response);

}

private void log(Exception e) {

e.printStackTrace();

}

public String getServletInfo() {

return “The Login servlet verifies a user.”;

}

}

Source 22.4 (continued)

As a final code example, let’s look at the two interfaces that the Pricer com-
ponent exposes: the Web Service interface and the remote bean interface. The
Web Service interface is shown in Source 22.5.

package examples;

/**

* This is the Pricer Web Service’s remote interface (the service

* endpoint interface)

Source 22.5 The Pricer Web Service interface. (continued)

EJB-J2EE Integration: Building a Complete Application 649

28_576828 ch22.qxd 11/3/04 11:47 AM Page 649

*/

public interface PricerInterface

extends java.rmi.Remote

{

/**

* @return the applicable tax rate

*/

double getTaxRate()

throws java.rmi.RemoteException;

/**

* @return the current discount rate for buying lots of items

*/

double getBulkDiscountRate()

throws java.rmi.RemoteException;

/**

* @return the discount rate for a given user in percent

*/

double getPersonalDiscountRate(String userName)

throws java.rmi.RemoteException;

/**

* This method computes the applicable discount in absolute

* figure, based on bulk and personal discounts that may apply.

*

* @param quantity the number of items that a user intends to buy

* @param basePrice the overall, non-discounted volume of the

* purchase (individual price times quantity)

* @param the user name

* @return the subTotal for the line item after applying any

* applicable discounts, excluding taxes

*/

double getDiscount(int quantity, double basePrice, String user)

throws java.rmi.RemoteException;

}

Source 22.5 (continued)

In the same manner as in Chapter 5, we can generate a WSDL file from this
Java interface using container tools, and then generate SOAP stubs and a JAX-
RPC mapping file from theWSDL. The pricer bean exposes a remote interface
that extends the Web Service interface in Source 22.5. The rationale here is that
other applications at Jasmine’s, such as a mail order application, do not use the
shopping cart abstraction that our Web shop uses. These applications do need
the discount calculation operations, however. Source 22.6 shows the remote
interface of the pricer bean, which adds a single operation that performs price
calculations for carts.

650 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 650

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.rmi.Remote;

/**

* These are the business logic methods exposed publicly by the

* PricerBean. This interface extends the service endpoint interface

* for the pricer web service.

*/

public interface Pricer

extends EJBObject, PricerInterface

{

/**

* Computes the price of a set of goods

*/

public void price(Cart cart) throws RemoteException,

PricerException;

}

Source 22.6 The remote interface of the pricer bean.

If you’re curious to see how the other use cases are implemented, see the
book’s accompanying source code. And as a reminder, this is just one of many
ways to implement a Web architecture.

As an alternative, we could have also chosen a single-servlet architecture
with only one servlet and many JSP files. This single servlet would call Java
classes, and each Java class would represent a Web use-case and
understand the EJB components to call. For example, we could have a Java
class that understood how to verify login credentials. The advantage of this
paradigm is we could reuse these Web use-case classes in several pages,
and our servlet layer would be completely decoupled from our EJB
components.

Summary

In this chapter, we’ve painted a picture of how our e-commerce system should
behave. Now that we’ve made the proper abstractions, our components should
fall into place easily. By performing this high-level analysis, we can be confi-
dent that our final product will be extensible and reusable for some time
to come.

EJB-J2EE Integration: Building a Complete Application 651

28_576828 ch22.qxd 11/3/04 11:47 AM Page 651

We strongly encourage you to compile and run the example code that we
have provided for you. You can use this code as the basis for doing you own
experiments with a shopping-style application and for exploring other options.
Some of the directions that we encourage you to take with the example is to try
a different persistence framework instead of CMP, play with global distributed
transactions, devise your own graphic design for the JSP files, let the Order-
Processor send e-mail notifications to customers, and perhaps try a different,
non-JMS messaging style for the OrderProcessor message-driven bean.

652 Chapter 22

28_576828 ch22.qxd 11/3/04 11:47 AM Page 652

653

To help you to truly understand EJB, this appendix explains the technologies
that EJB depends upon—Java RMI-IIOP and the Java Naming and Directory
Interface (JNDI).

The goal of this appendix is to teach you enough about RMI-IIOP and JNDI
to be productive in an EJB environment. This tutorial will cover the basics, but
is by no means a complete RMI-IIOP and JNDI tutorial, and for good reason—
most organizations will not need to use these technologies beyond the extent
we describe in this appendix, and your reading time is valuable.

Readers who want to learn more about RMI-IIOP and JNDI should consult
the following references:

■■ The RMI-IIOP and JNDI tutorials. These are available for free on the
Sun Microsystems Web site at http://java.sun.com.

■■ The RMI-IIOP and JNDI specifications. The specifications define the
core of RMI-IIOP and JNDI. They are a bit more technical but should
not be tough to understand after reading this appendix. They are also
downloadable from http://java.sun.com.

RMI-IIOP and JNDI Tutorial

C H A P T E RA P P E N D I X

A

29_576828 appA.qxd 11/3/04 11:48 AM Page 653

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

Your J2EE server implementation ships with RMI-IIOP and JNDI
implementations. It is generally a bad idea to mix and match
implementations, like combining the Sun Microsystems RMI-IIOP package
with a BEA JNDI implementation. For the easiest development path, stick
with a single-vendor solution.

Java RMI-IIOP

Java RMI-IIOP (which stands for Java Remote Method Invocation over the
Internet Inter-ORB Protocol) is J2EE’s de facto mechanism for performing sim-
ple, powerful networking. Using RMI-IIOP you can write distributed objects
in Java, enabling objects to communicate in memory, across Java Virtual
Machines and physical devices.

RMI-IIOP is not your only choice for performing remote method invocations
in Java. You can also use Java Remote Method Invocation (RMI). RMI was
the original way to perform remote method invocations in Java and uses the
java.rmi package. RMI-IIOP is a special version of RMI that is compliant
with CORBA and uses both java.rmi and javax.rmi.

RMI has some interesting features not available in RMI-IIOP, such as
distributed garbage collection, object activation, and downloadable class
files. But EJB and J2EE mandate that you use RMI-IIOP, not RMI. Therefore
we will not cover RMI.

If you want to learn more about why RMI-IIOP was invented as an extension
of RMI and also survey the CORBA compatibility features of RMI-IIOP, read
Appendix B.

Remote Method Invocations
A remote procedure call (RPC) is a procedural invocation from a process on one
machine to a process on another machine. RPCs enable traditional procedures
to reside on multiple machines, yet still remain in communication. They pro-
vide a simple way to perform cross-process or cross-machine networking.

A remote method invocation in Java takes the RPC concept one step further
and allows for distributed object communications. RMI-IIOP enables you to
invoke not merely procedures, but also methods on objects remotely. You can
build your networked code as full objects. This yields the benefits of object-ori-
ented programming, such as inheritance, encapsulation, and polymorphism.

654 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 654

Remote method invocations are by no means simple mechanisms. These are
just some of the issues that arise:

■■ Marshalling and unmarshalling. RMIs (as well as RPCs) enable you to
pass parameters, including Java primitives and Java objects, over the
network. But what if the target machine represents data differently than
the way you represent data? For example, what happens if one machine
uses a different binary standard to represent numbers? The problem
becomes even more apparent when you start talking about objects.
What happens if you send an object reference over the wire? That
pointer is not usable on the other machine because that machine’s
memory layout is completely different from yours. Marshalling and
unmarshalling is the process of massaging parameters so that they are
usable on the machine on which they are invoked remotely. It is the
packaging and unpackaging of parameters so that they are usable in
two heterogeneous environments. As we shall see, this is taken care of
for you by Java and RMI-IIOP.

■■ Parameter passing conventions. There are two major ways to pass
parameters when calling a method: pass-by-value and pass-by-reference
(see Figure A.1). When you use the pass-by-value parameter, you pass a
copy of your data so that the target method is using a copy, rather than
the original data. Any changes to the argument are reflected only in the
copy, not the original. Pass-by-reference, on the other hand, does not
make a copy. With pass-by-reference, any modifications to parameters
made by the remote host affect the original data. The flexibility of both
the pass-by-reference and pass-by-value models is advantageous, and
RMI-IIOP supports both. We’ll see how in the following pages.

■■ Network or machine instability. With a single JVM application, a crash
of the JVM brings the entire application down. But consider a distrib-
uted object application, which has many JVMs working together to
solve a business problem. In this scenario, a crash of a single JVM
should not cause the distributed object system to grind to a halt. To
enforce this, remote method invocations need a standardized way of
handling a JVM crash, a machine crash, or network instability. When
some code performs a remote invocation, the code should be informed
of any problems encountered during the operation. RMI-IIOP performs
this for you, abstracting out any JVM, machine, or network problems
from your code.

As you can see, there’s a lot involved in performing RMIs. RMI-IIOP con-
tains measures to handle many of these nasty networking issues for you. This
reduces the total time spent dealing with the distribution of your application,
allowing you to focus on the core functionality.

RMI-IIOP and JNDI Tutorial 655

29_576828 appA.qxd 11/3/04 11:48 AM Page 655

Figure A.1 Pass-by-value versus pass-by-reference.

J2EE-compliant servers are required to ship RMI-IIOP implementations to
enable you to perform networking. Your RMI-IIOP code is then portable to any
hardware or operating system on which these implementations execute. Con-
trast this with proprietary, platform-dependent RPC libraries, and you can see
some real value in RMI-IIOP.

Object A Object APass-by-Value

RMI-IIOP Client Address Space RMI-IIOP Server Address Space

Return
Object A

M
od

ify
 O

bj
ec

t A

Object A'

Object A Pass-by-
Reference

ReturnObject A'

M
od

ify
 O

bj
ec

t A
Reference back to

Object A

When performing remote
invocations with pass-by-value, a
new copy of Object A is instan-
tiated on the remote host. When
the remote host modifies Object A,
the new value, A', does not
affect the local host's data.

With pass-by-reference, the remote
host receives a remote reference to
the original Object A, rather than a
copy of Object A. Any modifica-
tions to Object A are reflected
the original data.

Reference back to
modified Object A'

656 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 656

The Remote Interface
We begin our exploration of RMI-IIOP by reviewing one of object-oriented
design’s great programming practices—the separation of the interface of code
from its implementation.

■■ The interface defines the exposed information about an object, such as
the names of its methods and what parameters those methods take. It’s
what the client works with. The interface masks the implementation
from the viewpoint of clients of the object, so clients deal only with the
end result: the methods the object exposes.

■■ The implementation is the core programming logic that an object pro-
vides. It has some very specific algorithms, logic, and data.

By separating interface from implementation, you can vary an object’s pro-
prietary logic without changing any client code. For example, you can plug in
a different algorithm that performs the same task more efficiently.

RMI-IIOP makes extensive use of this concept. All networking code you
write is applied to interfaces, not implementations. In fact, you must use this
paradigm in RMI-IIOP—you do not have a choice. It is impossible to perform
a remote invocation directly on an object implementation. You can operate
solely on the interface to that object’s class.

Therefore, when using RMI-IIOP, you must build a custom interface, called
a remote interface. This remote interface extends the interface java.rmi.Remote.
Your interface provides all methods that your remote object exposes.

We’ll now begin to build a simple example illustrating the basics of RMI-
IIOP. In this example, a remote object exposes one method: generate(). generate()
returns a new, unique long number each time it’s called. This is useful, for
example, when generating primary keys for data, such as entity beans (dis-
cussed in Chapter 6).

Source A.1 is a valid remote interface.

import java.rmi.Remote;

import java.rmi.RemoteException;

/**

* The remote interface for the remote object. Clients use this

* remote interface to perform any operations on the remote object.

*/

public interface IPKGenerator extends Remote {

public long generate() throws RemoteException;

}

Source A.1 IPKGenerator.java.

RMI-IIOP and JNDI Tutorial 657

29_576828 appA.qxd 11/3/04 11:48 AM Page 657

Client code that wants to call methods on your remote object must operate
on IPKGenerator. Notice that each method must also throw a java.rmi.Remote-
Exception. A RemoteException is thrown when there is a problem with the net-
work, such as a machine crashing or the network dying.

With RMI-IIOP, you can never fully separate your application from the
network. At some point, you’ll need to deal with remote exceptions being
thrown due to networking issues. Some may consider this a limitation of
RMI-IIOP because the network is not entirely transparent: Remote
exceptions force you to differentiate a local method from a remote method.
But in some ways, this is an advantage of RMI-IIOP as well. Interlacing your
code with remote exceptions forces you to think about the network and
encourages distributed object developers to consider issues such as the
network failing, the size of parameters going across the network, and more.

The Remote Object Implementation
Remote objects are networked object implementations that can be called by
another JVM. They implement a remote interface and thus expose methods that
can be invoked by remote clients.

The physical locations of remote objects and the clients that invoke them are
not important. For example, it is possible for a client running in the same
address space as a remote object to invoke a method on that object. It’s also
possible for a client across the Internet to do the same thing. To the remote
object, both invocations appear to be the same.

To make your object available as a remote object and allow remote hosts to
invoke its methods, your remote class must perform one of the following steps:

■■ Extend the class javax.rmi.PortableRemoteObject. PortableRemoteObject
is a base class from which you can derive your remote objects.
When your remote object is constructed, it automatically calls the
PortableRemoteObject constructor, which makes the object available
to be called remotely.

■■ Manually export your objects as remote objects. Perhaps your remote
object class needs to inherit implementation from another custom class.
In this case, because Java does not allow for multiple implementation
inheritance, you cannot extend PortableRemoteObject. If you do this,
you must manually export your object so that it is available to be
invoked on by remote hosts. To export your object, call javax.rmi
.PortableRemoteObject.exportObject().

658 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 658

Now let’s create the remote object class. This class implements the IPKGen-
erator interface, and it is shown in Source A.2.

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

/**

* The remote object which generates primary keys

*/

public class PKGenerator

extends PortableRemoteObject

implements IPKGenerator {

/*

* Our remote object’s constructor

*/

public PKGenerator() throws Exception, RemoteException {

/*

* Since we extend PortableRemoteObject, the super

* class will export our remote object here.

*/

super();

}

/*

* Generates a unique primary key

*/

public synchronized long generate() throws RemoteException {

return i++;

}

private static long i = System.currentTimeMillis();

}

Source A.2 PKGenerator.java.

Extending javax.rmi.PortableRemoteObject makes our object available to be
called remotely. Once the remote object’s constructor is complete, this object is
available forever for any virtual machine to invoke on; that is, until someone
calls unexportObject().

This primary key generator has its own shortcoming as well: to generate a
primary key, someone needs to invoke a remote method, which could be a
performance bottleneck.

If you need to generate primary keys in production, see the companion book
to this book, Floyd Marinescu’s EJB Design Patterns, published by John
Wiley & Sons.

RMI-IIOP and JNDI Tutorial 659

29_576828 appA.qxd 11/3/04 11:48 AM Page 659

Stubs and Skeletons
Now that we’ve seen the server code, let’s look at the architecture for net-
working in RMI-IIOP. One of the benefits of RMI-IIOP is an almost illusionary,
transparent networking. You can invoke methods on remote objects just as you
would invoke a method on any other Java object. In fact, RMI-IIOP completely
masks whether the object you’re invoking on is local or remote. This is called
local/remote transparency.

Local/remote transparency is not as easy as it sounds. To mask that you’re
invoking an object residing on a remote host, RMI-IIOP needs some way to
simulate a local object that you can invoke on. This local object is called a stub.
It is responsible for accepting method calls locally and delegating those method
calls to their actual object implementations, which are possibly located across
the network. This effectively makes every remote invocation appear to be a
local invocation. You can think of a stub as a placeholder for an object that
knows how to look over the network for the real object. Because you invoke
methods on local stubs, all the nasty networking issues are hidden.

Stubs are only half of the picture. We’d like the remote objects themselves—
the objects that are being invoked from remote hosts—to not worry about net-
working issues as well. Just as a client invokes methods on a stub that is local
to that client, your remote object needs to accept calls from a skeleton that is
local to that remote object. Skeletons are responsible for receiving calls over the
network (perhaps from a stub) and delegating those calls to the remote object
implementation (see Figure A.2).

660 Appendix A

ISSUES WITH OUR PRIMARY KEY GENERATION ALGORITHM

Our primary key generation algorithm is to simply increment a number each
time someone calls our server. This generator overcomes two common
challenges when writing an RMI implementation:

◆ Threading. RMI-IIOP allows many clients to connect to a server at once.
Thus, our remote object implementation may have many threads running
inside of it. But when generating primary keys, we never want to gener-
ate a duplicate key because our keys are not unique and thus would not
be good candidates to use in a database. Therefore, it is important to
have the synchronized block around the generate() method, so that only
one client can generate a primary key at a time.

◆ JVM crashes. We must protect against a JVM crash (or hardware failure).
Thus, we initialize our generator to the current time (the number of mil-
liseconds that have elapsed since 1970). This is to ensure that our pri-
mary key generator increases monotonically (that is, primary keys are
always going up in value) in case of a JVM crash. Note that we haven’t
considered daylight savings time resulting in duplicate keys. If we were
to use this code in production, we would need to account for that.

29_576828 appA.qxd 11/3/04 11:48 AM Page 660

Figure A.2 Stubs and skeletons.

Your RMI-IIOP implementation (that is, your J2EE server) should provide a
means to generate the needed stubs and skeletons, thus relieving you of the net-
working burden. Typically, this is achieved through command line tools. For
example, the Sun Microsystems J2EE reference implementation ships with a
tool called rmic (which stands for the RMI compiler) to generate stub and
skeleton classes. As you can see from Figure A.2, you should deploy the stub
on the client machine and the skeleton on the server machine.

Object Serialization and Parameter Passing

One of the more interesting responsibilities of stubs and skeletons is to handle
your parameters. The following section discusses how parameters are passed
in Java RMI-IIOP. We also explore the role of object serialization in parameter
passing.

Passing By Value
When invoking a method using RMI-IIOP, all parameters to the remote
method are passed by value. This means that when a client calls a server, all
parameters are copied from one machine to the other.

Stub

Client Remote Object

Skeleton

Remote Interface

Network

RMI-IIOP and JNDI Tutorial 661

29_576828 appA.qxd 11/3/04 11:48 AM Page 661

Passing objects by value is very different from passing objects in the Java
programming language. When you call a method in Java and pass an object as
a parameter, that object is passed by reference. More specifically, the reference to
the object is copied, but the actual object’s data is not.

There’s a big problem with passing by value. If you’re trying to pass an
object over the network and that object contains references to other objects,
how are those references resolved on the target machine? A memory address
on one machine does not map to the same memory address on another
machine. Also, the referenced object may not even exist on the target machine.
How do we get around this?

Object Serialization
Java introduces the concept of object serialization to handle this problem. Serial-
ization is the conversion of a Java object into a bit-blob representation of that
object. You can send bit-blobs anywhere. For example, you can use object seri-
alization as an instant file format for your objects and save them to your hard
disk. RMI-IIOP also uses object serialization to send parameters over the net-
work. When you’re ready to use the object again, you must deserialize the bit-
blob back into a Java object. Then it’s magically usable again.

The Java language handles the low-level details of serialization. In most
cases, you don’t need to worry about any of it. To tell Java that your object is
serializable, your object must implement the java.lang.Serializable interface.
That’s all there is to it: Take this one simple step, and let Java handle the rest.
java.lang.Serializable defines no methods at all—it’s simply a marker interface
that identifies your object as something that can be serialized and deserialized.

You can provide your own custom serialization by implementing the
writeObject() method on your object, or provide custom deserialization by
implementing readObject(). This might be useful if you’d like to perform some
sort of compression on your data before your object is converted into a bit-blob
and decompression after the bit-blob is restored to an object.

Figure A.3 shows the serialization/deserialization API, where writeObject()
is responsible for saving the state of the class, and readObject() is responsible
for restoring the state of the class. These two methods will be called automati-
cally when an object instance is being serialized or deserialized. If you choose
not to define these methods, then the default serialization mechanisms will be
applied. The default mechanisms are good enough for most situations.

662 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 662

Figure A.3 The Java serialization API.

Rules for Serialization

Java serialization has the following rules for member variables held in serial-
ized objects:

■■ Any basic primitive type (int, char, and so on) is serializable and will be
serialized with the object, unless marked with the transient keyword. If
serialized, the values of these types are available again after deserializa-
tion.

■■ Java objects can be included with the serialized bit-blob or not; it’s your
choice. The way you make your choice is as follows:

■■ Objects marked with the transient keyword are not serialized with
the object and are not available when deserialized.

■■ Any object that is not marked with the transient keyword must
implement java.lang.Serializable. These objects are converted to the
bit-blob format along with the original object. If your Java objects
aren’t transient and don’t implement java.lang.Serializable, a NotSeri-
alizable exception is thrown when writeObject() is called.

Thus, when you serialize an object, you also serialize all nontransient sub-
objects as well. This means you also serialize all nontransient sub-subobjects
(the objects referenced from the subobjects). This is repeated recursively for
every object until the entire reference graph of objects is serialized. This recur-
sion is handled automatically by Java serialization (see Figure A.4). You sim-
ply need to make sure that each of your member objects implements the
java.lang.Serializable interface. When serializing MyClass, object serialization
will recurse through the dependencies shown, packaging the entire graph of
objects as a stream. In Figure A.4, everything will get serialized except for tran-
sient long b, since it is marked as transient.

java.io.Serializable

writeObject()
readObject()

MyClass

RMI-IIOP and JNDI Tutorial 663

29_576828 appA.qxd 11/3/04 11:48 AM Page 663

Figure A.4 Object serialization recursion.

What Should You Make Transient?
How do you know which member variables should be marked transient and
which should not? Here are some good reasons to mark an object as transient:

■■ The object is large. Large objects may not be suitable for serialization
because operations you do with the serialized blob may be very inten-
sive. Examples here include saving the blob to disk or transporting the
blob across the network.

■■ The object represents a local resource that cannot be reconstructed on
the target machine. Some examples of such resources are thread objects,
database connections, and sockets.

■■ The object represents sensitive information that you do not want to pass
in a serialized stream.

Note that object serialization is not free—it is a heavyweight operation for
large graphs of objects. Make sure you take this into account when designing
your distributed object application.

Object Serialization and RMI-IIOP
Java RMI-IIOP relies on object serialization for passing parameters via remote
method invocations. Figure A.5 shows what the MyObject object graph could
look like. Notice that every field and subfield is a valid type for Java serialization.

int a
transient long b
String s
Class2 c

MyClass

java.io.Serializable

Class3 c

Class2
Class3

java.lang.String

java.io.Serializable java.io.Serializable

java.io.Serializable

664 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 664

Figure A.5 Java RMI-IIOP and object serialization.

Figure A.5 shows how RMI-IIOP handles pass-by-value, where an entire
graph of objects is serialized into a bit-blob, sent across the network, and then
deserialized on the target machine. But passing parameters by value can lead
to inefficiencies. What if your referenced graph of objects is very large? What if
you have lots of state to send across the network? The ensuing network lag
from performing the invocation may be unacceptable.

There is another way to pass arguments. RMI-IIOP simulates a pass-by-refer-
ence convention, which means the arguments are not copied over. Rather, the
server modifies the client’s copy of the parameter.

If you want to pass a parameter by reference, the parameter must itself be a
remote object. The parameter is thus an object that is callable remotely. When
the client calls the server, the RMI-IIOP runtime sends a stub to that remote

java.io.Serializable

java.io.Serializable

java.io.Serializable

java.io.Serializable
int a = 5
transient long b = 3
String s = "Hello, World!"
Class2 Obj2 = new Class2();

MyObject : MyClass

Class3 Obj3 = new Class3();

Obj2 : Class2

Obj3 : Class3

s : java.lang.String

RMI Client

1: invoke(MyObject)

Remote Object
Stub

2: Since the MyObject parameter
implements Serializable, serialize
MyObject's object graph.

Network

Remote Object
Skeleton

Remote Object
Implementation

3: Deserialize the parameter. The deserialized
parameter, MyObject2, contains the same state
as MyObject, except the field b does not have
the value 3 since b is transient.

4: invoke(MyObject2)This is the process that
occurs when MyObject is
sent over the network
through Java RMI-IIOP.

RMI-IIOP and JNDI Tutorial 665

29_576828 appA.qxd 11/3/04 11:48 AM Page 665

object to the server. The server can perform a callback on that stub, which con-
nects the server to the remote object living on the client machine. Figure A.6
shows the process that occurs when MyRemoteObject, an instance of MyRe-
moteClass, is sent over the network through Java RMI-IIOP.

The best way to understand this paradigm is by analogy. In the Java pro-
gramming language, when you pass an object as a parameter, the object refer-
ence is copied. In RMI-IIOP, when you pass an object as a parameter, the stub
is copied. Both of these strategies achieve pass-by-reference because they are
cloning the thing that points to the object, rather than the object itself.

Because Java RMI-IIOP stubs are also serializable, they are passable over the
network as a bit-blob. This is why earlier we said that all parameters in Java
RMI-IIOP are passed by value. Thus, Java RMI-IIOP only simulates pass-by-ref-
erence by passing a serializable stub, rather than serializing the original object.
By making your parameters remote objects, you can effectively avoid the net-
work lag in passing large objects.

Figure A.6 Pass-by-reference with Java RMI-IIOP.

RMI-IIOP Client

1: invoke(MyRemoteObject)

Remote Object
Stub

2: Since the MyRemoteObject parameter
is a remote object, serialize a
stub to MyRemoteObject.

Network

Remote Object
Skeleton

Remote Object
Implementation

3: Deserialize the parameter. The deserialized
parameter is a stub back to the original
MyRemoteObject.

4: invoke(stub to MyRemoteObject)

MyRemoteClass

java.rmi.Remote

666 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 666

In summary, we have the following rules for passing objects using Java
RMI-IIOP:

■■ All Java basic primitives are passed by value when calling methods
remotely. This means copies are made of the parameters. Any changes
to the data on the remote host are not reflected in the original data.

■■ If you want to pass an object over the network by value, it must imple-
ment java.lang.Serializable. Anything referenced from within that object
must follow the rules for Java serialization. Again, any changes to the
data on the remote host are not reflected in the original data.

■■ If you want to pass an object over the network by-reference, it must be a
remote object, and it must implement java.rmi.Remote. A stub for the
remote object is serialized and passed to the remote host. The remote
host can then use that stub to invoke callbacks on your remote object.
There is only one copy of the object at any time, which means that all
hosts are calling the same object.

Now that you understand parameter passing, let’s move on. For us to com-
plete our RMI-IIOP sample application, we need some way to publish the
server and have the client locate that server. This process, called bootstrapping,
is achieved via the JNDI. Let’s put our RMI-IIOP example on hold while we
learn about JNDI. We’ll return later to complete the example.

The Java Naming and Directory Interface

The Java Naming and Directory Interface (JNDI) is a J2EE API that provides a
standard interface for locating users, machines, networks, objects, and services
by name. For example, you can use JNDI to locate a printer on your corporate
intranet. You can also use it to locate a Java object or connect with a database.
JNDI is used in EJB, RMI-IIOP, JDBC, and more. It is the standard J2EE way of
looking up things by name over the network.

Naming and Directory Services
To understand JNDI, we must first understand the concept of naming and
directory services.

A name is like a reference in that it denotes an entity, for example an object or
a person. The name is not the same as the referenced thing and has no mean-
ing by itself (“What’s in a name?”). Names are often preferred over other kinds
of references because they are easier to use and remember than unwieldy ref-
erences like phone numbers, SSNs, IP addresses, or remote object references.

RMI-IIOP and JNDI Tutorial 667

29_576828 appA.qxd 11/3/04 11:48 AM Page 667

A naming service is analogous to a telephone operator. When you want to call
someone over the phone and you don’t know that person’s phone number,
you can call your telephone company’s information service operator to look up
the person you want to talk with. You supply the telephone operator with the
name of the person. The operator then looks up the phone number of the per-
son you want to speak with and returns it to you. (The operator can even dial
the number for you, connecting you to that person, but that is beyond what a
pure naming service will do for you.)

A naming service is an entity that performs the following tasks:

■■ It associates names with objects. We call this binding names to objects.
This is similar to a telephone company’s associating a person’s name
with a specific residence’s telephone number.

■■ It provides a facility to find an object based on a name. We call this
looking up an object, or resolving a name. This is similar to a telephone
operator finding a person’s telephone number based on that person’s
name.

Naming services are everywhere in computing. When you want to locate a
machine on the network, the Domain Name System (DNS) is used to translate a
machine name to an IP address. If you look up www.wiley.com on the Internet,
the name www.wiley.com is translated into the object (which happens to be a
String) 208.215.179.146 by the DNS.

Another example of naming occurs in file systems. When you access a file
on your hard disk, you supply a name for the file such as c:\autoexec.bat or
/etc/fstab. How is this name translated into an actual file of data? A file sys-
tem naming service can be consulted to provide this functionality.

In general, a naming service can be used to find any kind of generic object
by name, like a file handle on your hard drive or a printer located across the
network. But one type of object is of particular importance: a directory object (or
directory entry). A directory object differs from a generic object because you can
store attributes with directory objects. These attributes can be used for a wide
variety of purposes.

For example, you can use a directory object to represent a user in your com-
pany. You can store information about that user, like the user’s password, as
attributes in the directory object. If you have an application that requires
authentication, you can store a user’s login name and password in directory
object attributes. When a client connects to your application, the client sup-
plies a login name and password, which you can compare with the login name
and password that are stored as a directory object’s attributes. If the data
matches, the user is authenticated. If the data doesn’t match, your application
can return an error. You can store other attributes besides a login name and
password, including a user’s e-mail address, phone number, and postal
address.

668 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 668

A directory service is a naming service that has been extended and enhanced
to provide directory object operations for manipulating attributes. A directory
is a system of directory objects that are all connected. Some examples of direc-
tory products are Netscape Directory Server and Microsoft Active Directory.
Your company probably uses a directory to store internal company informa-
tion (locations of computers, current printer status, personnel data, and so on).

What does a directory look like internally? The directory’s contents—the set
of connected directory objects—usually forms a hierarchical tree-like struc-
ture. Why would you want a tree-like structure? A tree’s form suggests the
way a real-world company is organized. For example, the root (or top node) of
your directory tree can represent your entire company. One branch off the root
could represent people in the company, while another branch could represent
network services. Each branch could have subtrees that decrease in granular-
ity more and more, until you are at individual user objects, printer objects,
machine objects, and the like. This is illustrated in Figure A.7.

Figure A.7 A hierarchical directory structure.

My Company

People

Network
Services

Person 1

Printers

Computers

Fax Machines

Person 2

Printer 1

Computer 1

Computer 2

Fax Machine 1

RMI-IIOP and JNDI Tutorial 669

29_576828 appA.qxd 11/3/04 11:48 AM Page 669

All in all, directories are not very different from databases. A database can
store arbitrary data, just like a directory can. Databases provide query opera-
tions to look up items in a database, just like directories do. You can think of a
directory as a scaled-down, simplified database. In fact, most directories are
implemented by a database behind the scenes.

Problems with Naming and Directories
There are many popular naming and directory products out today. Directory
vendors differentiate their product lines by offering different types of services.
Unfortunately, this leads to different naming and directory standards. And
each directory standard has a different protocol for accessing the directory. For
example, directories based on the Lightweight Directory Access Protocol (LDAP)
are accessed differently than those based on the Network Information System
(NIS) or Novell’s Network Directory System (NDS).

This means that if you want to switch directory vendors, you need to rewrite
all your client code that accesses the directory. It also means you need to
download a new library, learn a new API, and test new code each time you use
a different directory.

Initially, LDAP was meant to resolve this problem by becoming the ubiqui-
tous protocol for directories. LDAP is straightforward and is being adopted
quickly by the industry—IBM’s Lotus Notes and Microsoft’s Active Directory
both are LDAP-based. However, not all directory products are LDAP-based.

Enter JNDI
JNDI is a system for Java-based clients to interact with naming and directory
systems. JNDI is a bridge over naming and directory services, a beast that pro-
vides one common interface to disparate directories. Users who need to access
an LDAP directory use the same API as users who want to access an NIS direc-
tory or a Novell directory. All directory operations are done through the JNDI
interface, providing a common framework.

Benefits of JNDI
The following surveys the advantages that JNDI has to offer:

■■ You need to learn only a single API to access all sorts of directory ser-
vice information, such as security credentials, phone numbers, elec-
tronic and postal mail addresses, application preferences, network
addresses, machine configurations, and more.

■■ JNDI insulates the application from protocol and implementation
details.

670 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 670

■■ You can use JNDI to read and write whole Java objects from directories.

■■ You can link different types of directories, such as an LDAP directory
with an NDS directory, and have the combination appear to be one
large, federated directory. The federated directory appears to the client
to be one contiguous directory.

In J2EE, you can use JNDI for many purposes. These include:

■■ Using JNDI to acquire a reference to the Java Transaction API (JTA)
UserTransaction interface

■■ Using JNDI to connect to resource factories, such as JDBC drivers or
Java Message Service (JMS) drivers

■■ Using JNDI for beans to look up other beans

See Chapters 10 and 11 for examples of achieving these operations.

The JNDI Architecture
JNDI is made up of two halves: the client API and the Service Provider Interface
(SPI). The client API allows your Java code to perform directory operations.
This API is uniform for all types of directories. You will spend the most time
using the client API.

The JNDI SPI is a framework for JNDI implementors: an interface to which
naming and directory service vendors can plug in. The SPI is the converse of
the API: While the API allows clients to code to a single, unified interface, the
SPI allows naming and directory service vendors to fit their particular propri-
etary protocols into the system, as shown in Figure A.8. This allows for client
code to leverage proprietary naming and directory services in Java while
maintaining a high level of code portability.

The JNDI architecture is somewhat like the Java Database Connectivity
(JDBC) package:

■■ In JDBC, one uniform client API performs database operations. In JNDI,
naming and directory service clients invoke a unified API for perform-
ing naming and directory operations.

■■ In JDBC, relational database vendors provide JDBC drivers to access
their particular databases. In JNDI, directory vendors provide service
providers to access their specific directories. These providers are aware
of specific directory protocols, and they plug in to the JNDI SPI.

For example, Sun Microsystems gives away an LDAP service provider for
free. The LDAP service provider knows how to map a JNDI client API opera-
tion into an LDAP operation. It then executes the LDAP operation on an LDAP
directory, using the specific LDAP protocol.

RMI-IIOP and JNDI Tutorial 671

29_576828 appA.qxd 11/3/04 11:48 AM Page 671

Figure A.8 The JNDI architecture.

A number of JNDI service providers are available today, including LDAP,
NIS, Novell NDS, SLP, CORBA Naming Service, File System, RMI-IIOP, and
many more. The JNDI homepage (http://java.sun.com/products/jndi) has a
list of service providers.

J2EE servers bundle a JNDI implementation with their product. Typically
this is a custom implementation provided by the J2EE server vendor. JNDI
then just becomes another service provided by the server, along with RMI-
IIOP, JMS, and so on. Many servers ship JNDI implementations that are fault
tolerant, providing a high level of availability. These JNDI implementations
are intended to integrate with the other J2EE services, such as RMI-IIOP, JDBC,
EJB, and JMS.

JNDI Concepts
We begin our JNDI exploration with naming concepts. There are several kinds
of names in JNDI:

■■ An atomic name is a simple, basic, indivisible name. For example, in the
string /etc/fstab, etc and fstab are atomic names.

■■ A compound name is zero or more atomic names put together using a
specific syntax. In the previous example, the entire string /etc/fstab is a
compound name formed by combining two atomic names with a slash.

A binding is an association of a name with an object. For example, the file
name autoexec.bat in the Windows file system has a binding to the file data on
your hard disk. Your c:\windows folder is a name that is bound to a folder on

Client Code

Service Provider Interface

LDAP Service
Provider

NIS Service
Provider

File System
Service Provider

JNDI Client API

672 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 672

your hard drive. Note that a compound name such as /usr/people/ed/.cshrc con-
sists of multiple bindings, one to usr, one to people, one to ed, and one to .cshrc.

A context is a set of zero or more bindings. Each binding has a distinct atomic
name. So for example, in the UNIX file system, let’s consider a folder named
/etc that contains files named mtab and exports. In JNDI, the /etc folder is a con-
text containing bindings with atomic names mtab and exports. Each of the mtab
and exports atomic names is bound to a file on the hard disk.

To expand this further, consider a folder named /usr with subfolders
/usr/people, /usr/bin, and /usr/local. Here, the /usr folder is a context that contains
the people, bin, and local atomic names. Each of these atomic names is bound to
a subfolder. In JNDI terms, these subfolders are called subcontexts. Each sub-
context is a full-fledged context in its own right, and it can contain more name-
object bindings, such as other files or other folders. Figure A.9 depicts the
concepts we have learned so far.

Figure A.9 JNDI naming concepts.

• Binding with the name
usr.

• Also a context that
contains other bindings.

• Binding with the
name people.

• Also a subcontext
that contains other
bindings.

• Binding with the
name bin.

• Also a subcontext
that contains other
bindings.

• Binding with the
name local.

• Also a subcontext
that contains other
bindings.

...

...

...

RMI-IIOP and JNDI Tutorial 673

29_576828 appA.qxd 11/3/04 11:48 AM Page 673

Naming Systems, Namespaces, and Composite Names

A naming system is a connected set of contexts that use the same name syntax.
For example, a branch of an LDAP tree could be considered a naming system,
as could a folder tree in a file system. Unfortunately, naming systems each
have a different syntax for accessing contexts. For example, in an LDAP tree, a
compound name is identified by a string such as cn=Ed Roman, ou=People,
o=Middleware-Company.com, c=us, whereas a file system compound name
might look like c:\java\lib\tools.jar.

A namespace is the set of names contained within a naming system. Your
hard drive’s entire collection of file names and directories or folders is your
hard drive file system’s namespace. The set of all names in an LDAP direc-
tory’s tree is an LDAP server’s namespace. Naming systems and namespaces
are shown in Figure A.10. This branch of a hard disk is an example of a nam-
ing system because it’s a connected set of contexts. Within this naming system,
the namespace is every name shown.

A composite name is a name that spans multiple naming systems. For exam-
ple, on the Web, the URL http://java.sun.com/products/ejb/index.html is
composed of the following namespaces:

■■ http comes from the URL scheme-id namespace. You can use other
scheme-ids, such as ftp and telnet. This namespace defines the protocol
you use to communicate.

■■ java.sun.com uses the DNS to translate machine names into IP addresses.

■■ products, ejb, and index.html are from the file system namespace on the
Web server machine.

By linking multiple naming systems as in the preceding URL, we can arrive
at a unified composite namespace (also called a federated namespace) containing all
the bindings of each naming system.

Initial Context Factories

If you are to traverse a composite namespace, how do you know which nam-
ing system to look into first? For example, which namespace do you first look
in when traversing the string http://www.TheServerSide.com/events/index.jsp?

The starting point of exploring a namespace is called an initial context. An
initial context simply is the first context you happen to use. Frequently, the ini-
tial context will be the root node of a naming system, but this is not necessar-
ily so. An initial context is simply a starting point for performing all naming
and directory operations.

674 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 674

Figure A.10 Naming systems and namespaces.

To acquire an initial context in JNDI, you use an initial context factory. An ini-
tial context factory is responsible for churning out initial contexts and is imple-
mented by your JNDI driver. For example, there is an LDAP initial context
factory, as well as a file system initial context factory. These initial context facto-
ries know the specific semantics of a particular directory structure. They know
how to acquire an arbitrary context that you can use as an initial starting context
for traversing a directory structure.

When you acquire an initial context, you must supply the necessary informa-
tion for JNDI to acquire that initial context. For example, if you’re trying to
access a JNDI implementation that runs within a J2EE server, you might supply:

■■ The IP address of the J2EE server

■■ The port number that the J2EE server accepts requests on

■■ The starting location within the JNDI tree

■■ Any user name and password combination necessary to use the J2EE
server

You could use this same paradigm to access an LDAP server—just substitute
LDAP server for J2EE server in the preceding list.

Initial contexts and composite namespaces are illustrated in Figure A.11.

Java Context

Classes Context

ASP Context

Packages Context

InetServ Context

System32 Context

WinNT Context

CertSrv Context

IISAdmin Context

RMI-IIOP and JNDI Tutorial 675

29_576828 appA.qxd 11/3/04 11:48 AM Page 675

Figure A.11 A federated namespace with an initial context.

A quick performance tip for you: some J2EE servers take a long time to
create an initial context. If this is the case, we strongly recommend caching
an initial context for future use. Create it once, and then reuse it when
needed later.

The naming contexts and subcontexts in Figure A.11 form a directed graph
that you can navigate. In the figure as in most practical scenarios, these nam-
ing graphs are acyclic, but this is not required. An example of a cycle in a nam-
ing graph is a symbolic link in a subdirectory of the UNIX file system that links
to a directory closer to the root. JNDI naming graphs are often referred to as

File System

LDAP

Printer Service

NDS

DNS

Printers

Files

User Information

Initial context

JNDI client code

676 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 676

JNDI trees. Note that in fact there is no restriction in JNDI that ensures that the
graph is a tree. Naming graphs also need not have a single root node, and sub-
contexts can be bound in more than one context, so a single subcontext may be
known under more than one name.

Programming with JNDI
Now that you’ve seen the concepts behind JNDI, let’s put our theory into con-
crete use. Source A.3 shows a simple JNDI example.

package examples;

public class InitCtx {

public static void main(String args[]) throws Exception {

// Form an Initial Context

javax.naming.Context ctx =

new javax.naming.InitialContext(System.getProperties());

System.err.println(“Success!”);

}

}

Source A.3 InitCtx.java.

The code simply acquires an initial context, and then the program com-
pletes. The specific JNDI driver that we use is based on the system properties
passed in at the command line. For example, to connect to your file system,
you would use the Sun Microsystems file system JNDI service provider, which
is a driver that connects you to your own hard disk to browse the file system.
You would then run the program as follows:

java

-Djava.naming.factory.initial=

com.sun.jndi.fscontext.RefFSContextFactory

-Djava.naming.provider.url=file:c:\ examples.InitCtx

The java.naming.factory.initial parameter identifies the class of the JNDI dri-
ver. Then we identify the starting point on the file system that we want to
begin navigating; specifically, the c:\ folder. This starting point is structured in
the form of a Uniform Resource Locator (URL). In JNDI, it is called the provider
URL because it is a URL that the service provider accepts for bootstrapping.

We can reuse this same code to connect to an LDAP server as follows:

java

-Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

-Djava.naming.provider.url=”ldap://ldap.funet.fi:389/c=fi”

examples.InitCtx

RMI-IIOP and JNDI Tutorial 677

29_576828 appA.qxd 11/3/04 11:48 AM Page 677

As you can see, this data-driven mechanism of performing JNDI has its
advantages. It enables you to avoid recompiling your Java code. It also enables
non-Java-savvy users to customize the behavior of your programs without
modifying source code, which is important if you ship your products only as
.class files.

678 Appendix A

OTHER JNDI OPERATIONS

After acquiring the initial context, you could begin to execute JNDI operations,
such as reading or writing data to and from the JNDI tree by using the other API
calls available in JNDI. Here is a brief list of available operations that you can
call on the context:

◆ list() retrieves a list of bindings available in the current context. This typi-
cally includes names of objects bound in the JNDI graph, as well as sub-
contexts. In a file system, this might be a list of file names and folder
names. If you’re connecting to a proprietary J2EE server’s JNDI imple-
mentation, you might see a list of bound objects as well as subcontexts
to which you can navigate.

◆ lookup() resolves a name binding in the context, meaning that the opera-
tion returns the object bound to a given name in the context. The opera-
tion can also be used to move from one context to another context, such
as going from c:\ to c:\ windows. The return type of lookup() is JNDI dri-
ver specific. For example, if you’re looking up RMI-IIOP objects, you
would receive a java.rmi.Remote object; if you’re looking up a file in a
file system, you would receive a java.io.File.

◆ rename() gives a context a new name, such as renaming c:\ temp to c:\
tmp.

◆ createSubcontext() creates a subcontext from the current context, such
as creating c:\ foo\ bar from the folder c:\ foo.

◆ destroySubcontext() destroys a subcontext from the current context, such
as destroying c:\ foo\ bar from the folder c:\ foo.

◆ bind() creates a new name binding in the current context. As with
lookup(), JNDI drivers accept different parameters to bind().

◆ rebind() is the same operation as bind, except it forces a bind even if
there is already something in the JNDI tree with the same name.

29_576828 appA.qxd 11/3/04 11:48 AM Page 678

Integrating RMI-IIOP and JNDI

Now that you’ve seen both RMI-IIOP and JNDI, let’s see how to combine them
and complete our RMI-IIOP example. There are essentially two uses of JNDI
with RMI-IIOP:

■■ An RMI-IIOP server first binds a reference to one or more of its object in
a JNDI context using the JNDI API.

■■ A client then uses JNDI to look up an RMI-IIOP server.

This process is shown in Figure A.12.
Your JNDI implementation is typically bundled with the J2EE server run-

time. Therefore, when you start up your J2EE server, the JNDI service runs in-
process to the J2EE server and starts up as well. J2EE servers also ship with a
JNDI driver that can connect to that JNDI implementation, which clients call.

Figure A.12 Bootstrapping with JNDI.

Machine #1

Machine #2

Machine #3

Initial
Context

2: Lookup Object in Well-Known JNDI Tree Location

1: Create name
binding for

remote object

3: Return Stub

4: Call Business Method

RMI-IIOP
Remote Object

RMI-IIOP
Skeleton

RMI-IIOP
Stub

5: Delegate

6: Delegate

Client Code

RMI-IIOP and JNDI Tutorial 679

29_576828 appA.qxd 11/3/04 11:48 AM Page 679

Binding an RMI-IIOP Server to JNDI
The source code for binding the RMI-IIOP server to a JNDI name is in
Source A.4.

import javax.naming.*;

/**

* A helper class which starts our RMI-IIOP server

*/

public class Startup {

/**

* Our main() method starts things up

*/

public static void main(String args[]) throws Exception {

/*

* Start up our PKGenerator remote object. It will

* automatically export itself.

*/

PKGenerator generator = new PKGenerator();

/*

* Bind our PKGenerator remote object to the JNDI tree

*/

Context ctx = new InitialContext(System.getProperties());

ctx.rebind(“PKGenerator”, generator);

System.out.println(“PKGenerator bound to JNDI tree.”);

synchronized (generator) {

generator.wait();

}

}

}

Source A.4 Startup.java.

The Startup class instantiates a remote object, acquires an initial context,
binds the remote object to a name in the context, and then waits for a client to
call. It assumes that your J2EE server’s JNDI implementation is already up and
running. Note that you must supply your J2EE server’s JNDI driver initializa-
tion parameters via the command line, as we showed earlier in this chapter
when we ran our JNDI initial context example. Check your server’s documen-
tation or see the book’s accompanying source code for this.

680 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 680

Looking up an RMI-IIOP Server with JNDI
Our client code that looks up the RMI-IIOP object via JNDI is shown in
Source A.5.

import javax.naming.*;

import java.rmi.*;

public class Client {

public static void main (String[] args) throws Exception {

// Lookup the remote object via JNDI

Context ctx = new InitialContext(System.getProperties());

Object remoteObject = ctx.lookup(“PKGenerator”);

// Cast the remote object, RMI-IIOP style

IPKGenerator generator = (IPKGenerator)

javax.rmi.PortableRemoteObject.narrow(

remoteObject, IPKGenerator.class);

// Generate a PK by calling the RMI-IIOP stub

System.err.println(generator.generate());

}

}

Source A.5 Client.java.

Our client code is self-explanatory, with one exception. After looking up our
remote object, we perform the operation javax.rmi.PortableRemoteObject.nar-
row(). This is a static method on an RMI-IIOP class called PortableRemoteObject.
This method casts the generic object that we looked up via JNDI to our RMI-
IIOP interface type. This narrow() operation is required whenever you look up
an RMI-IIOP object via JNDI. Why do we need it, and why don’t we just cast it
using a regular Java cast? The short answer is CORBA interoperability. And if
you’re really curious, the long answer is in Appendix B.

As with the server, to run the client, you must supply your J2EE server’s
JNDI driver initialization parameters via the command line, as we showed
earlier in this chapter when we ran our JNDI initial context example. Check
your server’s documentation or see the book’s accompanying source code for
this.

RMI-IIOP and JNDI Tutorial 681

29_576828 appA.qxd 11/3/04 11:48 AM Page 681

Summary

In this appendix, we’ve discussed how Java RMI-IIOP and JNDI are funda-
mental underlying technologies in an EJB deployment. We looked at the RMI-
IIOP architecture, comparing it to traditional RPCs. We examined stubs and
skeletons, parameter passing, and object serialization. We concluded our RMI-
IIOP discussion by introducing a sample primary key generator RMI-IIOP
server.

Next, we delved into JNDI. We looked at the basics of naming and directory
concepts, and saw how to acquire an initial context. We then investigated how
to bind and look up an RMI-IIOP object using JNDI.

In the next appendix, we’ll delve into RMI-IIOP at a deeper level, by exam-
ining how it can be used for CORBA interoperability. This topic is important
for anyone who has existing CORBA systems, or existing systems written in
other languages that they’d like to bridge into their EJB system.

682 Appendix A

29_576828 appA.qxd 11/3/04 11:48 AM Page 682

683

C H A P T E R

EJB would not be complete without a way to integrate with CORBA. CORBA
enables EJB applications to communicate with existing CORBA applications,
as well as to integrate with existing investments written in non-Java lan-
guages, such as C11 and COBOL. Indeed, CORBA and EJB are related—many
of the concepts in Java 2 Platform, Enterprise Edition came from CORBA.

In this appendix, we’ll learn the high-level concepts behind CORBA. We’ll
then see how J2EE can integrate with CORBA via RMI-IIOP. Finally, we’ll look
at how to use CORBA clients to access EJB systems.

What Is CORBA?

The Common Object Request Broker Architecture (CORBA) is a unifying standard
for writing distributed object systems. The standard is completely neutral with
respect to platform, language, and vendor. CORBA incorporates a host of tech-
nologies and is very broad in scope.

The Object Management Group (OMG), a consortium of companies that
began in 1989, invented CORBA. CORBA itself is simply a standard, just like
EJB. CORBA-compliant products implement the CORBA specification, just as
EJB-compliant servers implement the EJB specification.

As one of the key parts of the CORBA specification, the OMG has defined a
protocol called Internet Inter-ORB Protocol (IIOP, pronounced “eye-op”). IIOP

CORBA Interoperability

A P P E N D I X

B

30_576828 appB.qxd 11/3/04 11:48 AM Page 683

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

is the standard Internet protocol for CORBA. You never see IIOP directly in your
applications; it is used behind the scenes for distributed object communications.

CORBA as the Basis for EJB
Many of the concepts in EJB came out of CORBA. In a sense, you can think of
EJB as CORBA with a new hat. EJB and J2EE bring a Java-centric, component-
based approach to traditional middleware programming—an architecture
suitable for rapid application development. CORBA, on the other hand, offers
a much broader suite of middleware features to work with. This includes a
time service, a distributed locking service, a relationship service, a notification
service, and more. Moreover, CORBA has a large number of domain-specific
specifications, for example, in the telecommunications or health care sector.
The primary advantage of EJB over CORBA is that EJB has more industry
momentum; indeed, the very middleware vendors who offered CORBA
implementations in the past are now focused on their EJB implementations.

Just like EJB, CORBA was jointly developed by a large group of companies.
This prevents CORBA from becoming a standard that’s specific to one product
or architecture (in the way that Microsoft .NET, for example, is specific to Win-
dows).

Why Should I Care about CORBA?

Why would you want to use CORBA? There are several reasons:

■■ You can use CORBA for legacy integration. If you have an existing
investment, such as a legacy banking application, you can leverage that
investment today using CORBA. For example, let’s say you have a
banking application written in COBOL or C++. CORBA gives you the
ability to preserve and reuse it. You can wrap your existing investment
as a CORBA object, allowing it to be called from any application. As
we’ll find out, CORBA is a language-neutral standard and allows code
written in several languages to communicate. Thus, CORBA is an ideal
platform for code written in different languages to cooperate.

■■ CORBA allows for advanced middleware development. Remember
that EJB is not supposed to be an end-all to every problem. But if there
is a middleware service that can be generalized, you’re likely to find it
standardized as a CORBA service. For those who need it, CORBA gives
great functionality.

684 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 684

■■ CORBA has a large installed basis of mission-critical systems. Espe-
cially in the banking and telecommunications industries, you are likely
to find large installations of CORBA applications, some in highly criti-
cal, real-time operation scenarios. While CORBA is no longer receiving
much interest in developer magazines, the installed basis of (and the
market for) CORBA systems is still growing while you are reading
these lines.

■■ CORBA and EJB have hooks connecting them. Some EJB products will
allow your enterprise beans to be called from two different kinds of
clients: clients written to use the J2EE suite of APIs and clients written
to use CORBA APIs. This means that code written in C11 or Smalltalk
can call your enterprise beans.

Drawbacks of CORBA
As usual, the world isn’t perfect. Using CORBA has disadvantages as well as
advantages:

■■ CORBA is slow-moving. All standards committees are bureaucratic
and slow to make decisions. This is because the standards committee
itself is not driven by revenues, but rather by individual interests from
participating companies. CORBA experiences benefits from not being
owned by one company, but its openness is also a drawback. The cycle
time for the OMG to adopt a new CORBA feature is on the order of
years.

■■ CORBA has a steep learning curve. As CORBA has evolved over the
years, it has undergone feature creep. More and more features have been
added, which makes CORBA a robust standard but also increases the
learning curve. Indeed, the specifications that define the whole of
CORBA are thousands of pages long and are quite challenging to mas-
ter. The nice thing about CORBA is that you don’t have to learn it all to
use it—you can learn optional CORBA services as you need them.

■■ Products developed under CORBA may have incompatible features.
It’s great that CORBA is a unifying standard. Because no single com-
pany controls the standard, it levels the playing field for companies
competing to build CORBA products. But there remain the problems of
multivendor solutions. As with EJB products, if you mix and match
CORBA products, you will inevitably run into assumptions that vendors
have made but that are specific to their own products. This is the trade-
off between a one-vendor solution, such as Microsoft, and an open stan-
dard, such as CORBA or EJB. The price of freedom is eternal vigilance.

CORBA Interoperability 685

30_576828 appB.qxd 11/3/04 11:48 AM Page 685

Understanding How CORBA Works

Before we delve into CORBA/EJB interoperability, we’ll cover the core
CORBA fundamental concepts. This will lay the groundwork for us to discuss
how CORBA and EJB are compatible.

Object Request Brokers
An Object Request Broker (ORB) facilitates network communication. ORBs
enable disparate applications to communicate without being aware of the
underlying communications mechanism. They are responsible for finding
objects to service method calls, handling parameter passing, and returning
results. Whenever you have multiple objects interacting in a CORBA environ-
ment, ORBs facilitate the communications. This is shown in Figure B.1.

Numerous commercial and Open Source CORBA ORBs for different plat-
forms and programming languages are available on the market. Some exam-
ples are Iona Orbix, Borland VisiBroker, and the Open Source ORBs TAO and
JacORB. Each vendor offers various qualities of service that differentiate that
vendor’s product from those of other vendors in the marketplace.

Figure B.1 The ORB facilitates your networking needs.

Application
Code

ORB

Machine 1

Application
Code

ORB

Machine 3

Application
Code

ORB

Machine 2
IIOP

IIOP

IIOP

686 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 686

The concept of an ORB is not specific to CORBA. J2EE implementations and
Microsoft .NET contain ORB functionality as well because both architectures
facilitate network communications and hence, serve as object request
brokers. For the rest of this chapter, however, we’ll assume we’re dealing
with CORBA ORBs.

The OMG Interface Definition Language

The cornerstone of CORBA is the OMG interface definition language (OMG IDL).
OMG IDL is a language that CORBA uses to define the interfaces between
clients and the objects they call. When you write a CORBA object implementa-
tion, that object implementation must have a corresponding IDL that defines
the interface for that object implementation. By programming with OMG IDL,
you force a clear distinction between interface and implementation; you can
vary your implementation without changing the interface your clients use.
The IDL concept is shown in Figure B.2.

Another great benefit to OMG IDL is that it is a language-neutral interface for
object implementations. You can write your IDL once and then define your
object implementations in any language that CORBA supports, such as C++ or
Smalltalk. And because IDL is language-neutral, client code that calls your
object implementations can be written in any language that CORBA supports
as well. Thus, IDL enables you to have a deployment mixing heterogeneous
languages.

IDL is also inherently platform-neutral, allowing clients and object imple-
mentations to be deployed in different platforms. For example, your clients
can exist on a Windows box and talk to business objects deployed on a Sun
Solaris box.

You should think of IDL as a middleman language—a common ground that
in theory is independent of language change. IDL allows you to write a dis-
tributed application with the illusion that it’s all written in one language.

Here is a sample snippet of IDL:

module examples {

interface HelloWorld {

string sayHello(in string myName);

}

}

As you can see, IDL is very similar to C++ and Java.

CORBA Interoperability 687

30_576828 appB.qxd 11/3/04 11:48 AM Page 687

Figure B.2 The interface definition language concept.

There are many different types in IDL, including basic types (such as short
and float) and constructed types (such as struct and enumeration). You’ll find
that if you know C++, learning to use OMG IDL is pretty straightforward. If
you’re a Java programmer, you should not have too much difficulty using IDL
to define your object’s interfaces either, because Java’s syntax is similar to C++.

We only briefly describe IDL in this chapter. Most CORBA books will have a
section explaining IDL fully. For more details, see Brose, Vogel, and Duddy,
Java Programming With CORBA (ISBN 0-471-37681-7). And if you’re serious
about CORBA, take a look at the specifications on the OMG Web site
(www.omg.org), which detail OMG IDL rigorously.

Pricer

Pricer.idl

Pricer.java

Fulfillment

Fulfillment.idl

Fulfillment.java

Billing
Billing.idl

Billing.cpp

IDL defines the
interfaces between
components written in
different languages.

688 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 688

OMG IDL Maps to Concrete Languages
IDL is only a descriptive language in that it describes the interfaces to your
objects. You cannot execute IDL. Neither your CORBA object implementations
nor your CORBA clients ever see IDL. You program your clients and object
implementations in whatever language you’re using, such as Java or C++. But
how, then, do you refer to CORBA objects? The answer is the OMG IDL maps
to specific languages, such as Java or C++. If you go to the OMG Web site
(www.omg.org), you’ll see that there are specifications detailing how OMG
IDL maps to various languages. For instance, there is an IDL-to-Java mapping
specification that defines how IDL maps to Java. With the IDL-to-Java map-
ping, the string type in OMG IDL maps to the java.lang.String object in Java.

It is important to realize that, although IDL is a language, it is more of an
abstraction because you never write client code or object implementations that
use IDL files. Rather, you use IDL to define the interfaces to your objects and
then map that IDL into your particular language using an IDL compiler. For
example, an IDL-to-Java compiler would take as input an IDL file and gener-
ate Java interfaces for your object implementations. Once this is done, you can
implement those interfaces in Java. You could then map the IDL to a different
language, such as C++, by using an IDL-to-C++ compiler. This would allow
you to write client code in C++ that calls your Java object implementations.

For the sake of brevity, we do not cover the IDL-to-Java mapping here. You
can download the complete IDL-to-Java mapping specification for free from
the OMG Web site.

CORBA Static Invocations
As we’ve mentioned, the ORB facilitates client/server communications, sim-
plifying client networking needs. But how does a client invoke a method on a
remote CORBA object? The answer is via a local method call, which gets trans-
lated into a remote method call across the network. This is quite analogous to
how networking is accomplished in Java RMI.

The conventional way to perform distributed computing in CORBA is to
have the client invoke locally on a pregenerated stub. The stub is a proxy for
the real object implementation, which exists elsewhere on the network. The
stub is responsible for going through the client-side ORB runtime, which chan-
nels the request over the network via IIOP.

The receiving server-side ORB runtime receives the IIOP request, then calls
a skeleton to handle the request. The server-side skeleton is a pregenerated file,
just like the stub. The skeleton is responsible for delegating the invocation to
the actual server-side CORBA object implementation (also called a servant)

CORBA Interoperability 689

30_576828 appB.qxd 11/3/04 11:48 AM Page 689

that will service the request. The skeleton is also responsible for coordinating
with an object adapter. This object adapter performs many tasks, such as map-
ping object references to servants, activating servants in case they don’t exist
already, housekeeping of threads, and more. Modern ORB implementations
have object adapters coded to the CORBA Portable Object Adapter (POA) speci-
fication.

The CORBA invocation process is shown in Figure B.3.
Both the stub and skeleton are pregenerated files. They are usually gener-

ated from the IDL file that defines the server-side CORBA object’s method sig-
natures. This invocation mechanism is called a static invocation, because you’re
statically binding your client code to stubs at compile time. CORBA also pro-
vides an alternative invocation mechanism called dynamic invocation that does
not rely on type-safe, pregenerated stubs. CORBA has a special API, the
dynamic invocation interface (DII) that enables programmers to create special
request objects, insert parameters, make the invocation, and then extract the
results or exceptions. We do not cover dynamic invocations here because it is
an untyped, error-prone way to make remote invocations that is usually
avoided except for specific applications that must deal with interfaces that are
not known at compile time.

Figure B.3 Calling a method in CORBA.

CORBA Stub

Client
CORBA Object

Implementation

CORBA
Skeleton

CORBA Object Interface

Network
Via IIOP

ORB ORB

690 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 690

CORBA’s Many Services

In addition to enabling objects to communicate over the network, the OMG
has published a set of CORBA Object Services (known as CORBA Services
[COS]) that give your networked objects additional capabilities. These services
are optionally provided by CORBA vendors. Most serious CORBA products
give you one or more services to aid development. These include:

■■ The CORBA Naming Service (COS Naming) is a CORBA service that
enables you to look up CORBA objects by name, a technology similar to
the Java Naming and Directory Interface (JNDI).

■■ The CORBA Notification Service allows for asynchronous communica-
tions between CORBA objects.

■■ The CORBA Object Transaction Service (OTS) enables CORBA objects to
perform transactions.

■■ The Concurrency Control Service allows for multiple clients to concur-
rently interact with a resource.

■■ The CORBA Security Service adds secure functionality to your CORBA
system.

A final specification, called CORBA Component Model (CCM), adds compo-
nent features to CORBA objects, allowing them to function similarly to enter-
prise beans. This means that CORBA now has a proposal that allows for true
components to be developed in the CORBA world. CORBA Components is
very similar to Enterprise JavaBeans, although broader in scope and more
powerful. You can think of CCM as a superset of EJB. This was done inten-
tionally so that CORBA Components and enterprise beans can reside together.
One goal of CORBA Components is to integrate with enterprise beans. Thus, it
should be possible to do either of the following:

■■ Make a CORBA Component appear as though it were an enterprise bean.

■■ Make an enterprise bean appear as though it were a CORBA Component.

For now, there is very little industry momentum for CORBA Components.
This will definitely be an interesting standard to keep an eye on as EJB and
CORBA evolve.

The Need for RMI-IIOP

Now that you’ve seen the basics of CORBA, let’s compare Java RMI to
CORBA. We’ll first discuss why people use RMI and CORBA. Next, we’ll
explore the semantic differences that must be overcome to merge CORBA and

CORBA Interoperability 691

30_576828 appB.qxd 11/3/04 11:48 AM Page 691

RMI. Finally, we’ll look at how the industry merged RMI and CORBA with
RMI-IIOP. This standard is the key to EJB-CORBA compatibility.

The Need for RMI-CORBA Interoperability
RMI and CORBA are similar technologies with slightly different goals. One
technology is not better than the other—it all depends on what kind of devel-
opment you’re doing.

CORBA is a robust distributed object standard that allows for language
interoperability. RMI, on the other hand, was built for very simple distributed
object communications in Java. While RMI does not contain CORBA’s cross-
language support, it is well-suited for pure Java development due to Java-spe-
cific features, such as distributed garbage collection, object activation, and
downloadable class files.

While both RMI and CORBA are intended for distributed object communi-
cations, neither technology contains high-end middleware services, such as
persistence or transactions. CORBA programmers can gain those middleware
services by leveraging CORBA’s optional services that we described earlier.
RMI programmers can gain those middleware services by leveraging the Java
2 Platform, Enterprise Edition suite.

Unfortunately, although RMI and CORBA are similar in nature, they histor-
ically have been incompatible technologies. When you program code with
Java RMI, you need to write your code to the RMI API. Similarly, when you
program code with CORBA, you need to write your code to the CORBA API.
This is terrible for code reuse: If you write code in either RMI or CORBA, you’ll
need to rewrite major pieces of your code if you want to switch networking
technologies.

Ideally, we’d like a world where we could perform the following:

■■ Combine client-side Java RMI with server-side CORBA. We should
be able to write an object implementation to the CORBA API and write
client code to the Java RMI API that calls that CORBA object. This is
shown in Figure B.4.

■■ Combine client-side CORBA with server-side Java RMI. We should
be able to write a remote object implementation with the RMI API and
have a client written to the CORBA API call that object. This is shown in
Figure B.5.

692 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 692

Figure B.4 An RMI client calling a CORBA object implementation.

Combining RMI with CORBA
What strategy should we use to combine the CORBA world with the Java RMI
world? To begin to answer this question, let’s compare how CORBA and RMI
work behind the scenes:

■■ Both CORBA (except in its dynamic invocation mechanism) and RMI use
pregenerated stubs and skeletons to perform network communications.

■■ Behind the scenes, CORBA uses IIOP as the protocol to perform
client/server communications. This occurs beneath the stub/skeleton
layer.

■■ Behind the scenes, Java RMI uses the Java Remote Method Protocol
(JRMP) protocol for performing client/server communications. This
occurs beneath the stub/skeleton layer as well.

RMI Stub

RMI Client
CORBA Object

Implementation

CORBA
Skeleton

RMI Remote Object Interface

Network
Via IIOP

ORB ORB

CORBA Interoperability 693

30_576828 appB.qxd 11/3/04 11:48 AM Page 693

The protocol being used is the key to interoperability of CORBA and RMI.
RMI skeletons always expect a request to come in via the JRMP protocol, and
CORBA skeletons are always expecting data to come in using the IIOP proto-
col. But this protocol layer should be totally pluggable. For example, we
should be able to switch out the RMI JRMP protocol and switch in the IIOP
protocol. If we did this, we could achieve the implementations illustrated in
Figures B.4 and B.5.

So why is IIOP our protocol of choice, rather than JRMP? The reason is that
IIOP is a much more robust protocol than JRMP. IIOP is supported by numer-
ous vendors in the industry and has been designed with interoperability of
heterogeneous distributed objects in mind.

The scheme we’ve just presented is the basis for the unification of CORBA
and RMI, and it is called RMI-IIOP (pronounced RMI over IIOP). RMI-IIOP
allows for CORBA clients, RMI clients, CORBA object implementations, and
RMI object implementations to be mixed and matched. This accomplishes our
goal of creating a bridge between RMI and CORBA. Table B.1 shows the RMI-
IIOP combinations that are possible.

Figure B.5 A CORBA client calling an RMI remote object implementation.

CORBA Stub

CORBA Client
RMI Remote Object

Implementation

RMI Skeleton

CORBA Object Interface

Network
Via IIOP

ORB ORB

694 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 694

Table B.1 Combinations Possible Using RMI-IIOP

CLIENT SERVER

RMI-IIOP client RMI-IIOP server

RMI-IIOP client CORBA server

CORBA client RMI-IIOP server

CORBA client CORBA server

Resolving the Differences between RMI and CORBA

Combining Java RMI with CORBA was not a straightforward task. There were
incompatibilities. For example, in RMI you can pass parameters by-value
using serialization (see Appendix A). Initially, there was no way in CORBA to
marshal parameters by-value. Thus, a new CORBA specification called objects-
by-value was developed and adopted as part of CORBA to address this. The
CORBA ORB you use with RMI-IIOP must implement this specification if you
want to marshal objects by value. All modern ORBs support the objects-by-
value part of the CORBA specification.

Parameter passing conventions were not the only differences between RMI
and CORBA. There are other semantic differences as well. Let’s take a look at
the major concerns:

■■ Distributed garbage collection. RMI gives you an automatic way of
cleaning up objects over the network with a distributed garbage collec-
tor. CORBA, on the other hand, has no such mechanism. Why? Because
not every language that CORBA maps to has the concept of even regu-
lar in-process garbage collection.

■■ Narrowing. When you receive an object using Java RMI, you can sim-
ply cast it into the desired object using a Java cast. This is possible
because RMI automatically downloads the appropriate stub for the
object you’re dealing with. CORBA, however, does not have a mecha-
nism for automatic stub downloading.

■■ Java RMI programmers don’t want to learn OMG IDL. One of the
niceties of Java RMI is that it’s all Java, which means you don’t need to
learn a separate interface definition language (such as OMG IDL) to han-
dle your networking needs. But with RMI-IIOP, you can mix CORBA
clients with RMI server object implementations. Those CORBA clients
are pure CORBA clients (with pure CORBA stubs), and they need to
work with some IDL. That IDL needs to come from somewhere. Should
we force Java RMI programmers to churn out an IDL file? If we make
Java RMI coders learn OMG IDL, a large benefit of RMI has been lost.

CORBA Interoperability 695

30_576828 appB.qxd 11/3/04 11:48 AM Page 695

A separate OMG specification called the Java-to-IDL Mapping specification
resolves the semantic differences between RMI and CORBA. This document
details all of the subtleties of combining the RMI API with the IIOP protocol. It
addresses issues such as distributed garbage collection and inheritance, as well
as the resolution of the differences between RMI and CORBA. In essence, the
Java-to-IDL Mapping document is the complete specification for RMI-IIOP.

Let’s take a look at how Java-to-IDL solves some of the semantic differences
between RMI and CORBA.

■■ Distributed garbage collection (DGC). RMI-IIOP does not propose to
accomplish distributed garbage collection. And rightfully so—DGC is
in general a hard problem to solve. Instead, the Java-to-IDL specifica-
tion mandates that RMI coders cannot rely on distributed garbage
collection when using RMI-IIOP.

■■ Narrowing. When using RMI-IIOP, you cannot simply cast an object
you receive over the network, because the stub class file may not exist
on the client machine. RMI-IIOP does not allow downloadable class
files because CORBA does not mandate support for this feature. Thus,
you must perform a safe cast by explicitly calling the
javax.rmi.PortableRemoteObject.narrow() method. This static method con-
verts an object into the desired remote interface type for you. You pass
narrow() the object you desire to cast, and the class to which you wish to
cast it. The narrow() method returns the resultant object or throws an
exception if the narrow is not possible, perhaps because the class does
not exist.

■■ Java RMI programmers don’t want to learn OMG IDL. One great ben-
efit of Java RMI is that you don’t need to learn a separate interface defi-
nition language to perform remote computing. We’d like to preserve
this feature. RMI-IIOP therefore defines a mapping from RMI IDL types
to OMG IDL types. This mapping provides a well-defined way for Java
language types used by RMI-IIOP to be automatically mapped into
OMG IDL. Once we have this, a vendor can write a tool that automati-
cally performs this mapping. Such a tool is called a java-to-idl compiler. It
takes in code written in Java and spits out OMG IDL. This IDL can be
used by CORBA clients when calling your RMI remote object imple-
mentations. The IDL can also be used by CORBA object implementa-
tions that your RMI clients call.

■■ Java-to-IDL allows you to build complete distributed applications in
Java and then use apps written in other languages to invoke on your
distributed application. The Java-to-IDL mapping simplifies your net-
work programming tremendously. No longer do you have to write IDL

696 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 696

and then translate that into Java. Java-to-IDL compilers allow you to
write your Java application as you normally would; yet they allow for
CORBA interoperability by generating IDL for you. This is a great con-
venience—Java RMI programmers gain the benefits of CORBA-IIOP
interoperability, such as cross-language support, at a very low cost.

CORBA Interoperability 697

THE IIOP DEBATE

The IIOP standardization solution that the J2EE and CORBA communities
reached was not the only possible solution. In fact, this solution was heavily
debated and highly political. Here are the dirty details.

The problem here is that originally not all J2EE server vendors based their
servers on CORBA. BEA WebLogic, for example, built its server from scratch
with a custom RMI implementation, as did many other server vendors. These
vendors did not want to standardize on IIOP, because that meant they had to
rewrite their server to use CORBA instead. This added up to increased
development time and loss of control over what happened at the network level,
which could introduce performance or functionality constraints.

To understand a possible alternative solution, you must understand the
concept of context propagation. Let’s say your code is involved in a transaction
or has security credentials associated with it. Most systems (including EJB)
manifest transaction and security data in contexts. These contexts are invisible
to you and are passed along transparently. Typically they are kept in Thread
Local Storage, which is a pocket of memory associated with each thread. When
you perform an invocation, you want this context information to be propagated
automatically to the receiving system so the object implementation can execute
its business logic for you within the same contexts. RMI-IIOP standardizes the
way contexts are propagated, which achieves interoperability.

But there is another solution as well. Imagine if you have two EJB servers
talking to one another—say, Weblogic calling WebSphere. Weblogic is invoking
on a Websphere stub (not Weblogic stub) that has been deployed on the
Weblogic machine. That Websphere stub understands how to talk to a
Websphere skeleton. Therefore it should not be necessary to standardize on a
protocol such as IIOP. Rather, there should be a standard mechanism for a stub
to retrieve transaction and security contexts from the EJB server’s thread local
storage.

In the end, a compromise was reached. J2EE server vendors are allowed to
use other protocols besides IIOP. However, they need to support IIOP in case
interoperability is required with CORBA systems. That is the irony of the phrase
RMI-IIOP—it does not necessarily mean usage of the IIOP protocol. Rather, it
means standardizing on the PortableRemoteObject.narrow() method.

30_576828 appB.qxd 11/3/04 11:48 AM Page 697

Steps to Take for RMI and CORBA to
Work Together: An Overview

Now that you’ve seen the theory of combining RMI with CORBA, let’s see
exactly what steps you need to take for interoperability.

RMI-IIOP Client with a CORBA Object Implementation
Our first scenario depicts an RMI-IIOP client with a CORBA object implemen-
tation. To develop such a system, perform the following steps:

1. Write your RMI-IIOP remote interface. You write the remote interface
in Java. The remote interface is the RMI-IIOP client/server contract for
distributed objects.

2. Generate the needed client-side RMI-IIOP stubs. The RMI-IIOP client
will use the stubs to invoke on the CORBA object implementation. You
can generate these stubs using your J2EE server’s RMI-IIOP compiler
(rmic).

3. Generate the OMG IDL. When you define your CORBA object imple-
mentations, you’re going to need IDL. This IDL must match your RMI-
IIOP remote interface if you want RMI-IIOP clients to be able to invoke
your CORBA object implementations. Rather than laboriously writing it
yourself, you can automatically generate it through a Java-to-IDL com-
piler. The Java-to-IDL compiler takes in your RMI-IIOP remote interface
and spits out OMG IDL. Where do you get a Java-to-IDL compiler? It
typically ships with your container’s tools. For example, most J2EE
servers have a flag on their RMI-IIOP compiler (rmic) to spit out IDL. In
most cases, steps 2 and 3 will be performed in a single run of the RMI-
IIOP compiler rmic.

4. Generate the needed server-side CORBA files. You’re going to need
some helper code, such as skeletons for your CORBA object implemen-
tations. And remember that this helper code can be in any CORBA-
compliant language in which you choose to implement your CORBA
object implementations. This is where the IDL you generated in step 3
comes into play. When you define your CORBA object implementa-
tions, you can use any language to which IDL maps. You then use an
IDL compiler to take in your IDL and produce network management
code in the language in which you’re implementing your objects. For
example, if you use Java, you’ll need an IDL-to-Java compiler. All ORB
vendors that support Java include an IDL-to-Java tool with their prod-
ucts and J2EE servers that bundle ORBs should do so as well.

698 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 698

5. Write the client and the server. You can now write your RMI-IIOP
client in Java and your CORBA object implementations in whichever
programming language you prefer for the task at hand.

CORBA Client with an RMI-IIOP Object Implementation
The second scenario depicts a CORBA client with an RMI-IIOP object imple-
mentation. To achieve this, you perform the following steps:

1. Write your RMI-IIOP remote interface. You write the remote interface
in Java. The remote interface is the RMI-IIOP client/server contract for
distributed objects.

2. Generate the needed server-side RMI-IIOP skeletons. The skeletons
will be used to receive invocations and delegate them to your RMI-IIOP
remote object implementations. You can generate these skeletons using
your J2EE server’s RMI-IIOP compiler (rmic).

3. Generate the OMG IDL. When you define your CORBA clients, you’re
going to need IDL. This IDL must match your RMI remote interface if
you want CORBA clients to call your RMI-IIOP object implementations.
Rather than laboriously writing it yourself, you can automatically gen-
erate it through a Java-to-IDL compiler. The Java-to-IDL compiler takes
in your RMI-IIOP remote interface and spits out OMG IDL, and ships
with your ORB or J2EE server.

4. Generate the needed client-side CORBA files. As in the previous sec-
tion, you need to generate helper code, such as stubs for your CORBA
clients. Thus, you need to generate these network plumbing classes
from the IDL with an IDL compiler, such as an IDL-to-Java compiler
that ships with your ORB or J2EE server.

5. Write the client and the server. You can now write your CORBA client
and your RMI-IIOP object implementations.

As you can see, mixing and matching RMI-IIOP and CORBA requires a
number of non-trivial code generation steps that involve different code
generator tools. Different J2EE servers may behave differently here, so be
prepared to spend some time experimenting to get RMI-IIOP and CORBA
working together.

Bootstrapping with RMI-IIOP and CORBA
Recall from earlier in this appendix that CORBA has its own built-in naming
service, called the CORBA Naming Service (or COS Naming). COS Naming is

CORBA Interoperability 699

30_576828 appB.qxd 11/3/04 11:48 AM Page 699

the standard way CORBA clients look up remote CORBA objects. But again,
this is simply looking up an arbitrary resource over the network; the resource
just happens to be CORBA objects rather than printers or RMI-IIOP objects.
Therefore, COS Naming is a perfect fit for JNDI. You can look up CORBA
objects using JNDI by using a special CORBA-compatible JNDI driver. One
such driver is the COS Naming service provider, downloadable for free from
http://java.sun.com. Note that you should check your J2EE server’s docu-
mentation for the specific driver they recommend.

What’s great about this paradigm is that our RMI-IIOP client code can
access both RMI-IIOP servers and CORBA servers without changing code, but
rather by merely plugging in a different JNDI driver.

The Big Picture: CORBA and EJB Together

CORBA and EJB have an interesting relationship. They compete with one
another in some respects (due to CORBA Components), and at the same time,
they complement each other. This is because CORBA is often the enabling
technology that resides beneath the EJB level. Many EJB server vendors layer
their EJB products on top of an existing CORBA infrastructure, and RMI-IIOP
allows just this to happen.

CORBA-EJB interoperability is a solid technology by now, and it provides
several benefits. The biggest benefit is that CORBA clients written in any lan-
guage (that OMG IDL maps to) can call your enterprise beans.

Another benefit of CORBA-EJB interoperability is at the transaction and
security level. Clients can mix calls to both CORBA objects and enterprise
beans under the hood of the same transaction. Similarly, you should be able to
construct a distributed transaction that spans heterogeneous EJB servers. And
finally, you should eventually be able to propagate security contexts from one
EJB server to another, allowing for single sign-on between different EJB server
vendors. The specifications are maturing slowly but are sure to make this a
reality in the future.

What You Don’t Get from CORBA-EJB Interoperability
We want to make it clear that there is one benefit that you do not get from
CORBA-EJB interoperability. CORBA-EJB interoperability is for connecting a
CORBA client to an enterprise bean written in Java. You cannot write your
enterprise beans in any language but Java. If you want to write your server-
side components using another language, see Chapter 17 for legacy integra-
tion strategies.

700 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 700

Sample Code
Now let’s write some sample code to illustrate how to use CORBA to call an
EJB component. We’ll use the “Hello, World” bean developed in Chapter 3.
The key thing to notice is that we are taking a bean that we called using RMI-
IIOP in Chapter 3, and are reusing the bean without modification and access-
ing it from a CORBA client.

We’ll use the following to access our bean:

■■ COS Naming to look up the home object

■■ OTS to demarcate transaction boundaries

■■ The Java language to write our CORBA client

Source B.1 shows the implementation.

package examples;

import java.util.*;

import org.omg.CosNaming.*;

// if your ORB does not support CosTransactions, comment

// out this line:

import org.omg.CosTransactions.*;

public class CORBAClient

{

public static void main(String[] args)

throws Exception

{

/*

* Initialize the ORB.

*/

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

/*

* Get a reference to a naming context

*/

NamingContext context = NamingContextHelper.narrow

(orb.resolve_initial_references(“NameService”));

/*

* Look up the home object using COS Naming

*/

NameComponent[] names = { new NameComponent(“HelloHome”, “”) };

HelloHome helloHome = HelloHomeHelper.narrow

(context.resolve(names));

Source B.1 Example CORBA EJB client. (continued)

CORBA Interoperability 701

30_576828 appB.qxd 11/3/04 11:48 AM Page 701

/*

* Get the CORBA OTS Current interface for controlling

* transactions. If your ORB does not support

* CosTransactions, comment out the following line:

*/

Current currentTX = CurrentHelper.narrow

(orb.resolve_initial_references(“TransactionCurrent”));

/*

* Begin the transaction.

* If your ORB does not support CosTransactions, comment

* out the following line:

*/

currentTX.begin();

/*

* Use the home object to create an EJB object

*/

Hello hello = helloHome.create();

/*

* Call a business method. Note trailing ‘_’ in the method name,

* which was introduced by the Java-to-IDL mapping rules:

*/

System.out.println(hello.hello_());

/*

* Remove the EJB object

*/

hello.remove();

/*

* Commit the transaction

* If your ORB does not support CosTransactions, comment

* out the following line:

*/

currentTX.commit(true);

}

}

Source B.1 (continued)

As you can see, initializing CORBA clients is a bit more complex than with
RMI-IIOP clients. We first need to initialize the ORB before beginning any
CORBA operations. Next we get a reference to a naming context via COS
Naming, which we use to look up home objects. Once we’ve retrieved the
home object, calling methods on enterprise beans is syntactically similar to
calling them on RMI-IIOP. We also get a reference to the OTS Current interface,

702 Appendix B

30_576828 appB.qxd 11/3/04 11:48 AM Page 702

which is used to demarcate transactional boundaries, analogous to the Java
Transaction API (JTA) described in Chapter 12. The begin() and commit() calls
have the same semantic meaning as their JTA equivalents.

Summary

In this appendix, you’ve experienced a whirlwind tour of CORBA and IIOP.
We’ve displayed CORBA’s advantages and the reasons that CORBA is a useful
technology. We then delved into the inner workings of CORBA and explored
its architecture. We also glanced at CORBA’s services and touched on the IDL-
to-Java mapping.

We then compared RMI to CORBA and explained why the two worlds need
cohesion. We designed the requirements for RMI-IIOP interoperability and
dove into several scenarios illustrating RMI and CORBA working in unison.
We wrapped up our discussion of RMI-IIOP by illustrating the steps necessary
for you to write RMI-IIOP code.

In the last section of this appendix, we caught a glimpse of the future—EJB
and CORBA interoperability—and showed some example code.

CORBA Interoperability 703

30_576828 appB.qxd 11/3/04 11:48 AM Page 703

30_576828 appB.qxd 11/3/04 11:48 AM Page 704

705

C H A P T E R

This appendix is a reference guide for building XML deployment descriptors.
You do not need to read this appendix front-to-back; rather, you should use it
as a reference guide when you have questions about deployment descriptors.
This is a handy reference when working with deployment descriptors, because
you can quickly look up the structure in question.

How to Read the XML Schema

This appendix is a consolidated view of the EJB 2.1 deployment descriptor
XML Schema definitions (XSD). An XSD provides schema for an XML docu-
ment. It constrains how you can form your XML-based deployment descriptor
so that a computer program, such as an EJB compiler tool, can interpret the
resulting document.

The tables in this appendix use the following syntax:

Deployment Descriptor
Reference

A P P E N D I X

C

31_576828 appC.qxd 11/3/04 11:49 AM Page 705

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

ELEMENT DESCRIPTION

element? A question mark (?) indicates this element is optional.

element* An asterisk (*) indicates zero or more of these elements
may exist.

element+ A plus sign (+) indicates one or more of these elements
may exist.

elementA | elementB This means you can have either elementA or elementB,
but not both.

Element No punctuation means there must be exactly one
element.

Note that the ordering of elements in the tables is important. Your deploy-
ment descriptor will not be valid unless you follow the exact ordering. For
example, it would be invalid to define a local home interface before defining a
home interface. Elements are also case sensitive. Be sure you use the correct
capitalization.

The Header and Root Element

All EJB deployment descriptors should be named ejb-jar.xml and be located in
the META-INF folder of your Ejb-jar file. The XML file is a flat text file that
begins with the following declaration:

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

The ejb-jar element is the root element of all deployment descriptors. Table
C.1 provides information about the header and root elements.

Table C.1 Header and Root Elements

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of
this Ejb-jar file.

display-name? A short name of this
Ejb-jar file, to be displayed
by tools.

706 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 706

Table C.1 (continued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

small-icon? The relative path within the
16 × 16 icon image (either JPEG
or GIF) to be displayed by tools
when manipulating this
Ejb-jar file.

large-icon? Same as small icon, except a
32 × 32 image.

enterprise-beans Defines one or more See session, entity, or
enterprise beans. message-driven later in this

appendix.

relationships? Defines CMP relationships. See relationships later in
this appendix.

assembly Defines application assembly See assembly later in this
descriptor? information, such as appendix.

transactions descriptor and
security.

ejb-client-jar? Specifies an optional JAR file Chapter 3
that contains classes that
remote clients use to access
beans, such as stubs and
interfaces. Only useful if you
have remote clients.

Here is an example of high-level structure of ejb-jar element:

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<description>E-Commerce System</description>

<display-name>E-Commerce EJB-JAR file</display-name>

<small-icon>small.gif</small-icon>

<large-icon>large.gif</large-icon>

<enterprise-beans>

... One or more session, entity, and message-driven ...

</enterprise-beans>

<relationships>

... Define relationships ...

</relationships>

Deployment Descriptor Reference 707

31_576828 appC.qxd 11/3/04 11:49 AM Page 707

<assembly-descriptor>

... Define application assembly information ...

</assembly-descriptor>

<ejb-client-jar>ECommerceClient.jar</ejb-client-jar>

</ejb-jar>

Defining Session Beans

The following is an example of how to set up a session bean. Descriptions
follow.

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

<session>

<ejb-name>Count</ejb-name>

<home>examples.CountHome</home>

<remote>examples.Count</remote>

<ejb-class>examples.CountBean</ejb-class>

<session-type>Stateful</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

<session>
The session element defines a session bean. Used in ejb-jar. (See Table C.2.)

Table C.2 The <session> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of
this bean.

display-name? A short name of this bean,
to be displayed by tools.

708 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 708

Table C.2 (continued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

small-icon? The relative path within
the Ejb-jar file that you can
find a 16 × 16 icon image
(either JPEG or GIF)
representing this bean, to be
displayed by tools.

large-icon? Same as small icon, except
a 32 × 32 image.

ejb-name The nickname that you Chapters 3, 4
want to give this bean. The
ejb-name can be referenced
later in the deployment
descriptor.

home? Home interface class. Chapters 3, 4
Remember to include the
package too!

remote? Remote interface class. Chapters 3, 4
Remember to include the
package too!

local-home? Local home interface class. Chapters 3, 4
Remember to include the
package too!

local? Local interface class. Chapters 3, 4
Remember to include
the package too!

ejb-class Session bean class. Chapters 3, 4
Remember to include the
package too!

session-type For a stateful session bean, Chapters 3, 4
set this to Stateful. For a
stateless session bean, set
this to Stateless.

transaction-type For declarative transactions, Chapter 12
set this to Container. For
bean-managed transactions,
set this to Bean.

env-entry* Declares environment Chapter 10
properties for this bean.

(continued)

Deployment Descriptor Reference 709

31_576828 appC.qxd 11/3/04 11:49 AM Page 709

Table C.2 (continued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

ejb-ref* Declares references to Chapter 10
other beans.

ejb-local-ref* Declares local references Chapter 10
to other beans.

security-role-ref* Declares security role
references.

security-identity? Declares how to perform Chapter 13
security context propagation.

resource-ref* Declares resource factory Chapter 10
references (such as JDBC
driver used in bean).

resource-env-ref* Binds resource factories Chapter 10
to JNDI nicknames.

Note that you must define home/remote or local-home/local in pairs. For
example, it would be invalid to define a home interface without a remote inter-
face. You must also define at least one pair, meaning you must either use
remote interfaces, local interfaces, or both.

Defining Entity Beans

The following is an example of how to set up an entity bean. Descriptions fol-
low in Table C.3.

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

<entity>

<ejb-name>Product</ejb-name>

<local-home>examples.ProductHome</local-home>

<local>examples.Product</local>

<ejb-class>examples.ProductBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>Product</abstract-schema-name>

710 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 710

<cmp-field><field-name>productID</field-name></cmp-field>

<cmp-field><field-name>name</field-name></cmp-field>

<primkey-field>productID</primkey-field>

<query>

<query-method>

<method-name>findByName</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>SELECT OBJECT(a) FROM Product AS a WHERE name = ?1</ejb-

ql>

</query>

</entity>

</enterprise-beans>

</ejb-jar>

<entity>
The entity element defines an entity bean. Used in ejb-jar. (See Table C.3.)

Table C.3 The <entity> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this bean.

display-name? A short name of this bean,
to be displayed by tools.

small-icon? The relative path within the
Ejb-jar file that you can find
a 16 × 16 icon image (either
JPEG or GIF) representing
this bean, to be displayed
by tools.

large-icon? Same as small icon, except
a 32 × 32 image.

ejb-name The nickname that you Chapters 7, 8
want to give this bean. This
Ejb-name can be referenced
later in the deployment
descriptor.

(continued)

Deployment Descriptor Reference 711

31_576828 appC.qxd 11/3/04 11:49 AM Page 711

Table C.3 (continued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

home? Home interface class. Chapters 7, 8
Remember to include the
package too! We don’t
recommend you use this,
because entity beans should
always be accessed via
their local interfaces.

remote? Remote interface class. Chapters 7, 8
Remember to include the
package too! We don’t
recommend you use this,
because entity beans should
always accessed via their
local interfaces.

local-home? Local home interface class. Chapters 7, 8
Remember to include the
package too!

local? Local interface class. Chapters 7, 8
Remember to include the
package too!

ejb-class Entity bean class. Remember Chapters 7, 8
to include the package too!

session-type For a CMP entity bean, set Chapters 7, 8
this to Container. For a BMP
entity bean, set this to Bean.

prim-key-class Primary key class (if you Chapters 7, 8
have one). Remember to
include the package too!

reentrant Set to True or False Chapters 7, 8
depending on whether you
want to be able to call
yourself through another bean.

cmp-version? Set to 1.x or 2.x depending Chapters 7, 8
on whether you’re using the
old EJB 1.1 style of entity The book’s accompanying
bean programming, or the source code has EJB 1.1,
new EJB 2.x style. EJB 2.0, and EJB 2.1 style

examples.

712 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 712

Table C.3 (continued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

abstract Declares a nickname for Chapters 8, 15,
schema-name? this bean’s CMP field Appendix D

definition. Used within
EJB-QL queries.

cmp-field* Defines a container-managed Chapter 8
persistent field for a CMP
entity bean.

primkey-field? If you’re not using a primary Chapter 8
key class, declares one of
your CMP fields to be a
primary key.

env-entry* Declares environment Chapter 10
properties for this bean.

ejb-ref* Declares references to Chapter 10
other beans.

ejb-local-ref* Declares local references Chapter 10
to other beans.

security-role-ref* Declares security role
references.

security-identity? Declares how to perform Chapter 13
security context propagation.

resource-ref* Declares resource factory Chapter 10
references (such as JDBC
driver used in bean).

resource-env-ref* Binds resource factories Chapter 10
to JNDI nicknames.

query* Defines a CMP EJB-QL Chapters 8, 15,
query for a finder or select Appendix D
method.

<cmp-field>
The cmp-field element defines a CMP field within an entity bean definition.
Used in entity. (See Table C.4.)

Deployment Descriptor Reference 713

31_576828 appC.qxd 11/3/04 11:49 AM Page 713

Table C.4 The <cmp-field> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this
CMP field.

field-name The name of the get/set Chapter 8
method corresponding to
this CMP field. Leave off t
he get/set prefix, and make
sure the first letter is
lowercase.

<query>
The query element defines an EJB-QL query for a finder or a select method.
Applies only to CMP entity beans. Used in entity. (See Table C.5.)

Table C.5 The <query> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of Chapter 8, Appendix D
this query.

query-method The finder or select Chapter 8, Appendix D
method that will be (see later table)
associated with this
EJB-QL query.

ult-type-mapping? Maps the return results Chapter 8, Appendix D
of the EJB-QL query to
either remote interfaces
(set to Remote) or local
interfaces (set to Local).
The default is Local.

ejb-ql The actual EJB-QL Chapter 8, Appendix
formatted string to query
the storage.

714 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 714

<query-method>
The query-method element declares a finder or a select method that will be asso-
ciated with this EJB-QL query. Applies only to CMP entity beans. Used in
query. (See Table C.6.)

<method-params>
The method-params element declares a list of fully qualified Java types that are
parameters to this method. Applies only to CMP entity beans. Used in query-
method. (See Table C.7.)

Table C.6 The <query-method> Element

ELEMENT DESCRIPTION WHERE TO GO FOR
MORE INFORMATION

method-name The name of this method. Chapter 8, Appendix D
Leave off the get/set and
make sure the first letter
is lowercase.

method-params A list of fully qualified Chapter 8, Appendix D
Java types that are (see later table)
parameters to this method.

Table C.7 The <method-params> Element

ELEMENT DESCRIPTION WHERE TO GO FOR
MORE INFORMATION

method-param* Zero or more fully Chapter 8, Appendix D
qualified Java types for
method parameters that
this query accepts.

Deployment Descriptor Reference 715

31_576828 appC.qxd 11/3/04 11:49 AM Page 715

Defining Message-Driven Beans

The following is an example of how to set up a message-driven bean. Descrip-
tions follow. See Chapter 9 for complete documentation.

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

<message-driven>

<ejb-name>Hello</ejb-name>

<ejb-class>examples.HelloBean</ejb-class>

<messaging-type>javax.jms.MessageListener</messaging-type>

<transaction-type>Container</transaction-type>

<message-destination-type>javax.jms.Queue</message-destination-

type>

</message-driven>

</enterprise-beans>

</ejb-jar>

<message-driven>
The message-driven element defines a message-driven bean. Used in ejb-jar. (See
Table C.8.)

Table C.8 The <message-driven> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of
this bean.

display-name? A short name of this bean,
to be displayed by tools.

small-icon? The relative path within
the Ejb-jar file that you
can find a 16 × 16 icon
image (either JPEG or GIF)
representing this bean,
to be displayed by tools.

large-icon? Same as small icon,
except a 32 × 32 image.

716 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 716

Table C.8 (continued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

ejb-name The nickname that you Chapter 9
want to give this bean.
This Ejb-name can be
referenced later in the
deployment descriptor.

ejb-class Message-driven bean Chapter 9
class. Remember to
include the package too!

transaction-type For declarative transactions, Chapter 12
set this to Container. For
bean-managed transactions,
set this to Bean.

messageSelector? Filters for messages based Chapter 9
on a special JMS selector string.

acknowledge If you perform Chapter 9
Mode? bean-managed transactions,

you must specify how to
acknowledge messages
when your onMessage()
method is called. Set this to
either Auto-acknowledge
or Dups-ok-acknowledge.

message- Specifies the type of Chapter 9
destination- type? destination that you want

to listen for messages.

env-entry* Declares environment Chapter 10
properties for this bean.

ejb-ref* Declares references to Chapter 10
other beans.

ejb-local-ref* Declares local references Chapter 10
to other beans.

security-role-ref* Declares security role
references.

security-identity? Declares how to perform Chapter 13
security context propagation.

resource-ref* Declares resource factory Chapter 10
references (such as JDBC
driver used in bean).

resource-env-ref* Binds resource factories to Chapter 10
JNDI nicknames.

Deployment Descriptor Reference 717

31_576828 appC.qxd 11/3/04 11:49 AM Page 717

Table C.9 The <message-destination-type> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

subscriptionDurability? Indicates durability of Chapter 9
messages, either Durable
for durable messages,
or NonDurable for
nondurable messages.

<messaging-type>
The messaging-type element defines the type of message-driven bean as in the
message listener interface it implements. Used in message-driven.

<message-destination-type>
The message-destination-type element specifies the destination that you want to
listen for messages. Used in message-driven. (See Table C.9.)

Defining Timer Beans

The deployment descriptor for a bean that uses timer service is not any differ-
ent than the bean that does not use the timer service because there is no timer-
specific deployment information. The following example shows deployment
descriptor of a session bean that has implemented javax.ejb.TimedObject inter-
face. See Chapter 14 for a complete description on using EJB timer service.

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

<session>

<ejb-name>SessionTimerEJB</ejb-name>

<home>examples.SessionTimerHome</home>

<remote>examples.SessionTimer</remote>

<ejb-class>examples.SessionTimerBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Bean</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

718 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 718

Defining J2EE Web Service

As we learned in Chapter 5, a stateless session bean can support Web service
protocols, namely WSDL and SOAP. Such a stateless session bean that sup-
ports Web service(s) is deployed with an additional deployment descriptor,
which is always named as webservices.xml and is placed in the META-INF
directory of the Web service’s JAR file. It contains the service-related deploy-
ment information. The following example shows a Web Services deployment
descriptor implemented as a stateless session bean endpoint.

<webservices xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd”

version=”1.1”>

<webservice-description>

<webservice-description-name>HelloWorldWS</webservice-description-

name>

<wsdl-file>META-INF/wsdl/HelloWorldWS.wsdl</wsdl-file>

<jaxrpc-mapping-file>META-INF/mapping.xml</jaxrpc-mapping-file>

<port-component>

<description>HelloWorldWS Port Description</description>

<port-component-name>HelloWS</port-component-name>

<wsdl-port xmlns:wsdl-port ns=”urn:examples”>wsdl-port ns

:HelloInterfacePort </wsdl-port>

<service-endpoint-interface>examples.HelloInterface</service-

endpoint-interface>

<service-impl-bean>

<ejb-link>HelloBean</ejb-link>

</service-impl-bean>

</port-component>

</webservice-description>

</webservices>

<webservices>
The webservices element is the root element of all service deployment descrip-
tors. It describes J2EE Web Service descriptions and the dependencies they
have on container resources and services.

<webservice-description>
This element carries information about the Web Service’s WSDL file and the
set of port-component elements associated with the WSDL ports defined in the
WSDL file. (See Table C.10.)

Deployment Descriptor Reference 719

31_576828 appC.qxd 11/3/04 11:49 AM Page 719

Table C.10 The <webservice-description> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

webservices Root element for the Web Service Chapter 5
deployment descriptor.

webservice- Information about WSDL Chapter 5
description+ document and a set of port

components associated with
WSDL-defined ports.

<jaxrpc-mapping-file>
This element points to the file containing mappings between Java interfaces
and WSDL definition. Each WSDL should have a corresponding JAX-RPC
mapping file. This information helps in the generation of stubs and TIEs for
the services. (See Table C.11.)

Table C.11 The <jaxrpc-mapping-file> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

webservice- Identifies a collection of Chapter 5
description-name port components

associated with a WSDL
and the JAX-RPC mapping.

wsdl-file Contains the name of Chapter 5
the WSDL file for the
Web Service.

jaxrpc-mapping-file Specifies the name of Chapter 5
the file which contains
JAX-RPC mappings between
Java interfaces and WSDL.

port-component+ Associates a WSDL port Chapter 5
with the Web Service
interface and
implementation.

720 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 720

Table C.12 The <port-component> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? Description of port component. Chapter 5

port-component- This name is assigned by the Chapter 5
name bean provider to name the

service implementation bean.

wsdl-port Defines the namespace and Chapter 5
local name par of the WSDL
port QName.

service- Port component’s service Chapter 5
endpoint-interface endpoint interface.

service-impl-bean Port component’s service Chapter 5
implementation bean
specification.

ejb-link|servlet-link Can refer to existing EJB Chapter 10
implementations through this
element. Note: You can also
refer to beans in a different
JAR file, by using a syntax such as
../products/product.jar#ProductEJB.

<port-component>
This element associates a WSDL port with the Web Service interface and
implementation by defining the name of the port as a component, description,
WSDL port name, service endpoint interface and a link to service implementa-
tion bean. (See Table C.12.)

Defining Environment Properties

The following is an example of how to set up environment properties. Descrip-
tions follow. See Chapter 10 for complete documentation.

<enterprise-beans>

<session>

<ejb-name>Pricer</ejb-name>

<home>examples.PricerHome</home>

<remote>examples.Pricer</remote>

<ejb-class>examples.PricerBean</ejb-class>

<session-type>Stateless</session-type>

Deployment Descriptor Reference 721

31_576828 appC.qxd 11/3/04 11:49 AM Page 721

<transaction-type>Container</transaction-type>

<env-entry>

<description>

The algorithm for this pricing engine.

</description>

<env-entry-name>Pricer/algorithm</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>NoTaxes</env-entry-value>

</env-entry>

</session>

</enterprise-beans>

<env-entry>
The env-entry element defines an environment property that the bean can
access via JNDI to customize its functionality at runtime. Used in session,
entity, and message-driven.

Defining EJB References

The following is an example of how to set up references from one bean to
another. This is useful because beans can look up each other without needing
to initialize JNDI to any particular driver. Descriptions follow in Table C.13.
See Chapter 10 for complete documentation.

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

<session>

<ejb-name>Catalog</ejb-name>

... define a catalog session bean ...

</session>

<session>

<ejb-name>Pricer</ejb-name>

<home>examples.PricerHome</home>

<remote>examples.Pricer</remote>

<ejb-class>examples.PricerBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

<ejb-ref>

<description>

This reference is from the Pricer to the Catalog

</description>

722 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 722

<ejb-ref-name>ejb/CatalogHome</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>CatalogHome</home>

<remote>Catalog</remote>

<ejb-link>Catalog</ejb-link>

</ejb-ref>

</session>

</enterprise-beans>

</ejb-jar>

<ejb-ref>
The ejb-ref element defines a remote reference from one bean to another. This
should be used sparingly, since local interfaces are the superior way to call from
one bean to another. Used in session, entity, and message-driven. (See Table C.14.)

Table C.13 EJB References

MORE WHERE TO GO
ELEMENT DESCRIPTION FOR INFORMATION

description? A text description for this Chapter 10
environment property.

env-entry- The JNDI name relative to Chapter 10
property name. java:comp/env where the bean

can lookup this environment.

env-entry-type The fully qualified Java type Chapter 10
of this environment property
(such as java.lang.String
or java.lang.Integer).

env-entry-value? The text value of this Chapter 10
environment property.

Table C.14 The <ejb-ref> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this EJB Chapter 10
reference.

ejb-ref-name The JNDI name relative to Chapter 10
java:comp/env that will be used
to lookup this EJB reference.
Recommended: prefix with ejb/.

(continued)

Deployment Descriptor Reference 723

31_576828 appC.qxd 11/3/04 11:49 AM Page 723

Table C.14 (continued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

ejb-ref-type The type of the bean we have a Chapter 10
reference to. Could be either
Session or Entity. (Message-driven
beans are not referred to directly
because they have no home and
are accessed via JMS.)

home The home interface class being Chapter 10
referred to Remember to include
the package too!

remote The remote interface class being Chapter 10
referred to Remember to include
the package too!

ejb-link? The Ejb-name of the bean we’re Chapter 10
referring to. Note: You can also refer
to beans in a different jar file, by
using a syntax such as ../products/
product.jar#ProductEJB.

<ejb-local-ref>
The ejb-local-ref element defines a local reference from one bean to another. We
recommend you use these types of references when your beans are co-located,
since local interfaces are the superior way to call from one bean to another.
Used in session, entity, and message-driven. (See Table C.15.)

Table C.15 The <ejb-local-ref> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this EJB Chapter 10
reference that will be used to
look up this EJB reference.
Recommended: prefix with ejb/.

ejb-ref-name The JNDI name relative to Chapter 10
java:comp/env.

ejb-ref-type The type of the bean we have Chapter 10
a reference to. Could either be
Session or Entity (message-driven
beans are not referred to directly
because they have no home,
and are accessed via JMS.)

724 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 724

Table C.15 (continued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

local-home The local home interface class Chapter 10
being referred to. Remember to
include the package too!

local The local interface class being Chapter 10
referred to. Remember to include
the package too!

ejb-link? The Ejb-name of the bean we’re Chapter 10
referring to. Note: You can also refer
to beans in a different JAR file, by
using a syntax such as ../products/
product.jar#ProductEJB.

Defining Security

Security is a bit difficult to explain. See Chapter 13 for complete documentation.

<security-role-ref>
The security-role-ref element defines a security role that your bean depends
upon. Used in session, entity, and message-driven. (See Table C.16.)

Table C.16 The <security-role-ref> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of the Chapter 13
security role.

role-name A text string for the security role Chapter 13
that this bean references and
depends upon.

role-link? Maps the above role-name
abstract security role to a real
security role defined in the
assembly descriptor.

Deployment Descriptor Reference 725

31_576828 appC.qxd 11/3/04 11:49 AM Page 725

Table C.17 The <security-identity> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description. Chapter 13

use-caller-identity | run-as If you want to use the Chapter 13
caller’s identity when
executing, set to the
empty element
<use-caller-identity/ >.
If you want to run as
another security identity,
define the <run-as>
element.

<security-identity>
The security-identity element defines whether the caller’s security identity is to
be used when this bean executes, or whether another security identity should
be used. Used in session, entity, and message-driven. (See Table C.17.)

<run-as>
The run-as element allows your bean to run as a specified identity. Used in
security-identity. (See Table C.18.)

Table C.18 The <run-as> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description. Chapter 13

role-name The name of the security role you Chapter 13
wish to run as.

726 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 726

Defining Resource Factories

The following is an example of how to set up resource factories, which are
drivers to external systems. Descriptions follow. See Chapter 10 for complete
documentation.

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

<entity>

<ejb-name>Account</ejb-name>

<home>examples.AccountHome</home>

<remote>examples.Account</remote>

<local-home>examples.AccountLocalHome</local-home>

<local>examples.AccountLocal</local>

<ejb-class>examples.AccountBean</ejb-class>

<persistence-type>Bean</persistence-type>

<prim-key-class>examples.AccountPK</prim-key-class>

<reentrant>False</reentrant>

<resource-ref>

<res-ref-name>jdbc/ejbPool</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

</entity>

</enterprise-beans>

<resource-ref>
The resource-ref element defines a reference to a resource factory. Used in ses-
sion, entity, and message-driven. (See Table C.19.)

Deployment Descriptor Reference 727

31_576828 appC.qxd 11/3/04 11:49 AM Page 727

Table C.19 The <resource-ref> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description. Chapter 10

res-ref-name The JNDI name to which you Chapter 10
wish to bind the resource
factory, referenced off of
java:comp/env.

res-type The fully qualified Java type Chapter 10
of the resource factory, such
as javax.jms. ConnectionFactory.

res-auth Set to Application if you are Chapter 10
providing your own security
to access this resource factory.
Set to Container if the container
is handling security access to
this resource factory.

res-sharing-scope? Specifies whether connections Chapter 10
obtained from this resource
factory are shareable. Must be
either Shareable or Unshareable.

<resource-env-ref>
The resource-env-ref element defines a reference to an administered object.
Used in session, entity, and message-driven. (See Table C.20.)

Table C.20 The <resource-env-ref> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description. Chapter 10

resource-env- The name of the Chapter 10
ref-name administered object.

env-ref-type The fully qualified type of the Chapter 10
administered object.

728 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 728

Defining Relationships

The following is an example of how to set up relationships. Descriptions fol-
low. See Chapter 15 for complete relationships documentation.

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Order-Shipment</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

order-spawns-shipment

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Order</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>shipment</cmr-field-name>

</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

shipment-fulfills-order

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<cascade-delete/>

<relationship-role-source>

<ejb-name>Shipment</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>order</cmr-field-name>

</cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

Deployment Descriptor Reference 729

31_576828 appC.qxd 11/3/04 11:49 AM Page 729

Table C.21 The <relationships> Reference

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of the relationships. Chapter 15

ejb-relation+ Defines one or more relationships. Chapter 15, Table C.19

<relationships>
The relationships element defines CMP relationships. Used in ejb-jar. (See
Table C.21.)

<ejb-relation>
Each ejb-relation defines a single CMP relationship. Used in relationships. (See
Table C.22.)

<ejb-relationship-role>
Each ejb-relationship-role defines half of a CMP relationship. Used in ejb-relation.

Table C.22 The <ejb-relation> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this Chapter 15
relationship.

ejb-relation name? A unique nickname for this Chapter 15
relationship.

ejb-relationship? The first half of the relationship. Chapter 15

ejb-relationship? The second half of the Chapter 15
relationship.

Table C.23 The <ejb-relation-role> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this half Chapter 15
of the relationship.

ejb-relationship- A unique nickname for this half Chapter 15
role-name? of the relationship.

730 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 730

Table C.23 (continued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

multiplicity Relationships can be One:One, Chapter 15
One:Many, Many:One, or
Many:Many. This element
declares this half of the
relationship to either be
One or Many.

cascade-delete? By declaring this empty element, Chapter 15
when the other half of the
relationship is removed, so is
this half. Note: The other half of
the relationship must have a
One multiplicity, because
otherwise you could get into an
infinite cascading deletion loop.

relationship- Identifies which bean is Chapter 15
role-source participating in this relationship.

cmr-field? Identifies the get/set method Chapter 15
that will be located on this bean
and will access the other half
of the relationship.

<relationship-role-source>
A relationship-role-source identifies which bean is participating in a relationship.
Used in ejb-relationship-role. (See Table C.24.)

<cmr-field>
A cmr-field identifies the get/set method that will be associated with a bean to
access the other half of a relationship. Used in ejb-relationship-role. (See Table C.25.)

Table C.24 The <relationship-role-source> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this bean Chapter 15
participating in the relationship.

ejb-name The Ejb-name of the bean Chapter 15
participating in this relationship.

Deployment Descriptor Reference 731

31_576828 appC.qxd 11/3/04 11:49 AM Page 731

Table C.25 The <cmr-field> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this Chapter 15
container-managed relationship
field.

cmr-field-name The name of the get/set method Chapter 15
associated with accessing the
other half of this relationship.
Note: Leave off the get/set prefix,
and make sure the first letter
is lowercase.

cmr-field-type If the other half of the Chapter 15
relationship has a multiplicity
of Many then you need to
choose either: java.util.Collection
(can contain duplicates)
java.util.Set (cannot contain
duplicates). This needs to match
up to your get/set methods.

Defining the Assembly Descriptor

The following is an example of how to set up an assembly descriptor. Descrip-
tions follow.

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee version=”2.1”

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”>

...

<assembly-descriptor>

<security-role>

<description>

Personnel authorized to perform employee administration

</description>

<role-name>admins</role-name>

</security-role>

<method-permission>

<role-name>administrators</role-name>

<method>

732 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 732

<ejb-name>EmployeeManagement</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<container-transaction>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

<exclude-list>

<description>

We don’t have a 401k plan, so we

don’t support this method.

</description>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modify401kPlan</method-name>

<method-params>String</method-params>

</method>

</exclude-list>

</assembly-descriptor>

</ejb-jar>

<assembly-descriptor>
The assembly-descriptor element is the root of the assembly descriptor. Used in
ejb-jar. (See Table C.26.)

Table C.26 The <assembly-descriptor> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

security-role* Identifies zero or more See later table
security roles that the
application uses. This
corresponds to the
role-link element defined
earlier in this appendix.

method-permission* Sets up permissions for See later table
specific methods on
your bean.

(continued)

Deployment Descriptor Reference 733

31_576828 appC.qxd 11/3/04 11:49 AM Page 733

Table C.26 (continnued)

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

container-transaction* Sets up transactions Chapter 12, Table C.24
associates with specific
methods on your bean.

exclude-list? callable. A list of methods that
should never be. Useful if
you acquire a bean from
a third party and don’t want
to make use of all its
functionality.

<security-role>
The security-role element defines a security role that the application uses. This
corresponds to the role-link element defined earlier in this appendix. Used in
assembly-descriptor. (See Table C.27.)

<method-permission>
The method-permission element sets up permission on a specific method in your
bean. Used in assembly-descriptor. (See Table C.28.)

Table C.27 The <security-role> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this security role. Chapter 10

role-name The text string naming this security role. Chapter 10

734 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 734

Table C.28 The <method-permission> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this
method permission.

role-name+ | unchecked The names of one or more
security roles that can call
these methods.
Or, alternatively, you can
specify the <unchecked/>
empty element to disable
security checks on these
methods.

method+ A list of one or more Table C.27
methods that these security
permissions apply to.

<container-transaction>
The container-transaction element associates one or more methods with a con-
tainer-managed (declarative) transaction. Used in assembly-descriptor. (See
Table C.29.)

<exclude-list>
The exclude-list element is a list of methods that should never be callable. This
is useful if you acquire a bean from a third party and don’t want to make use
of all its functionality. Used in assembly-descriptor. (See Table C.30.)

Table C.29 The <container-transaction> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this transaction. Chapter 12

method+ A list of one or more methods Chapter 12
that this transaction applies to.

trans-attribute The style of transaction you’d like, Chapter 12
either NotSupported, Supports,
Required, RequiresNew, Mandatory,
or Never.

Deployment Descriptor Reference 735

31_576828 appC.qxd 11/3/04 11:49 AM Page 735

Table C.30 The <exclude-list> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of why we are Chapter 10
excluding these methods.

method+ A list of one or more methods to Chapter 10, see later table
exclude clients from being able
to call.

<method>
The method element specifies a method on a bean. Used in method-permission,
container-transaction, and exclude-list. (See Table C.31.)

Table C.31 The <method> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description.

ejb-name The ejb-name of the bean
we’re interested in.

method-intf? Optionally identifies the
interface name that we’re
specifying the method for,
either Home, Remote, LocalHome,
or Local. Useful if there is a
naming conflict between two
interface method signatures.

method-name The name of the method,
capitalized properly. Can also
use an asterisk (*) to specify
all methods.

method- An optional list of parameters. Table C.29

params? Useful for disambiguating
methods with the same signature.

736 Appendix C

31_576828 appC.qxd 11/3/04 11:49 AM Page 736

<method-params>
The method-params element is useful for disambiguating methods with the
same signature Used in method. (See Table C.32.)

Table C.32 The <method-parems> Element

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

method-param* Zero or more fully qualified Java
types of parameters.

Deployment Descriptor Reference 737

31_576828 appC.qxd 11/3/04 11:49 AM Page 737

31_576828 appC.qxd 11/3/04 11:49 AM Page 738

739

This appendix will help you fully understand the syntax and semantics of the
EJB Query Language (EJB-QL), the language used to describe query methods
for container-managed persistent entity beans in EJB 2.x. To understand this
appendix, you should first be familiar with the chapters on entity beans—
Chapters 6, 7, and 8. Chapter 15 will also help.

You can begin coding with EJB without fully understanding EJB-QL. We
recommend that you read this appendix if you are struggling with
understanding the basics of EJB-QL, or if you are doing EJB-QL coding and
need a guide.

EJB-QL Overview

EJB-QL is a standard and portable language for expressing container-managed
persistent entity bean query operations. These entity bean query operations
can include finder methods (used by external entity bean clients), as well as
select methods (used internally by the entity bean itself). EJB-QL is not neces-
sary for bean-managed persistence because the bean provider writes the data-
base access code, which is integrated into the entity bean class itself.

The EJB Query
Language (EJB-QL)

C H A P T E RA P P E N D I X

D

32_576828 appD.qxd 11/3/04 11:49 AM Page 739

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

EJB-QL was a new addition to EJB 2.0. Before EJB 2.0, you needed to explain
to the container how to implement your query operations in a proprietary
way. For example, you might bundle a container-specific flat file with your
bean. This flat file would not be portable to other containers, which was
annoying for bean providers who wished to write container-agnostic compo-
nents were.

Throughout this appendix, we use an e-commerce object model for the most
part to illustrate EJB-QL, using entity beans such as orders, line items, prod-
ucts, and customers. We designed that object model in Chapter 22.

A Simple Example
Let’s kick things off with a simple EJB-QL example. Take the following entity
bean remote finder method:

public java.util.Collection findAvailableProducts() throws

FinderException, RemoteException;

This finder method means to find all products that are currently in stock.
The following EJB-QL in the deployment descriptor instructs the container
about how to generate the database access code that corresponds to this finder
method:

...

<entity>

<ejb-name>Product</ejb-name>

<home>examples.ProductHome</home>

<remote>examples.Product</remote>

<ejb-class>examples.ProductBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>examples.ProductPK</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>Product</abstract-schema-name>

<cmp-field>

<field-name>inventory</field-name>

</cmp-field>

...more container-managed persistent fields...

<query>

<query-method>

<method-name>findAvailableProducts</method-name>

<method-params>

</method-params>

740 Appendix D

32_576828 appD.qxd 11/3/04 11:49 AM Page 740

</query-method>

<ejb-ql>

SELECT OBJECT(p) FROM Product AS p WHERE p.inventory > 0

</ejb-ql>

</query>

...

</ejb-jar>

In the preceding code, we put together a query that resembles SQL or OQL.
See Chapter 6 for more on Object Query Language (OQL). We can refer to
entity beans inside of the EJB-QL by using that entity bean’s abstract-schema-
name defined earlier in the deployment descriptor. We can also query its con-
tainer-managed fields or container-managed relationships, or other entity
beans.

In fact, if we’re using a relational database, the container will translate this
EJB-QL code into SQL code in the form of JDBC statements. The following SQL
is an example of what might be generated depending on your container imple-
mentation:

SELECT DISTINCT p.PKEY

FROM PRODUCT p

WHERE p.INVENTORY > 0

This SQL code returns primary keys (not rows) to the container. The con-
tainer then wraps those primary keys in EJB objects and returns RMI-IIOP
stubs to the client that called the finder method. When the client calls business
methods on those stubs, the EJB objects intercept the call, and the ejbLoad()
method is called on the entity beans. The container then loads the actual rows
from the database. Note that this process may be optimized depending on
your container implementation.

EJB-QL is useful for home and local home interfaces. A single EJB-QL defi-
nition will inform the container about how to implement the SQL code for any
home and local home objects that have identically named finder methods.

The Power of Relationships
The big difference between EJB-QL and SQL is that EJB-QL allows you to tra-
verse relationships between entity beans using a dot-notation. For example:

SELECT o.customer

FROM Order o

In this EJB-QL, we are returning all customers that have placed orders. We
are navigating from the order entity bean to the customer entity bean easily
using a dot-notation. This is quite seamless.

The EJB Query Language (EJB-QL) 741

32_576828 appD.qxd 11/3/04 11:49 AM Page 741

What’s exciting about this notation is that bean providers don’t need to
know about tables or columns; they merely need to understand the relation-
ships between the entity beans that they’ve authored. The container handles
the traversal of relationships for us because we declare our entity beans in the
same deployment descriptor and Ejb-jar file, empowering the container to
manage all of our beans and thus understand their relationships.

In fact, you can traverse more than one relationship. That relationship can
involve container-managed relationship fields and container-managed persis-
tent fields. For example:

SELECT o.customer.address.homePhoneNumber

FROM Order o

The restriction on this type of recursive relationship traversal is that you are
limited by the navigatability of the relationships that you define in the deploy-
ment descriptor. For example, let’s say that in the deployment descriptor, you
declare that orders have a one-to-many relationship with line items, but you
do not define the reverse many-to-one relationship that line items have with
orders. When performing EJB-QL, you can get from orders to line items, but
not from line items to orders. Even though the database is directionally neu-
tral, the line items entity bean should have no knowledge of orders, and thus
this traversal cannot take place. For more about how to define these types of
relationships, see Chapter 15.

EJB-QL Syntax

An EJB-QL query can contain four parts:

■■ A required SELECT clause

■■ A required FROM clause

■■ An optional WHERE clause

■■ An optional ORDER BY clause

We now discuss the details of each of these clauses. We’ll do the SELECT
and ORDER BY clauses later because they deal with the return results of a
query.

The FROM Clause
The FROM clause constricts the domain of a query. It indicates which part of the
data storage you are querying—that is, what entity beans you are going to look
at. In the case of a relational database, the FROM clause typically restricts
which tables you are querying. For example, the following FROM clause
means we are looking only at order entity beans:

742 Appendix D

32_576828 appD.qxd 11/3/04 11:49 AM Page 742

SELECT OBJECT(o)

FROM Order AS o

What we’re doing here is declaring a variable in the FROM clause. We are cre-
ating a variable, o, which can be used later in the query. In this case, we are
reusing that variable in the SELECT clause. You can also reuse that variable in
the WHERE and ORDER BY clauses.

Note that declaring variables will restrict your queries even if you don’t use
the variables. For example:

SELECT OBJECT(o)

FROM Order AS o, Customer AS c

The previous query finds all orders if and only if there are any customers
that do not need to be related to the Order objects. Even though we aren’t using
the variable c anywhere else, we are still excluding orders if there are no cus-
tomers. By declaring a variable, you are constraining the domain of the query.
This is similar to the following SQL statement that returns all orders so long as
there are one or more records in the Customer table:

SELECT o.*

FROM Order o, Customer c

Finally, you should note that the phrase AS is optional and is merely syntac-
tic sugar to help make the query look better. This query produces the same
result as the previous EJB-QL statement:

SELECT OBJECT(o)

FROM Order o, Customer c

Declaring Collection Variables

Sometimes, in the FROM clause, you need to declare variables that represent a
collection of values. For example, let’s say we want to find all of the line items
that are attached to orders. The following query achieves that:

SELECT OBJECT(l)

FROM Order AS o, IN(o.lineItems) l

The preceding EJB-QL declares two variables:

■■ The phrase Order AS o declares a variable o, which represents any order
entity bean.

■■ The phrase IN(o.lineItems) l declares a variable l, which represents any
line item from any order bean’s collection of line items.

The EJB Query Language (EJB-QL) 743

32_576828 appD.qxd 11/3/04 11:49 AM Page 743

As you can see, since the evaluation order is left to right, you can use vari-
ables on the right that were declared on the left.

Thus, you use the AS syntax when declaring a variable representing a single
value and the IN syntax when declaring a variable representing a collection of
values. Note that both AS and IN queries can return multiple values from the
EJB-QL query — the difference is that the IN syntax is necessary when travers-
ing an underlying entity bean relationship that uses a java.util.Collection, such
as an order that points to a collection of line items.

Variables Represent Only One Value at a Time

Next, consider the following query, which returns all line items that are
attached to orders that are attached to customers:

SELECT OBJECT(l)

FROM Customer AS c, IN(c.orders) o, IN(o.lineItems) l

Notice the phrase o.lineItems. Although o is a collection variable, it repre-
sents only one element of that collection at a time. Thus, it is perfectly legal to
use the phrase o.lineItems because in that phrase, o represents an individual
order, not a collection of orders.

The WHERE Clause
The EJB-QL WHERE clause restricts the results of a query. It is where you
choose the values you want from the declared variables in the FROM clause.
The general syntax of the WHERE clause is WHERE conditional expression. For
example:

SELECT OBJECT(o)

FROM Order o

WHERE o.lineItems IS NOT EMPTY

The query finds all orders that have line items.

Handling Input Parameters

When performing a query, you’ll often want to query based upon parameters
supplied by the client. For example, to implement the following finder method
that finds a product based on a description:

findProductByDescription(String s)

744 Appendix D

32_576828 appD.qxd 11/3/04 11:49 AM Page 744

A WHERE clause can be used as follows:

SELECT OBJECT(p)

FROM Product p

WHERE p.description = ?1

Here, ?1 represents the first parameter passed in. Additional parameters
would be numbered as ?2, ?3, and so on. Note that you don’t need to use all
variables declared in the finder or select method.

Conditional Expressions

Many conditional expressions are built-in to EJB-QL. The complete list is in
Table D.1.

Note that you can have more than one conditional expression and use
parentheses to denote the order of execution. Your container may provide pro-
prietary extensions to these conditional expressions as well, perhaps in a sep-
arate deployment descriptor.

EJB-QL also contains the following built-in functions:

■■ CONCAT(String, String) combines two strings into one and returns a
String.

■■ SUBSTRING(String, start, length) cuts a String into a smaller String,
beginning at start and being length long.

■■ LOCATE(String, String [, start]) returns an int denoting where a String
is located within another String. You can use the optional start parame-
ter to indicate where to begin locating the search string.

■■ LENGTH(String) gives you a string’s length, returned as an int.

■■ ABS(number) returns the absolute value of a number, which can be an
int, float, or double.

■■ SQRT(double) takes the square root of a number and returns it as a
double.

■■ MOD(int, int) returns the remainder as integer after dividing first inte-
ger by second integer.

The EJB Query Language (EJB-QL) 745

32_576828 appD.qxd 11/3/04 11:49 AM Page 745

Table D.1 EJB-QL Conditional Expressions

CONDITIONAL
EXPRESSION EXAMPLE NOTES

Mathematical operations: Find all products that • Two entity
1, -, *, / are computer chips and beans are equal

whose profit margin if and only if
Comparison operations: is positive: they share the
=, >, >=, <, <=, <> SELECT OBJECT(p) same primary

FROM Product p key value.
(not equal) logical WHERE (p.description = ‘chip’) • You cannot
operators: NOT, AND, OR AND (p.basePrice - p.cost > 0) compare two

different entity
bean classes.

Between expressions Find all products whose Can also use NOT
price is at least 1000 and BETWEEN to
at most 2000: SELECT OBJECT(p) return all data
FROM Product p that is not
WHERE p.basePrice between two
BETWEEN 1000 AND 2000 values.

In expressions Find all products whose Can also use NOT
manufacturer is either IN to return all
Intel or Sun: SELECT OBJECT(p) data that is not in
FROM Product p a range.
WHERE p.manufacturer IN

(‘Intel’, ‘Sun’)

Like expressions Find all products with ids • % stands for any
that begin with 12 and end sequence of
with 3. For example, 123 or zero or more
12993 qualifies, but not characters.
1234: SELECT OBJECT(p) • _ stands for a
FROM Product p single character.
WHERE product.productID • You can
LIKE ‘12%3’ represent the

literal % or
Find all products with ids that character by
begin with 123 and are a total using special
of four characters long. escape
For example, 123c qualifies, sequences (see
but not 14 nor 12345: the EJB spec for
SELECT OBJECT(p) more).
FROM Product p • You can also use
WHERE product.productID NOT LIKE to

LIKE ‘123_’ achieve the
opposite effect.

746 Appendix D

32_576828 appD.qxd 11/3/04 11:49 AM Page 746

Table D.1 (continued)

CONDITIONAL
EXPRESSION EXAMPLE NOTES

Null comparison Find all products that have You can also use
expressions NULL descriptions: NOT NULL to find

SELECT OBJECT(p) all data that has
FROM Product p non-NULL values.

WHERE product.description
IS NULL

Empty collection Find all orders that have • You can also use
comparison expressions no line items: IS NOT EMPTY

SELECT OBJECT(o) to find valid
expressions FROM Order o collections.

WHERE o.lineItems IS EMPTY •In this special
case, you can
declare
collections in
the WHERE
clause rather
than declaring
them as
variables first in
the FROM
clause.

Collection member Find all line items that are • The word OF is
expressions attached to orders: optional. In this

SELECT OBJECT(l Order o, special case,
LineItem l you can declare

WHERE l MEMBER OF o.lineItems collections in
the WHERE
clause rather
than declaring
them as
variables first in
the FROM
clause.

• Can also use
NOT MEMBER
OF to locate
data where
elements are
not members of
collections.

The EJB Query Language (EJB-QL) 747

32_576828 appD.qxd 11/3/04 11:49 AM Page 747

Dealing with Collections

Normally if you want to use collections in the WHERE clause, you should
declare those collections as variables in the FROM clause. For example, the fol-
lowing is invalid:

SELECT OBJECT(l)

FROM Order AS o

WHERE o.lineItems.product.name = ‘chip’

This query is invalid because we are trying to reference a variable from a col-
lection. The following is the correct way to write this EJB-QL:

SELECT OBJECT(l)

FROM Order AS o, IN(o.lineItems) l

WHERE l.product.name = ‘chip’

The two special exceptions to this rule are when you use the EMPTY or
MEMBER conditional expressions, shown in Table D.1. In these cases, you can
use collections in the WHERE clause.

Performing Comparisons

Sometimes you may need to declare more than one variable that represents the
same entity bean. When you are performing comparisons, this comes in very
handy. For example:

SELECT OBJECT(p1)

FROM Product p1, Product p2

WHERE p1.quantityInStock > p2.quantityInStock AND

p2.name=’Pentium 866’

The preceding query finds all products that have a greater quantity in stock
than a Pentium 866 chip.

The SELECT Clause
The EJB-QL SELECT clause specifies the return results of a query. To under-
stand why we need the SELECT clause, consider the following query, which
returns all orders that contain line items:

SELECT OBJECT(o)

FROM Order AS o, IN(o.lineItems) l

In this query, we have defined two variables in the FROM clause: o and l.
The SELECT clause is necessary because it affirms that we want to return o
(and not l) to the client that called the query.

748 Appendix D

32_576828 appD.qxd 11/3/04 11:49 AM Page 748

How to Traverse Relationships

The SELECT clause can traverse relationships. For example, the following
query returns all the products in all the orders that contain line items:

SELECT l.product FROM Order AS o, IN(o.lineItems) l

As you can see, we can use the convenient dot-notation to traverse relation-
ships in the SELECT clause. Behind the scenes, a SQL JOIN statement might
occur.

If you’ve been paying careful attention, you may have noticed that in the ear-
lier example we wrapped a variable o with the phrase OBJECT(), but in this
example, we didn’t use the phrase OBJECT() at all. The EJB-QL rule is that you
wrap your return result with the phrase OBJECT() only if you are returning a
standalone variable that does not traverse a relationship using the dot-notation.

How to Deal with Collections

Let’s say we want to find all line items on all orders. We are thus asking for a
collection of return results. Unfortunately, the following SELECT clause will
not work:

SELECT o.lineItems

FROM Order AS o

The reason this doesn’t work is that SELECT clauses may return only single
variables, not collections. To get around this restriction, you need to define a
variable in the FROM clause. The following demonstrates this as a legal way to
find all line items on all orders:

SELECT OBJECT(l)

FROM Order AS o, IN(o.lineItems) l

How to Filter for Duplicates

You can control whether SELECT clauses return duplicates. For example, take
our previous EJB-QL query that finds all products in all order line items:

SELECT l.product FROM Order AS o, IN(o.lineItems) l

The previous query may return duplicate products because two different
people may have ordered the same product. To get a unique list, you must
apply the DISTINCT filter, as follows:

SELECT DISTINCT l.product FROM Order AS o, IN(o.lineItems) l

The EJB Query Language (EJB-QL) 749

32_576828 appD.qxd 11/3/04 11:49 AM Page 749

Another choice is to declare your finder or select method to return a
java.util.Set, which may not contain duplicates compared to a java.util.Collec-
tion. If you use a java.util.Set, both of the preceding EJB-QL statements would
return the same unique results.

How to Control What Gets Returned in Finders

EJB-QL queries return results differently depending on how the client initiates
the query. For example, take the following finder queries (thrown exceptions
omitted):

// declared on the home interface

public java.util.Collection findAllProducts();

// declared on the local home interface

public java.util.Collection findAllProducts();

We want EJB objects to be returned for the first query and EJB local objects
to be returned for the second query. The EJB-QL code in the deployment
descriptor for both of these query methods could be:

<query>

<query-method>

<method-name>findAllProducts</method-name>

<method-params>

</method-params>

</query-method>

<ejb-ql>

SELECT OBJECT (p) FROM Product AS p

</ejb-ql>

</>

What’s great here is that we wrote our EJB-QL once, yet we can reuse it for
the home and local home interfaces. The container will automatically wrap the
return results in an EJBObject or EJBLocalObject (or collections of EJBObjects/
EJBLocalObjects). These are the only possible types you can return from a
finder query.

How to Control What Gets Returned in Selects

With finder methods, the container knows whether the results of a finder
should be EJB objects or EJB local objects, because the container could look at
whether the query was defined on the home interface or local home interface,
respectively. But what about ejbSelect() methods (see Chapter 8)? Consider the
following ejbSelect():

public abstract java.util.Collection ejbSelectAllProducts();

750 Appendix D

32_576828 appD.qxd 11/3/04 11:49 AM Page 750

Here, we define the ejbSelect() method on the entity bean class, which doesn’t
give the container any information about whether our query should return EJB
objects or EJB local objects. How does the container know which objects to
wrap around the results?

To get around this, EJB requires that you set up a special stanza in the
deployment descriptor to inform the container about whether the results
should be local or remote objects:

<query>

<query-method>

<method-name>ejbSelectAllProducts</method-name>

<method-params>

</method-params>

</query-method>

<result-type-mapping>Local</result-type-mapping>

<ejb-ql>

SELECT OBJECT (p) FROM Product AS p

</ejb-ql>

</>

The preceding code will cause the ejbSelect() method to return a collection of
EJB local objects. If you want the results to be a collection of EJB objects, change
the result-type-mapping element to have the value Remote.

Finally, note that ejbSelect() methods can also return container-managed
fields. For example:

public abstract java.lang.String ejbSelectProductName();

Finder methods cannot return container-managed fields because finder
methods can operate remotely and at the granularity of entity beans, not parts
of entity beans.

Using Aggregate Functions
Aggregate functions were not supported in EJB 2.0 EJB-QL. With EJB 2.1, con-
tainers now support five widely used aggregate functions:

■■ The AVG aggregate function returns the average value of the numeric
cmp-field specified as the function argument. The following EJB-QL
returns average order quantity.

SELECT AVG(o.quantity) FROM Order o

■■ The COUNT aggregate function returns the total number of results in
the final result set. The following query returns total number of cus-
tomers holding VISA credit or debit cards.

SELECT COUNT(c) FROM Customers c WHERE c.merchanttype = ‘VISA’

The EJB Query Language (EJB-QL) 751

32_576828 appD.qxd 11/3/04 11:49 AM Page 751

■■ The MAX aggregate function returns the largest value in a given cmp-
field. The cmp-field argument to this function must be an orderable cmp-
field type such as string, numeric, character, or date types. The
following query returns maximum salary among all the employees in a
specific salary grade level.

SELECT MAX(e.salary) FROM Employees e WHERE e.salarygrade = ‘Z12’

■■ The MIN aggregate function returns the smallest value in a given cmp-
field. The following query returns the minimum salary among all the
employees in a specific salary grade level.

SELECT MIN(e.salary) FROM Employees e WHERE e.salarygrade = ‘Z12’

■■ The SUM aggregate function returns the sum of all the values of a
given cmp-field of numeric type. The following example query returns
the total salary paid by a given company to its employees.

SELECT SUM(e.salary) FROM Employees e

Although the EJB 2.1 specification does not specifically restrict the use of
aggregate queries with finder methods, it is obvious that aggregate queries
should not be used with finder methods because finder methods are
allowed to return only reference(s) to entity EJBObject or EJBLocalObject
and aggregate queries return values representing mathematical calculations
that cannot be represented as EJBObject or EJBLocalObject. Hence, use
aggregate functions only for queries underlying ejbSelect methods.

The ORDER BY Clause

The ORDER BY clause has been newly introduced in the EJB 2.1 specification.
It allows the objects or values returned by the query to be ordered. The EJB-QL
ORDER BY clause works similarly to SQL ORDER BY clause. The following
example returns an alphabetical list of all customers:

SELECT OBJECT(c) FROM Customers c ORDER BY c.name

You can also specify whether you want to order in ascending or descending
fashion by using ASC and DESC keywords. For example, the following query
returns an alphabetical list of all customers in a descending order:

SELECT OBJECT(c) FROM Customers c ORDER BY c.name DESC

752 Appendix D

32_576828 appD.qxd 11/3/04 11:49 AM Page 752

The following example returns the list of orders ordered by quantity and
total costs such that multiple orders with the same quantity are further sorted
by the total cost of the order:

SELECT OBJECT(o) FROM Order o ORDER BY o.quantity, o.totalcost

When ordering string values using an ORDER BY clause, be aware that not
every database supports case-sensitive strings and hence, case-sensitive
string ordering. Thus, by changing your EJB application to use a different
database, you might be returned differently ordered string values by the
EJB-QL ORDER BY clause.

Truth Tables

Let’s wrap up our EJB-QL lesson with a look at the truth tables for the way the
operations AND, OR, and NOT evaluate (see Tables D.2, D.3, and D.4). To read
these tables, combine the column header with the row header using the oper-
ator in the upper-left corner. That should give you the result in the cell located
at the intersection of the column and row. Note also that in the tables, the case
of unknown means expressions that produce an unknown result, such as the
clause:

WHERE NULL IN (‘Intel’, ‘Sun’)

Table D.2 The AND Truth Table

AND TRUE FALSE UNKNOWN

True True False Unknown

False False False False

Unknown Unknown False Unknown

Table D.3 The OR Truth Table

OR TRUE FALSE UNKNOWN

True True True True

False True False Unknown

Unknown True Unknown Unknown

The EJB Query Language (EJB-QL) 753

32_576828 appD.qxd 11/3/04 11:49 AM Page 753

Table D.4 The NOT Truth Table

True False

False True

Unknown Unknown

In the final section of this appendix, you can test your knowledge of EJB-QL.
Here is a list of queries that we’d like to implement. Try to figure out the
EJB-QL without looking at the description, or try to figure out the
description by looking at the EJB-QL. (Answers at the end of this appendix.)

1. Find all line items.

2. Find all customers’ home addresses.

3. Find all customers’ home addresses without duplicates.

4. Find all line items that are attached to orders.

5. Find all orders that contain line items.

6. Find all orders that do not contain line items.

7. Find all products whose descriptions are either chip or motherboard.

8. Find all products that have a zero inventory.

9. Find all products with inventory greater than a parameter passed in.

10. Find all products with inventory between 10 and 20.

11. Find all products whose remaining inventory is greater than the
remaining inventory for products manufactured by Intel.

12. Find the names of all customers whose names begin with A.

13. Find the total amount for orders from a certain customer ‘John Doe’.

14. Find all customers whose names begin with A in ascending order.

Final Note

Be forewarned that while EJB-QL is a convenient layer of indirection that iso-
lates you from the database, a danger lurks under the covers. The danger is
that your generated SQL code could perform poorly because you are not hand-
tuning SQL code but rather, you are dealing with high-level EJB-QL code.

754 Appendix D

32_576828 appD.qxd 11/3/04 11:49 AM Page 754

Standard performance best practices of optimizing SQL still apply with EJB-
QL. Check and recheck the optimization of the container-generated SQL by
examining your generated helper files or your database log. Here are some
possible ways to optimize your queries:

■■ Optimize your entity beans using specific container flags such as lazy
loading flags (check your container documentation).

■■ If available, use your container tools to help generate more optimal SQL
from EJB-QL.

■■ Redesign your EJB-QL.

■■ Rewrite some of your finder or select methods.

■■ Redesign or denormalize your database schema.

■■ Rethink your entity bean design.

■■ Manually write your SQL.

Summary

In this appendix, we’ve discussed EJB-QL. EJB-QL is a great advancement in
EJB because it allows bean providers to ship code that contains queries that are
portable across containers. We introduced the syntax of EJB-QL, including the
SELECT, FROM, WHERE, and ORDER BY clauses. We then went through sev-
eral EJB-QL examples. You should now be empowered to try writing your own
EJB-QL and begin experimenting with container-managed persistent entity
beans.

Following are the answers to the quiz:

1. SELECT OBJECT(l) FROM LineItem l

2. SELECT c.homeAddress FROM Customer c

3. SELECT DISTINCT c.homeAddress FROM Customer c

4. SELECT OBJECT(l) FROM Order o, IN(o.lineItems) l

5. SELECT OBJECT(o) FROM Order o, IN(o.lineItems) l

6. SELECT OBJECT(o) FROM Order o WHERE o.lineItems IS EMPTY

7. SELECT OBJECT(p) FROM Product p WHERE p.description IN (‘chip’,
‘motherboard’)

8. SELECT OBJECT(p) FROM Product p WHERE p.inventory = 0

9. SELECT OBJECT(p) FROM Product p WHERE p.inventory > ?1

10. SELECT OBJECT(p) FROM Product p WHERE p.inventory BETWEEN
10 AND 20

The EJB Query Language (EJB-QL) 755

32_576828 appD.qxd 11/3/04 11:49 AM Page 755

11. SELECT OBJECT(p1) FROM Product p1, Product p2 WHERE
p1.inventory > p2.inventory AND p2.manufacturer = ‘Intel’

12. SELECT c.name FROM Customer c WHERE c.name LIKE ‘A%’

13. SELECT SUM(l.price) FROM Order o, IN(o.lineItems) l WHERE o.cus-
tomer.name = ‘John Doe’

14. SELECT OBJECT(c) FROM Customer c WHERE c.name LIKE ‘A%’
ORDER BY c.name ASC

756 Appendix D

32_576828 appD.qxd 11/3/04 11:49 AM Page 756

757

This appendix is a quick reference for programmers to use during EJB devel-
opment. In the first section, you’ll find Figures E.1 through E.13 illustrating
what’s really going on in an EJB system. These were taken directly from the
EJB specification; we have condensed the diagrams and commented on them
to clarify their meaning. You’ll also find summaries and explanations of each
method in the EJB architecture, as well as a transaction reference.

EJB Quick Reference Guide

C H A P T E RA P P E N D I X

E

33_576828 appE.qxd 11/3/04 11:50 AM Page 757

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

Session Bean Diagrams

Figure E.1 The client’s view of a session bean object life cycle.

EJB object does not exist
No client reference to EJB object

container crash or client timeout

if a client calls a method, a
NoSuchObjectException or

NoSuchObjectLocalException will be thrown

handle.getEJBObject()

client releases reference

client calls
home.create(...)

client releases reference

client calls ejbObject.remove()
client calls home.remove(...),
system exception in bean,
bean timeout,
or container crash

EJB object exists
No client reference to EJB object

EJB object exists
Client holds reference to EJB

object

EJB object does not exist
Client holds reference to EJB

object

client can call business methods

758 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 758

Stateless Session Bean Diagrams

Figure E.2 The life cycle of a stateless session bean. Each method call shown is an
invocation from the container to the bean instance.

bean instance does not
exist

pool of equivalent
method-ready instances

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate()

ejbRemove()

Business Method

Container decided it
needs more instances
in the pool to service
clients.

Any client calls a
business method on
any EJB object.

Container decided it
doesn't need so
many instances
anymore.

EJB Quick Reference Guide 759

33_576828 appE.qxd 11/3/04 11:50 AM Page 759

Fi
gu

re
 E

.3
Se

qu
en

ce
 d

ia
gr

am
 fo

r
st

at
el

es
s

se
ss

io
n

be
an

s.
 F

or
 s

im
pl

ic
ity

, t
he

 C
on

ta
in

er
 o

bj
ec

t
re

pr
es

en
ts

al
l c

on
ta

in
er

 s
ub

sy
st

em
s,

 in
cl

ud
in

g
EJ

B
 o

bj
ec

ts
, h

om
e

ob
je

ct
s,

 tr
an

sa
ct

io
n

se
rv

ic
es

, a
nd

 s
o

on
.

B
ea

n
 In

st
an

ce
C

o
n

ta
in

er
C

lie
n

t
D

at
ab

as
e

ho
m

e.
cr

ea
te

()

re
tu

rn
 n

ew
 E

JB
 o

bj
ec

t

S
er

vi
ci

n
g

 a
 c

re
at

e
m

et
h

o
d

ej
bR

em
ov

e(
)

R
em

ov
in

g
 a

n
d

 in
st

an
ce

 f
ro

m
 t

h
e

p
o

o
l

S
er

vi
ci

n
g

 a
 b

u
si

n
es

s
m

et
h

o
d

ej
bO

bj
ec

t.b
us

in
es

sM
et

ho
d(

ar
gs

)
bu

si
ne

ss
M

et
ho

d(
ar

gs
)

ej
bC

re
at

e(
)

se
tS

es
si

on
C

on
te

xt
()

be
an

C
la

ss
.n

ew
In

st
an

ce
()

A
d

d
in

g
 a

 n
ew

 in
st

an
ce

 t
o

 t
h

e
p

o
o

l

ej
bO

bj
ec

t.r
em

ov
e(

)
or ho

m
e.

re
m

ov
e(

...
)

S
er

vi
ci

n
g

 a
 r

em
ov

e
m

et
h

o
d

re
ad

 o
r

up
da

te
 d

at
a

re
gi

st
er

 r
es

ou
rc

e
m

an
ag

er
 w

ith
 tr

an
sa

ct
io

n

33_576828 appE.qxd 11/3/04 11:50 AM Page 760

Figure E.4 The Web services client view of a stateless session bean. The client can be a
Java or non-Java client.

The service interface is used to obtain stub
or proxy that implements the stateless

session bean‘s web service endpoint
interface. If client is a Java client (J2EE or

JAX-RPC) then service interface is an
instance of javax.xml.rpc.Service.

Java or non-Java Client

Container

Web
Service

Endpoint
Interface

Service
Interface

Stateless Session
Bean Instances

A session bean provides Web service
endpoint interface if it supports Web

service client view. It consists of methods
on the bean that could be invoked by the

Web service client. It extends
java.rmi.Remote and its methods follow

JAX-RPC naming conventions.

Stateless
Session
Bean

EJB Quick Reference Guide 761

33_576828 appE.qxd 11/3/04 11:50 AM Page 761

Stateful Session Bean Diagrams

Figure E.5 The life cycle of a stateful session bean (does not implement javax.ejb
.SessionSynchronization). Each method call shown is an invocation from the container to
the bean instance.

bean instance does not
exist

ready

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate(...)

ejbRemove()

ejbPassivate()

ejbActivate()

passive

Client times out

Business Method

Client called
create(...) on the
home interface.

Client called a
business method
on the EJB object.

Container's limit of
instantiated beans is
reached, so it must
swap your bean out.

Client called a method
on a passivated bean,
so container must
swap your bean back
in.

Client called remove() on
the EJB object or
client times out.

762 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 762

Figure E.6 The life cycle of a stateful session bean (implements javax.ejb.Session
Synchronization). Each method call shown is an invocation from the container to the bean
instance.

bean instance does not
exist

bean instance is ready to
service method calls

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate(args)

ejbRemove()

ejbPassivate()

ejbActivate()

bean instance is in the
passive state

Client times out

Non-Transactional
Business Method

Client called
create(args) on
the home
interface.

Client called a
non-transactional
business method
on the EJB object.

Container's limit of
instantiated beans is
reached, so it must
swap your bean out.

Client called a method
on a passivated bean,
so container must
swap your bean back
in.

Client called remove() on
the EJB object or
client times out.

bean instance is within a
transaction and ready to

service method calls

Transactional
Business Method

Client called another
transactional
business method on
the EJB object.

1: beforeCompletion()
2: afterCompletion(true)

afterBegin() afterCompletion(false)

Client called a
transactional
business method
on the EJB object.

If
transaction
ended in a
commit.

If
transaction
ended in an
abort.

EJB Quick Reference Guide 763

33_576828 appE.qxd 11/3/04 11:50 AM Page 763

Figure E.7 Sequence diagram for stateful session beans. For simplicity, the Container object
represents all container subsystems, including EJB objects, home objects, transaction services, and
so on.

Bean InstanceContainerClient Database

home.create(args)

ejbCreate(args)

setSessionContext()

return new EJB object

Servicing a create method

ejbObject.remove()
or
home.remove(...)

ejbRemove()

Servicing a remove method

Passivating a bean instance

Servicing a business method

ejbObject.businessMethod(args)
businessMethod(args)

ejbPassivate()

ejbActivate()

Activating a bean instance

ejbObject.businessMethod(args)

businessMethod(args)

beanClass.newInstance()

serialize bean instance,
and write serialized blob

to secondary storage

read serialized blob
from secondary storage,

and deserialize bean instance

Commit transaction sequence
(only if bean class implements javax.ejb.SessionSynchronization)

ejbObject.transactionalBusinessMethod()
afterBegin()

read database data

transactionalBusinessMethod()

Begin transaction sequence
(only if bean class implements javax.ejb.SessionSynchronization)

beforeCompletion()
write database data

If commit was successful,
afterCompletion(true)
else afterCompletion(false)

prepare

commit

register resource manager with transaction

764 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 764

Entity Bean Diagrams

Figure E.8 The client’s view of an entity bean object life cycle.

entity bean data does not exist
No client reference to EJB object

client calls home.remove(...)
or direct database delete

if a client calls a method, a
NoSuchObjectException or

NoSuchObjectLocalException will be thrown

client calls a finder method
on home interface

client releases reference

client calls
home.create(...)

client releases reference

client calls ejbObject.remove(),
client calls home.remove(...),
or direct database delete

entity bean data exists
No client reference to EJB object

entity bean data exists
Client holds reference to EJB

object

entity bean data does not exist
Client holds reference to EJB

object

client calls business methods
on EJB object

direct database insert

The direct database inserts and deletes could occur
because other applications are running in your
deployment. For example, you might have a legacy
application that a bank administrator uses to add new
bank accounts. Or you might have a simple JDBC
application that doesn’t use entity beans at all, but
modifies the same database data your entity beans
model.

client calls business methods
on home object

EJB Quick Reference Guide 765

33_576828 appE.qxd 11/3/04 11:50 AM Page 765

Figure E.9 The life cycle of a bean-managed persistent entity bean. Each method call
shown is an invocation from the container to the bean instance.

does not exist

pooled

ready

ejbRemove()

ejbStore()

1: newInstance()
2:setEntityContext()

1: unsetEntityContext()
2: JVM will garbage collect
 and call finalize()

ejbFind()

Activate your bean:
1: ejbActivate()
2: ejbLoad()

Passivate your bean:
1: ejbStore()
2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

ejbLoad()

business method

The lifecycle of a bean-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean
instance.

ejbHome()

Container decided it
needs another entity
bean instance.

Client called create() on
the home interface (this
will create new database
data).

Container determined that
the bean is out of synch
with database. The bean
needs to load the new
database data.

Client called a
business method
on the EJB object.

Container determined
that the database is
out of synch with the
bean. The bean
needs to store its
data into the
database.

Client called
remove() on the
EJB object (this
will destroy
database data).

Client called a
finder method on
the home
interface.

Container decided it
doesn't need your
instance anymore.

Client called instance-
independent ejbHome()
business method.

766 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 766

Figure E.10 The life cycle of a container-managed persistent entity bean. Each method call
shown is an invocation from the container to the bean instance.

does not exist

pooled

ready

ejbRemove()

ejbStore()

1: newInstance()
2:setEntityContext()

1: unsetEntityContext()
2: JVM will garbage collect
 and call finalize()

ejbFind()
or

ejbSelect()

Activate your bean:
1: ejbActivate()
2: ejbLoad()

Passivate your bean:
1: ejbStore()
2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

ejbLoad()

business method
or

ejbSelect()

The lifecycle of a container-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean
instance.

ejbHome()

Container decided it
needs another entity
bean instance

Client called create() on
the home interface (this
will create new database
data)

Container determined that
the bean is out of synch
with database. The bean
needs to load the new
database data.

Client called a
business method
on the EJB object

Container determined
that the database is
out of synch with the
bean. The bean
needs to store its
data into the
database.

Client called
remove() on the
EJB object (this
will destroy
database data)

Client called a
finder method on
the home
interface, or bean
called its own
ejbSelect()
method to locate
database data.

Container decided it
doesn’t need your
instance anymore

Client called instance-
independent ejbHome()
business method

EJB Quick Reference Guide 767

33_576828 appE.qxd 11/3/04 11:50 AM Page 767

Figure E.11 Sequence diagram for bean-managed persistent entity beans. For simplicity, the
Container object represents all container subsystems, including EJB objects, home objects,
transaction services, and so on.

beanClass.newInstance()

Bean InstanceContainerClient Database

setEntityContext()

Adding a new instance to the pool

home.find<METHOD>(args)

Servicing a finder method

search database based on args

return one or more new EJB objects

unsetEntityContext()

Removing an instance from the pool

home.create(args)
ejbCreate(args)

create entity representation in database

ejbPostCreate(args)
return new EJB object

Servicing a create method

ejbObject.remove()
or
home.remove(...)

ejbRemove()
remove entity representation from database

Servicing a remove method

Passivating a bean instance

Servicing a business method

ejbObject.businessMethod(args)
or

ejbHome.businessMethod(args) businessMethod(args)

ejbStore()

update entity representation in database

ejbPassivate()

ejbActivate()

read entity representation from database
ejbLoad()

Activating a bean instance

ejbObject.businessMethod(args)

businessMethod(args)

find<METHOD>(args)

return one or more primary keys

return one or more primary keys

768 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 768

Figure E.12 Sequence diagram for container-managed persistent entity beans. For simplicity, the
Container object represents all container subsystems, including EJB objects, home objects,
transaction services, and so on.

Bean InstanceContainerClient Database

Adding a new instance to the pool

home.find<METHOD>(args)

Servicing a finder method

search database based on args
return one or more new EJB objects

unsetEntityContext()

Removing an instance from the pool

home.create(args)
ejbCreate(args)

create entity representation in database

ejbPostCreate(args)
return new EJB object

Servicing a create method

ejbObject.remove()
or
home.remove(...)

ejbRemove()

remove entity representation from database

Servicing a remove method

Passivating a bean instance

Servicing a business method

ejbObject.businessMethod(args)
or

ejbHome.businessMethod(args) businessMethod(args)

ejbStore()

update entity representation in database

ejbPassivate()

ejbActivate()

read entity representation from database

ejbLoad()

Activating a bean instance

ejbObject.businessMethod(args)

businessMethod(args)

beanClass.newInstance()

setEntityContext()

EJB Quick Reference Guide 769

33_576828 appE.qxd 11/3/04 11:50 AM Page 769

Message-Driven Bean Diagrams

Figure E.13 The life cycle of a message-driven bean. Each method call shown is an
invocation from the container to the bean instance.

does not exist

pooled

1: newInstance()
2: setMessageDrivenContext()
3: ejbCreate()

1: ejbRemove()

onMessage()

The lifecycle of a message
driven bean. Each method
call shown is an invocation
from the container to the bean
instance.

770 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 770

Figure E.14 Sequence diagram for message-driven beans. For simplicity, the Container
object represents all container subsystems, including home objects, transaction services,
and so on.

EJB API Reference

The following section explains the Enterprise JavaBeans API, which is the
javax.ejb package. This API is the essence of EJB and defines the specific signa-
ture contracts between clients, enterprise beans, and containers.

Bean InstanceContainerClient

ejbRemove()

Removing and instance from the pool

Servicing a business method

Send msg via JMS
onMessage(msg)

ejbCreate()

setMessageDrivenContext()

beanClass.newInstance()

Adding a new instance to the pool

EJB Quick Reference Guide 771

33_576828 appE.qxd 11/3/04 11:50 AM Page 771

EJBContext
An EJBContext object is a container-implemented object (see Table E.1). Your
bean can use an EJB context to perform callbacks to the container. These call-
backs help your bean determine its current transactional status, security sta-
tus, and more. Your container must make an EJB context available to your
enterprise bean at runtime. This interface is extended by the SessionContext,
EntityContext, and MessageDrivenContext interfaces to provide additional func-
tionality specific to those bean types.

public interface javax.ejb.EJBContext

{

public javax.ejb.EJBHome getEJBHome();

public javax.ejb.EJBLocalHome getEJBLocalHome();

public boolean getRollbackOnly()

throws java.lang.IllegalStateException;

public void setRollbackOnly()

throws java.lang.IllegalStateException;

public javax.transaction.UserTransaction getUserTransaction()

throws java.lang.IllegalStateException;

public boolean isCallerInRole(java.lang.String);

public java.security.Principal getCallerPrincipal();

public TimerService getTimerService()

throws java.lang.IllegalStateException;

}

Table E.1 javax.ejb.EJBContext

METHOD EXPLANATION

getEJBHome() Call this from within your bean to access your own
home object. You can use this home object to create,
destroy, or find EJB objects of your own bean class type.
This method is not used very often.

getEJBLocalHome() Same as getEJBHome() except this retrieves the local
interface version.

getRollbackOnly() Asks the container if the transaction is doomed to
rollback. If it’s doomed, you can avoid performing
computer-intensive operations (see Chapter 12).

setRollbackOnly() If something goes horribly wrong inside your bean, you
can call this method to force the current transaction to
rollback (see Chapter 12).

772 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 772

Table E.1 (continued)

METHOD EXPLANATION

getUserTransaction() Retrieves the JTA UserTransaction interface to perform
programmatic transactions (see Chapter 12).

isCallerInRole(String) Asks the container if the current logged-in user is in the
proper security role to perform a desired operation.
Useful for programmatic security (see Chapter 13).

getCallerPrincipal() Retrieves the current logged-in user’s security principal.
You can use this principal to query a database or
perform other operations (see Chapter 13).

getTimerService() Gets access to the EJB timer service (see Chapter 14).

EJBHome
Remote clients create, find, and remove EJB objects through home interfaces.
Your home interfaces extend javax.ejb.EJBHome. The container will implement
the methods in javax.ejb.EJBHome when it implements your home interface as
a concrete home object (see Table E.2).

public interface javax.ejb.EJBHome

extends java.rmi.Remote

{

public EJBMetaData getEJBMetaData()

throws java.rmi.RemoteException;

public void remove(Handle handle)

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public void remove(Object primaryKey)

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public javax.ejb.HomeHandle getHomeHandle()

throws java.rmi.RemoteException;

}

EJB Quick Reference Guide 773

33_576828 appE.qxd 11/3/04 11:50 AM Page 773

Table E.2 javax.ejb.EJBHome

METHOD EXPLANATION

getEJBMetaData() Returns metadata about the enterprise bean you’re working
with. Useful if your client code is written in a scripting
language, or if you’re writing EJB development tools.

getHomeHandle() Retrieves a serializable handle to the bean’s home object.
You can tuck this handle away somewhere (such as writing
it to disk) and then use it again later to retrieve the home
without performing a JNDI lookup.

remove() This method destroys an EJB object based on an EJB object
handle or primary key you pass in.

Note: These methods are called by remote clients; for entity beans, remove() also deletes the bean from the
underlying persistent store.

EJBLocalHome
Local clients create, find, and remove local EJB objects through local home
interfaces. Your local home interfaces extend javax.ejb.EJBLocalHome. The con-
tainer will implement the methods in javax.ejb.EJBLocalHome when it imple-
ments your local home interface as a concrete local home object (see Table E.3).

public interface javax.ejb.EJBLocalHome

{

public void remove(Object primaryKey)

throws javax.ejb.EJBException,

javax.ejb.RemoveException;

}

Table E.3 javax.ejb.EJBLocalHome

METHOD EXPLANATION

remove() This method destroys an EJB local object based upon a
primary key you pass in. Applies only to entity beans. This will
also delete the bean data from the underlying persistent store.

Note: These methods are called by local clients.

774 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 774

EJBLocalObject
A local client accesses a bean through an EJB local object, which implements a
local interface. Your local interface must extend javax.ejb.EJBLocalObject. The
container will implement the methods in javax.ejb.EJBLocalObject when it
implements your local interface as a concrete EJB local object (see Table E.4).

public interface javax.ejb.EJBLocalObject

{

public javax.ejb.EJBLocalHome getEJBLocalHome()

throws javax.ejb.EJBException;

public java.lang.Object getPrimaryKey()

throws javax.ejb.EJBException;

public void remove()

throws javax.ejb.EJBException;

javax.ejb.RemoveException;

public boolean isIdentical(javax.ejb.EJBObject)

throws java.rmi.RemoteException;

}

EJBMetaData
This interface encapsulates metadata about an enterprise bean. Metadata is
not very useful for typical client code; it is better suited to clients that need to
discover information dynamically about an enterprise bean, such as scripting
language environments or EJB development tools. Your client code can
retrieve this metadata by calling homeObject.getEJBMetaData(). The client code
will get back a serializable implementation of javax.ejb.EJBMetaData.

Table E.4 javax.ejb.EJBLocalObject

METHOD EXPLANATION

getEJBLocalHome() Gets the local home object for this EJB local object.

getPrimaryKey() Returns the primary key for this EJB local object. A primary
key is only used for entity beans (see Chapter 6).

remove() Destroys this EJB local object. When your client code is
done using an EJB local object, you should call this method.
The system resources for the EJB local object can then be
reclaimed.

isIdentical() Tests whether two EJB local objects are identical.

Note: For entity beans, remove() also deletes the bean from the underlying persistent store.

EJB Quick Reference Guide 775

33_576828 appE.qxd 11/3/04 11:50 AM Page 775

public interface javax.ejb.EJBMetaData

{

public javax.ejb.EJBHome getEJBHome();

public java.lang.Class getHomeInterfaceClass();

public java.lang.Class getPrimaryKeyClass();

public java.lang.Class getRemoteInterfaceClass();

public boolean isSession();

public boolean isStatelessSession();

}

EJBObject
A remote client accesses a bean through an EJB object, which implements a
remote interface. Your remote interface must extend javax.ejb.EJBObject. The
container will implement the methods in javax.ejb.EJBObject when it imple-
ments your remote interface as a concrete EJB object (see Table E.5).

public interface javax.ejb.EJBObject

extends java.rmi.Remote

{

public javax.ejb.EJBHome getEJBHome()

throws java.rmi.RemoteException;

public java.lang.Object getPrimaryKey()

throws java.rmi.RemoteException;

public void remove()

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public javax.ejb.Handle getHandle()

throws java.rmi.RemoteException;

public boolean isIdentical(javax.ejb.EJBObject)

throws java.rmi.RemoteException;

}

Table E.5 javax.ejb.EJBObject

METHOD EXPLANATION

getEJBHome() Gets the home object for this EJB object.

getPrimaryKey() Returns the primary key for this EJB object. A primary key is
used only for entity beans (see Chapters 6–8).

remove() Destroys this EJB object. When your client code is done using
an EJB object, call this method. The system resources for the
EJB object can then be reclaimed.

776 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 776

Table E.5 (continued)

METHOD EXPLANATION

getHandle() Acquires a handle for this EJB object. An EJB handle is a
persistent reference to an EJB object that the client can stow
away somewhere. Later, the client can use the handle to
reacquire the EJB object and start using it again.

isIdentical() Tests whether two EJB objects are identical. Should be used
instead of equals() or the == operator, since those test
whether two stubs are the same—stubs are not EJB objects.

Note: For entity beans, remove() also deletes the bean from the underlying persistent store.

EnterpriseBean
This interface serves as a marker interface; implementing this interface indi-
cates that your class is indeed an enterprise bean class. You should not imple-
ment this interface; rather, implement either javax.ejb.EntityBean,
javax.ejb.SessionBean, or javax.ejb.MessageDrivenBean, each of which extends
this interface.

public interface javax.ejb.EnterpriseBean

extends java.io.Serializable

{

}

EntityBean
To write an entity bean class, your class must implement the javax.ejb.Entity-
Bean interface. This interface defines a few required methods that you must fill
in. These are management methods that the EJB container calls to alert your
bean to life cycle events. Clients of your bean will never call these methods,
because these methods are not made available to clients via the EJB object (see
Table E.6). Each of the following methods can throw a java.rmi.RemoteException
or javax.ejb.EJBException.

public interface javax.ejb.EntityBean

implements javax.ejb.EnterpriseBean

{

public void setEntityContext(javax.ejb.EntityContext)

throws javax.ejb.EJBException,

java.rmi.RemoteException;

public void unsetEntityContext()

EJB Quick Reference Guide 777

33_576828 appE.qxd 11/3/04 11:50 AM Page 777

throws javax.ejb.EJBException,

java.rmi.RemoteException;

public void ejbRemove()

throws javax.ejb.RemoveException,

javax.ejb.EJBException,

java.rmi.RemoteException;

public void ejbActivate()

throws javax.ejb.EJBException,

java.rmi.RemoteException;

public void ejbPassivate()

throws javax.ejb.EJBException

java.rmi.RemoteException;

public void ejbLoad()

throws javax.ejb.EJBException

java.rmi.RemoteException;

public void ejbStore()

throws javax.ejb.EJBException

java.rmi.RemoteException;

}

EntityContext
An entity context is a specific EJB context used only for entity beans (see Table
E.7).

public interface javax.ejb.EntityContext implements

javax.ejb.EJBContext

{

public javax.ejb.EJBObject getEJBLocalObject()

throws java.lang.IllegalStateException;

public javax.ejb.EJBObject getEJBObject()

throws java.lang.IllegalStateException;

public java.lang.Object getPrimaryKey();

throws java.lang.IllegalStateException;

}

778 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 778

Ta
b

le
 E

.6
Re

qu
ire

d
M

et
ho

ds
 fo

r
En

tit
y

B
ea

n
C

la
ss

es

TY
P

IC
A

L
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

IM

P
LE

M
E

N
TA

TI
O

N

(B
EA

N
-M

A
N

A
G

E
D

(C

O
N

TA
IN

E
R

-M
A

N
A

G
E

D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

Se
tE

nt
ity

C
on

te
xt

As
so

ci
at

es
 y

ou
r

be
an

 w
ith

 a
n

St
or

e
th

e
co

nt
ex

t a
w

ay
 in

 a

St
or

e
th

e
co

nt
ex

t i
n

a
m

em
be

r
(E

nt
ity

C
on

te
xt

 c
tx

)
en

tit
y

co
nt

ex
t.

Yo
u

ca
n

qu
er

y
m

em
be

r
va

ria
bl

e
so

 th
e

co
nt

ex
t

so
 th

e
co

nt
ex

t c
an

 b
e

qu
er

ie
d

th
e

en
tit

y
co

nt
ex

t a
bo

ut
 y

ou
r

ca
n

be
 q

ue
rie

d
la

te
r.

la
te

r.
cu

rr
en

t t
ra

ns
ac

tio
na

l s
ta

te
,

yo
ur

 c
ur

re
nt

 s
ec

ur
ity

 s
ta

te
,

an
d

m
or

e.
 S

to
re

 th
e

co
nt

ex
t

aw
ay

 in
 a

 m
em

be
r

va
ria

bl
e

so
 th

e
co

nt
ex

t c
an

 b
e

qu
er

ie
d

la
te

r.

ej
bF

in
d.

..(
...

)
Fi

nd
s

an
 e

xi
st

in
g

en
tit

y
be

an

Se
ar

ch
 th

ro
ug

h
a

da
ta

 s
to

re
 u

si
ng

 a

D
o

no
t i

m
pl

em
en

t t
he

se

in
 s

to
ra

ge
. Y

ou
 c

an
 h

av
e

st
or

ag
e

AP
I s

uc
h

as
 J

D
B

C
 o

r
SQ

L/
J.

m
et

ho
ds

 fo
r

co
nt

ai
ne

r-
m

an
ag

ed

N
ot

e:
 Y

ou
 o

nl
y

us
e

m
an

y
di

ffe
re

nt
 fi

nd
er

 m
et

ho
ds

,
Fo

r
ex

am
pl

e,
 y

ou
 m

ig
ht

 p
er

fo
rm

 a

pe
rs

is
te

nt
 e

nt
ity

 b
ea

ns
. T

he
 E

JB

ej
bF

in
d(

)
m

et
ho

ds

w
hi

ch
 a

ll
pe

rf
or

m
 d

iff
er

en
t

re
la

tio
na

l q
ue

ry
 s

uc
h

as
 S

EL
EC

T
id

co

nt
ai

ne
r

w
ill

 h
an

dl
e

al
li

ss
ue

s
w

ith
 b

ea
n-

m
an

ag
ed

op
er

at
io

ns
.

FR
O

M
 a

cc
ou

nt
s

W
H

ER
E

ba
la

nc
e>

 0
.

re
la

tin
g

to
 fi

nd
in

g
da

ta
 fo

r
yo

u.

pe
rs

is
te

nt
 e

nt
ity

 b
ea

ns
.

Re
tu

rn
 th

e
re

su
lti

ng
 p

rim
ar

y
ke

y
se

t.
U

se
 y

ou
r

co
nt

ai
ne

r
to

ol
s

to
de

sc
rib

e
yo

ur
 fi

nd
er

 m
et

ho
d

ne
ed

s.

ej
bS

el
ec

t..
.(

...
)

ej
bS

el
ec

t(
)

m
et

ho
ds

 a
re

 C
M

P
Th

er
e

ar
e

no
 e

jb
Se

le
ct

()
m

et
ho

ds

D
ef

in
e

th
is

 m
et

ho
d

as
 a

bs
tr

ac
t.

he
lp

er
 m

et
ho

ds
 th

at
 p

er
fo

rm

fo
r

B
M

P
en

tit
y

be
an

s.
 Y

ou
 c

an

Th
en

 w
rit

e
EJ

B
-Q

L
in

 th
e

N
ot

e:
 Y

ou
 o

nl
y

us
e

qu
er

ie
s

in
te

rn
al

ly
 b

y
yo

ur

w
rit

e
yo

ur
 o

w
n

he
lp

er
 m

et
ho

ds

de
pl

oy
m

en
t d

es
cr

ip
to

r
to

 s
et

 u
p

ej
bS

el
ec

t(
)

m
et

ho
ds

be

an
 b

ut
 th

at
 a

re
 n

ot

an
d

na
m

e
th

em
 w

ha
te

ve
r

th
e

qu
er

y.
w

ith
 c

on
ta

in
er

-m
an

ag
ed

ac

ce
ss

ib
le

 to
 c

lie
nt

s
of

yo

u
w

is
h.

pe
rs

is
te

nt
 e

nt
ity

 b
ea

ns
.

yo
ur

 b
ea

n.

(c
on

tin
ue

d)

33_576828 appE.qxd 11/3/04 11:50 AM Page 779

Ta
b

le
 E

.6
(c

on
tin

ue
d)

TY
P

IC
A

L
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

IM

P
LE

M
E

N
TA

TI
O

N

(B
EA

N
-M

A
N

A
G

E
D

(C

O
N

TA
IN

E
R

-M
A

N
A

G
E

D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

ej
bH

om
e.

..(
...

)
So

m
et

im
es

 y
ou

 n
ee

d
Pe

rf
or

m
 y

ou
r

gl
ob

al
 o

pe
ra

tio
ns

, a
s

Pe
rf

or
m

 y
ou

r
gl

ob
al

 o
pe

ra
tio

ns
,

m
et

ho
ds

 o
n

an
 e

nt
ity

 b
ea

n
co

un
tin

g
th

e
ro

w
s

in
 a

 d
at

ab
as

e
su

ch
 a

s
co

un
tin

g
th

e
ro

w
s

in
 a

th

at
 a

re
 n

ot
 s

pe
ci

fic
 to

 a
ny

an

d
re

tu
rn

in
g

th
e

re
su

lts
 to

 th
e

da
ta

ba
se

 a
nd

 r
et

ur
ni

ng
 th

e
gi

ve
n

da
ta

 in
st

an
ce

 (
or

 r
ow

)—
cl

ie
nt

. T
he

 fa
st

-a
nd

-e
as

y
w

ay
 to

re

su
lts

 to
 th

e
cl

ie
nt

. T
he

fo

r
ex

am
pl

e,
 c

ou
nt

in
g

th
e

ac
hi

ev
e

th
is

 is
 to

 u
se

 J
D

B
C

. T
he

fa

st
-a

nd
-e

as
y

w
ay

 to
 a

ch
ie

ve
 th

is

to
ta

l n
um

be
r

of
 a

cc
ou

nt
s

cl
ea

ne
r

(b
ut

 lo
w

er
-p

er
fo

rm
in

g
is

 to
 u

se
 J

D
B

C
. T

he
 c

le
an

er
 (

bu
t

in
 a

 ta
bl

e.
 Y

ou
 c

an
 w

rit
e

w
ay

 if
 y

ou
’re

 n
ot

ca
re

fu
l)

 is
 to

 c
al

l
lo

w
er

-p
er

fo
rm

in
g

w
ay

 if
 y

ou
’re

ej

bH
om

e
m

et
ho

ds
 to

 p
er

fo
rm

ej

bS
el

ec
t(

)
an

d
pe

rh
ap

s
ot

he
r

no
t c

ar
ef

ul
)

is
 to

 c
al

l e
jb

Se
le

ct
()

th
es

e
op

er
at

io
ns

. T
he

en

tit
y

be
an

 m
et

ho
ds

 e
nt

ity
 b

ea
n

an
d

pe
rh

ap
s

ot
he

r
en

tit
y

be
an

ej

bH
om

e
m

et
ho

ds
 a

re
 s

pe
ci

al

m
et

ho
ds

.
m

et
ho

ds
.

bu
si

ne
ss

 m
et

ho
ds

 b
ec

au
se

th

ey
 a

re
 c

al
le

d
fr

om
 a

 b
ea

n
in

th

e
po

ol
 b

ef
or

e
th

e
be

an
 is

as

so
ci

at
ed

 w
ith

 a
ny

 s
pe

ci
fic

da

ta
. C

lie
nt

s
ca

ll
th

es
e

m
et

ho
ds

 fr
om

 th
e

ho
m

e
in

te
rf

ac
e

or
 lo

ca
l h

om
e

in
te

rf
ac

e.

ej
bC

re
at

e.
..(

...
)

In
iti

al
iz

es
 a

 b
ea

n
fo

r
a

Va
lid

at
e

th
e

cl
ie

nt
’s

 in
iti

al
iz

at
io

n
Va

lid
at

e
th

e
cl

ie
nt

’s
 in

iti
al

iz
at

io
n

pa
rt

ic
ul

ar
 c

lie
nt

 a
nd

 c
re

at
es

pa

ra
m

et
er

s.
 E

xp
lic

itl
y

cr
ea

te
 th

e
pa

ra
m

et
er

s.
 C

al
l y

ou
r

ab
st

ra
ct

un

de
rly

in
g

da
ta

ba
se

 d
at

a.

da
ta

ba
se

 r
ep

re
se

nt
at

io
n

of
 th

e
se

t(
)

m
et

ho
ds

 to
 in

iti
al

iz
e

th
e

Ea
ch

 e
jb

C
re

at
e(

)
m

et
ho

d
yo

u
da

ta
 v

ia
 a

 s
to

ra
ge

 A
PI

 s
uc

h
a

JD
B

C

ge
ne

ra
te

d
be

an
 s

ub
cl

as
s

to
 th

e
de

fin
e

gi
ve

s
cl

ie
nt

s
a

di
ffe

re
nt

or

 S
Q

L/
J.

pa
ra

m
et

er
s

pa
ss

ed
 in

. T
he

w

ay
 to

 c
re

at
e

yo
ur

 e
nt

ity

co
nt

ai
ne

r
w

ill
 th

en
 u

se
 th

es
e

be
an

s.
va

lu
es

 in
 th

e
su

bc
la

ss
 to

 c
re

at
e

th
e

da
ta

ba
se

 d
at

a
fo

r
yo

u.

33_576828 appE.qxd 11/3/04 11:50 AM Page 780

Ta
b

le
 E

.6
(c

on
tin

ue
d)

TY
P

IC
A

L
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

IM

P
LE

M
E

N
TA

TI
O

N

(B
EA

N
-M

A
N

A
G

E
D

(C

O
N

TA
IN

E
R

-M
A

N
A

G
E

D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

ej
bP

os
tC

re
at

e.
..(

...
)

Yo
ur

 b
ea

n
cl

as
s

m
us

t d
ef

in
e

Pe
rf

or
m

 a
ny

 in
iti

al
iz

at
io

n
yo

u
Pe

rf
or

m
 a

ny
 in

iti
al

iz
at

io
n

yo
u

ej
bP

os
tC

re
at

e(
)

fo
r

ea
ch

ne

ed
 to

 th
at

 r
eq

ui
re

s
a

re
fe

re
nc

e
ne

ed
 th

at
 r

eq
ui

re
s

a
re

fe
re

nc
e

to

ej
bC

re
at

e(
).

Ea
ch

 p
ai

r
m

us
t

to
 y

ou
r

ow
n

EJ
B

 o
bj

ec
t,

su
ch

 a
s

yo
ur

 o
w

n
EJ

B
 o

bj
ec

t,
su

ch
 a

s
ac

ce
pt

 th
e

sa
m

e
pa

ra
m

et
er

s.

pa
ss

in
g

yo
ur

 b
ea

n’
s

EJ
B

 o
bj

ec
t

pa
ss

in
g

yo
ur

 b
ea

n’
s

EJ
B

 o
bj

ec
t

Th
e

co
nt

ai
ne

r
ca

lls
re

fe
re

nc
e

to
 o

th
er

 b
ea

ns
. Y

ou
 c

an

re
fe

re
nc

e
to

 o
th

er
 b

ea
ns

. Y
ou

ej

bP
os

tC
re

at
e(

)
rig

ht
 a

fte
r

ge
t y

ou
r

EJ
B

 o
bj

ec
t v

ia

ca
n

ge
t y

ou
r

EJ
B

 o
bj

ec
t v

ia

ej
bC

re
at

e(
).

En
tit

yC
on

te
xt

.g
et

EJ
B

O
bj

ec
t(

).
En

tit
yC

on
te

xt
. g

et
EJ

B
O

bj
ec

t(
).

ej
bP

as
si

va
te

()
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
Re

le
as

e
an

y
re

so
ur

ce
s

yo
ur

 b
ea

n
Re

le
as

e
an

y
re

so
ur

ce
s

yo
ur

 b
ea

n
yo

ur
 b

ea
n

is
 p

as
si

va
te

d
m

ay
 b

e
ho

ld
in

g.

m
ay

 b
e

ho
ld

in
g.

(s
w

ap
pe

d
ou

t t
o

di
sk

 b
ec

au
se

to

o
m

an
y

be
an

s
ar

e
in

st
an

tia
te

d)
.

ej
bS

to
re

()
C

al
le

d
w

he
n

th
e

co
nt

ai
ne

r
Ex

pl
ic

itl
y

up
da

te
 th

e
da

ta
ba

se

D
o

no
t u

pd
at

e
th

e
da

ta
ba

se
 in

ne

ed
s

to
 u

pd
at

e
th

e
da

ta
ba

se

re
pr

es
en

ta
tio

n
of

 th
e

da
ta

 v
ia

 a

th
is

 m
et

ho
d.

Ra
th

er
, t

he
 E

JB

w
ith

 y
ou

r
be

an
’s

 s
ta

te
. T

he

st
or

ag
e

AP
I s

uc
h

as
 J

D
B

C
 T

yp
ic

al
ly

,
co

nt
ai

ne
r

w
ill

 u
pd

at
e

th
e

cu
rr

en
t t

ra
ns

ac
tio

na
l s

ta
te

yo

u’
ll

w
rit

e
a

nu
m

be
r

of
 y

ou
r

da
ta

ba
se

 fo
r

yo
u

au
to

m
at

ic
al

ly

di
ct

at
es

 w
he

n
th

is
 m

et
ho

d
m

em
be

r
va

ria
bl

e’
s

fie
ld

s
to

 d
is

k.
rig

ht
 a

fte
r

ca
lli

ng
 y

ou
r

ej
bS

to
re

()

is
 c

al
le

d.
 T

hi
s

m
et

ho
d

is
 a

ls
o

m
et

ho
d.

 It
 d

oe
s

th
is

 in
 th

e
ca

lle
d

du
rin

g
pa

ss
iv

at
io

n,

su
bc

la
ss

 b
y

ta
ki

ng
 y

ou
r

be
an

di

re
ct

ly
 b

ef
or

e
ej

bP
as

si
va

te
()

.
st

at
e

an
d

w
rit

in
g

it
to

 th
e

da
ta

ba
se

. T
hu

s,
 y

ou
 s

ho
ul

d
pr

ep
ar

e
yo

ur
 s

ta
te

 to
 b

e
w

rit
te

n
to

 th
e

da
ta

ba
se

, s
uc

h
as

co
m

pr
es

si
ng

 fi
el

ds
, b

y
ca

lli
ng

yo
ur

 a
bs

tr
ac

t g
et

/s
et

 m
et

ho
ds

.

(c
on

tin
ue

d)

33_576828 appE.qxd 11/3/04 11:50 AM Page 781

Ta
b

le
 E

.6
(c

on
tin

ue
d)

TY
P

IC
A

L
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

IM

P
LE

M
E

N
TA

TI
O

N

(B
EA

N
-M

A
N

A
G

E
D

(C

O
N

TA
IN

E
R

-M
A

N
A

G
E

D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

ej
bL

oa
d(

)
C

al
le

d
w

he
n

th
e

co
nt

ai
ne

r
Fi

rs
t y

ou
r

be
an

 in
st

an
ce

 m
us

t
D

o
no

t r
ea

d
da

ta
 fr

om
 th

e
ne

ed
s

to
 u

pd
at

e
yo

ur
 b

ea
n

fig
ur

e
ou

t w
hi

ch
 d

at
a

to
 lo

ad
.

da
ta

ba
se

 in
 th

is
 m

et
ho

d.
Th

e
w

ith
 th

e
da

ta
ba

se
’s

 s
ta

te
.

C
al

l t
he

ge
tP

ri
m

ar
yK

ey
()

m
et

ho
d

EJ
B

 c
on

ta
in

er
 w

ill
 r

ea
d

in
 d

at
a

Th
e

cu
rr

en
t t

ra
ns

ac
tio

na
l

on
 th

e
en

tit
y

co
nt

ex
t;

th
at

 w
ill

 te
ll

fr
om

 th
e

da
ta

ba
se

 fo
r

yo
u

st
at

e
di

ct
at

es
 w

he
n

th
is

yo

ur
 b

ea
n

w
ha

t d
at

a
it

sh
ou

ld
 lo

ad
.

au
to

m
at

ic
al

ly
 r

ig
ht

 b
ef

or
e

ca
lli

ng

m
et

ho
d

is
 c

al
le

d.
 T

hi
s

N
ex

t r
ea

d
da

ta
ba

se
 d

at
a

in
to

 y
ou

r
yo

ur
 e

jb
Lo

ad
()

m
et

ho
d.

 It
 d

oe
s

m
et

ho
d

is
 a

ls
o

ca
lle

d
be

an
 v

ia
 a

 s
to

ra
ge

 A
PI

 s
uc

h
as

th

is
 in

 th
e

su
bc

la
ss

 b
y

qu
er

yi
ng

du

rin
g

ac
tiv

at
io

n,
 d

ire
ct

ly

JD
B

C
 o

r
SQ

L/
J.

th
e

da
ta

ba
se

 a
nd

 p
op

ul
at

in
g

be
fo

re
 e

jb
Ac

tiv
at

e(
).

yo
ur

 b
ea

n
st

at
e.

 T
hu

s,
 y

ou
sh

ou
ld

 p
er

fo
rm

 a
ny

 n
ec

es
sa

ry
po

st
-lo

ad
 o

pe
ra

tio
ns

, s
uc

h
as

de
co

m
pr

es
si

ng
 fi

el
ds

, b
y

ca
lli

ng
yo

ur
 a

bs
tr

ac
t g

et
/s

et
 m

et
ho

ds
.

ej
bA

ct
iv

at
e(

)
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
Ac

qu
ire

 a
ny

 r
es

ou
rc

es
 y

ou
r

be
an

Ac

qu
ire

 a
ny

 r
es

ou
rc

es
 y

ou
r

be
an

yo

ur
 b

ea
n

is
 a

ct
iv

at
ed

ne

ed
s,

 s
uc

h
as

 th
os

e
re

le
as

ed

ne
ed

s
su

ch
 a

s
th

os
e

re
le

as
ed

(s

w
ap

pe
d

in
 fr

om
 d

is
k

du
rin

g
ej

bP
as

si
va

te
()

.
du

rin
g

ej
bP

as
si

va
te

()
.

be
ca

us
e

a
cl

ie
nt

 n
ee

ds

yo
ur

 b
ea

n)
.

33_576828 appE.qxd 11/3/04 11:50 AM Page 782

Ta
b

le
 E

.6
(c

on
tin

ue
d)

TY
P

IC
A

L
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

IM

P
LE

M
E

N
TA

TI
O

N

(B
EA

N
-M

A
N

A
G

E
D

(C

O
N

TA
IN

E
R

-M
A

N
A

G
E

D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

ej
bR

em
ov

e(
)

To
 d

es
tr

oy
 a

n
en

tit
y

be
an

’s

Fi
rs

t f
ig

ur
e

ou
t w

ha
t d

at
a

yo
u

D
o

no
t d

es
tr

oy
 d

at
ab

as
e

da
ta

 in

da
ta

 in
 a

 d
at

ab
as

e,
 th

e
cl

ie
nt

sh

ou
ld

 d
es

tr
oy

 v
ia

 g
et

Pr
im

ar
yK

ey
()

th

is
 m

et
ho

d.
Si

m
pl

y
pe

rf
or

m
 a

ny

m
us

t c
al

l r
em

ov
e(

)
on

 th
e

on
 th

e
En

tit
yC

on
te

xt
. T

he
n

ex
pl

ic
itl

y
op

er
at

io
ns

 th
at

 m
us

t b
e

do
ne

EJ

B
 o

bj
ec

t o
r

ho
m

e
ob

je
ct

.
de

le
te

 th
e

da
ta

ba
se

 r
ep

re
se

nt
at

io
n

be
fo

re
 th

e
da

ta
 in

 th
e

da
ta

ba
se

Th

is
 m

et
ho

d
ca

us
es

 th
e

of
 th

e
da

ta
 v

ia
 a

 s
to

ra
ge

 A
PI

 s
uc

h
is

 d
es

tr
oy

ed
. T

he
 E

JB
 c

on
ta

in
er

co

nt
ai

ne
r

to
 is

su
e

an
as

 J
D

B
C

 o
r

SQ
L/

J.
w

ill
 d

es
tr

oy
 th

e
da

ta
 fo

r
yo

u
rig

ht

ej
bR

em
ov

e(
)

ca
ll

on
 th

e
be

an
.

af
te

r
ej

bR
em

ov
e(

)
is

 c
al

le
d.

ej
bR

em
ov

e(
)

is
 a

 r
eq

ui
re

d
m

et
ho

d
of

 a
ll

be
an

s
an

d
ta

ke
s

no
 p

ar
am

et
er

s.
N

ot
e:

ej

bR
em

ov
e(

)
do

es
 n

ot
 m

ea
n

th
e

in
-m

em
or

y
en

tit
y

be
an

in

st
an

ce
 is

 g
oi

ng
 to

 b
e

de
st

ro
ye

d.
ej

bR
em

ov
e(

)
de

st
ro

ys
 o

nl
y

da
ta

ba
se

 d
at

a.

Th
e

be
an

 in
st

an
ce

 c
an

 b
e

re
cy

cl
ed

 to
 h

an
dl

e
di

ffe
re

nt

da
ta

ba
se

 d
at

a,
 s

uc
h

as
 a

 b
an

k
ac

co
un

t b
ea

n
re

pr
es

en
tin

g
di

ffe
re

nt
 b

an
k

ac
co

un
ts

.

un
se

tE
nt

ity
C

on
te

xt
()

C
al

le
d

rig
ht

 b
ef

or
e

yo
ur

 e
nt

ity

Re
le

as
e

an
y

re
so

ur
ce

s
yo

u
al

lo
ca

te
d

Re
le

as
e

an
y

re
so

ur
ce

s
yo

u
be

an
 in

st
an

ce
 is

 d
es

tr
oy

ed

du
rin

g
se

tE
nt

ity
C

on
te

xt
()

an
d

ge
t

al
lo

ca
te

d
du

rin
g

(w
he

n
th

e
co

nt
ai

ne
r

w
an

ts
 to

re

ad
y

fo
r

ga
rb

ag
e

co
lle

ct
io

n.
se

tE
nt

ity
C

on
te

xt
()

, a
nd

 g
et

 r
ea

dy

re
du

ce
 th

e
po

ol
 s

iz
e)

.
fo

r
ga

rb
ag

e
co

lle
ct

io
n.

33_576828 appE.qxd 11/3/04 11:50 AM Page 783

Table E.7 javax.ejb.EntityContext

METHOD DESCRIPTION USEFULNESS

getEJBLocalObject() Returns a reference to Useful if your bean needs to
your bean’s own local call another local bean and
EJB object. you want to pass a reference

to yourself.

getEJBObject() Returns a reference to Useful if your bean needs to
your bean’s own remote call another remote bean and
EJB object. you want to pass a reference

to yourself.

getPrimaryKey() Retrieves the primary key Call to determine what
that is currently associated database data your instance
with this entity bean is associated with. You need
instance. to use this in ejbLoad() to

determine what database
data to load and in
ejbRemove() to determine
what database data to
remove.

Handle
An EJB object handle is a persistent reference to an EJB object. Handles enable
you to disconnect from your EJB server, shut down your application, and later
resume your application while preserving the conversational state in the beans
you’ve been working with. Handles are also useful when your client code
needs to store a reference to an EJB object in stable storage and reconnect to
that EJB object later.

public interface javax.ejb.Handle

extends java.io.Serializable

{

public javax.ejb.EJBObject getEJBObject()

throws java.rmi.RemoteException;

}

HomeHandle
Just as an EJB object handle is a persistent reference to an EJB object, a home
handle is a persistent reference to a home object. Home handles are useful

784 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 784

when your client code needs to store a reference to a home object in stable stor-
age and reconnect to that home object later. Home handles allow you to avoid
doing a JNDI lookup when reconnecting to a home object.

public interface javax.ejb.HomeHandle

extends java.io.Serializable

{

public javax.ejb.EJBHome getEJBHome()

throws java.rmi.RemoteException;

}

MessageDrivenBean
To write a message-driven bean class, your class must implement the javax.ejb.
MessageDrivenBean interface. This interface defines a few required methods
that you must fill in. These are management methods that the EJB container
calls to alert your bean about life cycle events. Clients of your bean will never
call these methods because clients do not call message-driven beans directly;
rather, they send messages to application server, which in turn delivers them
to message-driven beans. Each of these methods can throw a javax.ejb.EJBEx-
ception (see Table E.8).

public interface javax.ejb.MessageDrivenBean

extends javax.ejb.EnterpriseBean,

{

public void setMessageDrivenContext(MessageDrivenContext ctx)

throws javax.ejb.EJBException;

public void ejbRemove()

throws javax.ejb.EJBException;

}

Table E.8 Required Methods for Message-Driven Bean Classes

TYPICAL
METHOD DESCRIPTION IMPLEMENTATION

SetMessage Associates your bean with Store the context away in a
DrivenContext a message-driven context. member variable so the context
(MessageDriven Your bean can query the can be queried later.
Context ctx) context about its current

transactional state, retrieve
its own home object,
and more.

(continued)

EJB Quick Reference Guide 785

33_576828 appE.qxd 11/3/04 11:50 AM Page 785

Table E.8 (continued)

TYPICAL
METHOD DESCRIPTION IMPLEMENTATION

ejbCreate() Initializes your Perform any initialization your
message-driven bean. You bean needs, such as locating
can only define a single external resources or looking up
ejbCreate() method that other EJB home objects to be
takes no parameters. This is used later.
called directly by the
container after the
message-driven bean is
associated with a
context object.

onMessage Your bean has received Crack open the message, figure
(message) a new message. out what it means to you,

process the message, and
perform any logic you desire.

ejbRemove() Called by the container Prepare your bean for
immediately before your destruction. Free all resources
bean is removed from you may have allocated.
memory.

MessageDrivenContext
A message-driven context is a specific EJB context used only for message-
driven beans. This interface serves as a marker interface. There are no specific
additional methods that message-driven beans get on their context objects.

public interface javax.ejb.MessageDrivenContext

extends javax.ejb.EJBContext

{

}

SessionBean
To write a session bean class, your class must implement the javax.ejb.Session-
Bean interface. This interface defines a few required methods that you must fill
in. These are management methods that the EJB container calls to alert your
bean about life cycle events. Clients of your bean will never call these methods

786 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 786

because these methods are not made available to clients via the EJB object (see
Table E.9). Each of these methods can throw a java.rmi.RemoteException or
javax.ejb.EJBException.

public interface javax.ejb.SessionBean

extends javax.ejb.EnterpriseBean

{

public void setSessionContext(SessionContext ctx)

throws javax.ejb.EJBException,

java.rmi.RemoteExeption;

public void ejbPassivate()

throws javax.ejb.EJBException,

java.rmi.RemoteException;

public void ejbActivate()

throws javax.ejb.EJBException,

java.rmi.RemoteException;

public void ejbRemove()

throws javax.ejb.EJBException,

java.rmi.RemoteException;

}

SessionContext
A session context is a specific EJB context used only for session beans (see
Table E.10).

public interface javax.ejb.SessionContext

extends javax.ejb.EJBContext

{

public javax.ejb.EJBLocalObject getEJBLocalObject()

throws java.lang.IllegalStateException;

public javax.ejb.EJBObject getEJBObject()

throws java.lang.IllegalStateException;

public javax.xml.rpc.handler.MessageContext getMessageContext()

throws java.lang.IllegalStateException;

}

EJB Quick Reference Guide 787

33_576828 appE.qxd 11/3/04 11:50 AM Page 787

Ta
b

le
 E

.9
Re

qu
ire

d
M

et
ho

ds
 fo

r
Se

ss
io

n
B

ea
n

C
la

ss
es

TY
P

IC
A

L
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

IM

P
LE

M
E

N
TA

TI
O

N

(S
TA

TE
FU

L
(S

TA
TE

LE
S

S

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
S

ES
S

IO
N

 B
EA

N
S

)
S

ES
S

IO
N

 B
EA

N
S

)

se
tS

es
si

on
As

so
ci

at
es

 y
ou

r
be

an
 w

ith
 a

St

or
e

th
e

co
nt

ex
t a

w
ay

 in
 a

St

or
e

th
e

co
nt

ex
t a

w
ay

 in
 a

 m
em

be
r

C
on

te
xt

(S
es

si
on

se
ss

io
n

co
nt

ex
t.

Yo
ur

 b
ea

n
ca

n
m

em
be

r
va

ria
bl

e
so

 th
e

co
nt

ex
t

va
ria

bl
e

so
 th

e
co

nt
ex

t c
an

 b
e

C
on

te
xt

 c
tx

)
qu

er
y

th
e

co
nt

ex
t a

bo
ut

 it
s

ca
n

be
 q

ue
rie

d
la

te
r.

qu
er

ie
d.

cu
rr

en
t t

ra
ns

ac
tio

na
l s

ta
te

,
cu

rr
en

t s
ec

ur
ity

 s
ta

te
, a

nd
 m

or
e.

ej
bC

re
at

e.
..(

...
)

In
iti

al
iz

es
 y

ou
r

se
ss

io
n

be
an

.
Pe

rf
or

m
 a

ny
 in

iti
al

iz
at

io
n

yo
ur

Pe

rf
or

m
 a

ny
 in

iti
al

iz
at

io
n

yo
ur

 b
ea

n
be

an
 n

ee
ds

, s
uc

h
as

 s
et

tin
g

ne
ed

s,
 s

uc
h

as
 s

et
tin

g
m

em
be

r
m

em
be

r
va

ria
bl

es
 to

 th
e

va
ria

bl
es

 to
 th

e
ar

gu
m

en
t v

al
ue

s
ar

gu
m

en
t v

al
ue

s
pa

ss
ed

 in
.

pa
ss

ed
 in

. N
ot

e:
Yo

u
ca

n
on

ly
 d

ef
in

e
N

ot
e:

 Y
ou

 c
an

 d
ef

in
e

se
ve

ra
l

a
si

ng
le

 e
m

pt
y

ej
bC

re
at

e(
)

m
et

ho
d

ej
bC

re
at

e.
..(

...
)

m
et

ho
ds

, a
nd

w

ith
 n

o
pa

ra
m

et
er

s.
 A

fte
r

al
l,

if
it

ha
d

ea
ch

 c
an

 ta
ke

 d
iff

er
en

t a
rg

um
en

ts
.

pa
ra

m
et

er
s

an
d

th
e

be
an

 in
iti

al
iz

ed

Yo
u

m
us

t p
ro

vi
de

 a
t l

ea
st

 o
ne

its
el

f t
o

th
os

e
pa

ra
m

et
er

s,
 th

e
be

an

ej
bC

re
at

e.
..(

...
)

m
et

ho
d

in
 y

ou
r

w
ou

ld
 n

ev
er

 r
em

em
be

r
w

ha
t i

t
se

ss
io

n
be

an
.

in
iti

al
iz

ed
 it

se
lf

to
 u

po
n

su
bs

eq
ue

nt
ca

lls
, s

in
ce

 it
 is

 s
ta

te
le

ss
!

ej
bP

as
si

va
te

()
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
yo

ur

Re
le

as
e

an
y

re
so

ur
ce

s
yo

ur
 b

ea
n

U
nu

se
d

be
ca

us
e

th
er

e
is

 n
o

be
an

 is
 p

as
si

va
te

d
(s

w
ap

pe
d

ou
t

m
ay

 b
e

ho
ld

in
g.

co
nv

er
sa

tio
na

l s
ta

te
; l

ea
ve

 e
m

pt
y.

to
 d

is
k

be
ca

us
e

th
er

e
ar

e
to

o
m

an
y

in
st

an
tia

te
d

be
an

s)
.

ej
bA

ct
iv

at
e(

)
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
yo

ur

Ac
qu

ire
 a

ny
 r

es
ou

rc
es

 y
ou

r
be

an

U
nu

se
d

be
ca

us
e

th
er

e
is

 n
o

be
an

 is
 a

ct
iv

at
ed

 (
sw

ap
pe

d
in

ne

ed
s,

 s
uc

h
as

 th
os

e
re

le
as

ed

co
nv

er
sa

tio
na

l s
ta

te
; l

ea
ve

 e
m

pt
y.

fr
om

 d
is

k
be

ca
us

e
a

cl
ie

nt
 n

ee
ds

du

rin
g

ej
bP

as
si

va
te

()
.

yo
ur

 b
ea

n)
.

ej
bR

em
ov

e(
)

C
al

le
d

by
 th

e
co

nt
ai

ne
r

Pr
ep

ar
e

yo
ur

 b
ea

n
fo

r
de

st
ru

ct
io

n.

Pr
ep

ar
e

yo
ur

 b
ea

n
fo

r
de

st
ru

ct
io

n.

im
m

ed
ia

te
ly

 b
ef

or
e

yo
ur

 b
ea

n
is

Fr

ee
 a

ll
re

so
ur

ce
s

yo
u

m
ay

 h
av

e
Fr

ee
 a

ll
re

so
ur

ce
s

yo
u

m
ay

 h
av

e
re

m
ov

ed
 fr

om
 m

em
or

y.
al

lo
ca

te
d.

al
lo

ca
te

d.

33_576828 appE.qxd 11/3/04 11:50 AM Page 788

Table E.10 javax.ejb.SessionContext

METHOD DESCRIPTION USEFULNESS

getEJBLocalObject() Returns a reference to Useful if your bean needs to
your bean’s own local call another local bean and
EJB object. you want to pass a reference

to yourself.

getEJBObject() Returns a reference to Useful if your bean needs to
your bean’s own call another bean, and you
EJB object. want to pass a reference to

yourself.

getMessageContext() Returns a reference to a Can be used by your stateless
JAX-RPC message context. session bean instance

invoked through its Web
Service endpoint interface to
get JAX-RPC/SOAP message-
related information via
properties.

SessionSynchronization
If your stateful session bean is caching database data in memory or needs to
roll back in-memory conversational state upon a transaction abort, you should
implement this interface (see Table E.11). The container will call each of the
methods in this interface automatically at the appropriate times during trans-
actions, alerting you to important transactional events. Each of these methods
can throw a java.rmi.RemoteException or javax.ejb.EJBException.

public interface javax.ejb.SessionSynchronization

{

public void afterBegin()

throws javax.ejb.EJBException,

java.rmi.RemoteException;

public void beforeCompletion()

throws javax.ejb.EJBException,

java.rmi.RemoteException;

public void afterCompletion(boolean)

throws javax.ejb.EJBException,

java.rmi.RemoteException;

}

EJB Quick Reference Guide 789

33_576828 appE.qxd 11/3/04 11:50 AM Page 789

Table E.11 javax.ejb.SessionSynchronization

METHOD DESCRIPTION

afterBegin() Called by the container directly after a transaction
begins. You should read in any database data you
want to cache in your stateful session bean during
the transaction. You should also create a backup
copy of your state in case the transaction rolls back.

beforeCompletion() Called by the container right before a transaction
completes. Write out any database data you’ve
cached during the transaction.

afterCompletion(boolean) Called by the container when a transaction
completes either in a commit or an abort. True
indicates a successful commit; false indicates an
abort. If an abort happened, revert to the backup
copy of your state to preserve your session bean’s
conversation.

TimedObject

If your session, entity or message-driven beans want to implement timer expi-
ration notification methods so that containers can call back ejbTimeout() on
javax.ejb.TimedObject after a certain period of time has elapsed, you should
implement this interface (see Table E.12).

public interface javax.ejb.TimedObject

{

public void ejbTimeout (javax.ejb.Timer timer);

}

Table E.12 javax.ejb.TimedObject

METHOD DESCRIPTION

ejbTimeout(Timer) Called by container upon timer expiration. You should
implement the bean logic that you want to execute
periodically in this method.

790 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 790

Timer

This interface provides information about the timer created with the help of
EJB timer service, such as the next point in time when the timer expiration is
scheduled to occur, the number of milliseconds that will elapse before the next
scheduled timer expiration occurs, and much more (see Table E.13). An
instance of javax.ejb.Timer is initialized by the container and passed to your
bean as an argument when it calls ejbTimeout() on the javax.ejb.TimedObject
interface.

public interface javax.ejb.Timer

{

public void cancel()

throws java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

public long getTimeRemaining()

throws java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

public java.util.Date getNextTimeout()

throws java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

public java.io.Serializable getInfo()

throws java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

public javax.ejb.TimerHandle getHandle()

throws java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

}

Table E.13 javax.ejb.Timer

METHOD DESCRIPTION

cancel() Call this method if you want to cancel all the expiration
notifications associated with the given timer instance.

getTimeRemaining() Returns the number of milliseconds that will elapse before
the next scheduled timer expiration.

(continued)

EJB Quick Reference Guide 791

33_576828 appE.qxd 11/3/04 11:50 AM Page 791

Table E.13 (continued)

METHOD DESCRIPTION

getNextTimeout() Returns the future point in time at which the next timer
expiration is scheduled to occur.

getInfo() Returns the information associated with the given timer at
the time of its creation. If no Serializable information object
was provided at the time of creation, then this method
returns null.

getHandle() Returns the Serializable timer handle that can be persisted
by your bean for later reuse.

TimerHandle

A timer handle is a persistent reference to an EJB timer object. All EJB timers
implement this interface (see Table E.14). Timer handles allow your beans to
persist the timer object for later reuse so that the bean does not have to create
a new timer object.

public interface javax.ejb.TimerHandle

extends java.io.Serializable

{

public javax.ejb.Timer getTimer()

throws java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

}

Table E.14 javax.ejb.TimerHandle

METHOD DESCRIPTION

getTimer() Returns the reference to the timer object represented by
the given handle. Use this method to retrieve the timer
object reference from a persisted timer object.

792 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 792

TimerService

This interface provides your enterprise beans access to EJB timer service
implemented by your EJB container (see Table E.15). See Chapter 14 for infor-
mation on how to create and use EJB timers.

public interface javax.ejb.TimerService

{

public javax.ejb.Timer createTimer (long duration,

java.io.Serializable info)

throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException,

javax.ejb.EJBException;

public javax.ejb.Timer createTimer (long initialDuration, long

intervalDuration,

java.io.Serializable info)

throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException,

javax.ejb.EJBException;

public javax.ejb.Timer createTimer (java.util.Date expiration,

java.io.Serializable info)

throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException,

javax.ejb.EJBException;

public javax.ejb.Timer createTimer (java.util.Date

initialExpiration,

long intervalDuration, java.io.Serializable info)

throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException,

javax.ejb.EJBException;

public java.util.Collection getTimers()

throws java.lang.IllegalStateException,

javax.ejb.EJBException;

}

EJB Quick Reference Guide 793

33_576828 appE.qxd 11/3/04 11:50 AM Page 793

Table E.15 javax.ejb.TimerService

METHOD DESCRIPTION

createTimer Creates a one-time expiration timer, which becomes inactive
(long, Serializable) after the first (and last) expiration. Second argument

represents a Serializable object containing application specific
information. If you do not have any information to associate
with the given timer then pass null as the second argument.

createTimer Creates a recurrently expiring timer whose first expiration
(long, long, occurs after a given duration (in milliseconds) specified in the
Serializable) first argument has elapsed and subsequent expirations occur

after the duration (in milliseconds) specified in the second
argument elapses. Subsequent expirations are scheduled
relative to the time of the first expiration. If expiration is
delayed for some reason, two or more expiration notifications
may occur in close succession.

createTimer Creates a one-time expiration timer that expires at a given
(Date, Serializable) point in time.

createTimer Creates a recurrently expiring timer whose first expiration
(Date, long, occurs at the point in time specified by the first argument, and
Serializable) subsequent expirations occur after the duration (in

milliseconds) specified in the second argument elapses.
Subsequent expirations are scheduled relative to the time of
the first expiration. If expiration is delayed for some reason,
two or more expiration notifications may occur in close
succession.

getTimers() Retrieves a collection of all the timers associated with the
given bean.

Exception Reference

Table E.16 describes the purpose of each exception class in EJB.

Table E.16 EJB Exception Explanations

EXCEPTION DESCRIPTION

AccessLocalException Indicates the client does not have permission to call this
method. Used only for local clients.

CreateException This exception type indicates failure to create an
enterprise bean. You should throw this exception in your
home interface’s create(.) methods.

794 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 794

Table E.16 (continued)

EXCEPTION DESCRIPTION

DuplicateKey This exception type indicates failure to create an entity
bean Exception because an entity bean with the same
primary key already exists. This is a subclass of
CreateException and is thrown in an entity bean home
interface’s create(.) methods.

EJBException Your enterprise bean class should throw this exception
to indicate an unexpected error, such as a failure to open
a database connection, or a JNDI exception. Your
container treats this exception as a serious problem and
may take action such as logging the event or paging a
system administrator, depending upon your container’s
policy. The container then rethrows a
java.rmi.RemoteException if the client is remote, or a
javax.ejb.EJBException if the client is local. Since
EJBException is a RuntimeException, it does not need to
be declared in throws clauses.

FinderException This exception indicates a failure to locate an existing
entity bean. You should throw this method from your
home interface’s finder methods.

NoSuchEntityException Your entity bean class should throw this exception to
indicate that the database data corresponding to the in-
memory entity bean instance has been removed. You
can throw this exception from any of your entity bean
class’ business methods, and from your ejbStore() and
ejbLoad() methods.

NoSuchObjectLocal Thrown when a client tries to call a method on a bean
Exception that has been destroyed.

ObjectNotFound When you’re writing finder methods in your entity bean’s
Exception home interface, throw this exception to indicate that the

specified EJB object was not found. You should use this
exception only when your finder method is returning a
single EJB object. If you’re returning more than one EJB
object, a null collection is returned instead.

RemoveException Your enterprise bean should throw this exception when
an error occurs during ejbRemove(). The container will
re-throw this exception back to the client. This is
considered a normal, run-of-the-mill application-level
exception and does not indicate a system-level problem.
When your client code receives this exception, you do
not know for sure whether the entity bean has been
removed or not.

(continued)

EJB Quick Reference Guide 795

33_576828 appE.qxd 11/3/04 11:50 AM Page 795

Table E.16 (continued)

EXCEPTION DESCRIPTION

TransactionRequired Indicates the receiving object needed a transaction to
LocalException run but was not supplied with a transaction context.

TransactionRolled Indicates the request’s transaction was rolled back or
BackLocalException marked for rollback. Thus, the request could not be

completed.

Transaction Reference

The following section offers reference information on transactions as outlined
in Tables E.17 through E.22.

Table E.17 The Effects of Transaction Attributes

TRANSACTION CLIENT’S BEAN’S
ATTRIBUTE TRANSACTION TRANSACTION

Required None T2
T1 T1

RequiresNew None T2
T1 T2

Supports None None
T1 T1

Mandatory None Error
T1 T1

NotSupported None None

T1 None

Never None None
T1 Error

Table E.18 Transaction Attributes

CONSTANT MEANING

NotSupported Your bean cannot be involved in a transaction at all. When a bean
method is called, any existing transaction is suspended.

Never Your bean cannot be involved in a transaction at all. When a bean
method is called, if a transaction is in progress, an exception is
thrown back to the client (java.rmi.RemoteException if remote,
javax.ejb.EJBException if local).

796 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 796

Table E.18 (continued)

CONSTANT MEANING

Required Your bean must always run in a transaction. If a transaction is
already running, your bean joins that transaction. If no transaction
is running, the EJB container starts one for you.

RequiresNew Your bean must always run in a new transaction. Any current
transaction is suspended.

Supports If a transaction is already under way, your bean joins that
transaction. Otherwise, the bean runs with no transaction at all.

Mandatory Mandates that a transaction must be already running when your
bean method is called, or a javax.ejb.TransactionRequired
exception is thrown back to the caller.

Table E.19 Permissible Transaction Attributes for Each Bean Type

STATEFUL
SESSION BEAN

STATELESS IMPLEMENTING MESSAGE-
TRANSACTION SESSION SESSION ENTITY DRIVEN
ATTRIBUTE BEAN SYNCHRONIZATION BEAN BEAN

Required Yes Yes Yes Yes

RequiresNew Yes Yes Yes No

Mandatory Yes Yes Yes No

Supports Yes No No No

NotSupported Yes No No Yes

Never Yes No No No

Table E.20 Transaction Isolation Levels

ISOLATION DIRTY UNREPEATABLE PHANTOM
LEVEL READS? READS? READS?

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

EJB Quick Reference Guide 797

33_576828 appE.qxd 11/3/04 11:50 AM Page 797

Table E.21 The javax.transaction.Status Constants for Transactional Status

CONSTANT MEANING

STATUS_ACTIVE A transaction is currently happening and is active.

STATUS_NO_TRANSACTION No transaction is currently happening.

STATUS_MARKED_ROLLBACK The current transaction will eventually abort
because it’s been marked for rollback. This could
be because some party called setRollbackOnly().

STATUS_PREPARING The current transaction is preparing to be
committed (during Phase One of the two-phase
commit protocol).

STATUS_PREPARED The current transaction has been prepared to be
committed (Phase One is complete).

STATUS_COMMITTING The current transaction is in the process of being
committed right now (during Phase Two).

STATUS_COMMITTED The current transaction has been committed
(Phase Two is complete).

STATUS_ROLLING_BACK The current transaction is in the process of rolling
back.

STATUS_ROLLEDBACK The current transaction has been rolled back.

STATUS_UNKNOWN The status of the current transaction cannot be
determined.

798 Appendix E

33_576828 appE.qxd 11/3/04 11:50 AM Page 798

Table E.22 The javax.transaction.UserTransaction Methods for Transactional Boundary
Demarcation

METHOD DESCRIPTION

begin() Begin a new transaction. This transaction becomes associated with
the current thread.

commit() Run the two-phase commit protocol on an existing transaction
associated with the current thread. Each resource manager will make
its updates durable.

getStatus() Retrieve the status of the transaction associated with this thread.

rollback() Force a rollback of the transaction associated with the current thread.

setRollback Call this to force the current transaction to roll back. This will
Only() eventually force the transaction to abort. One interesting use of this

is to test out what your components will do without having them
perform any permanent resource updates.

set The transaction timeout is the maximum amount of time that a
Transaction transaction can run before it’s aborted. This is useful to avoid
Timeout(int) deadlock situations, when precious resources are being held by a

transaction that is currently running.

EJB Quick Reference Guide 799

33_576828 appE.qxd 11/3/04 11:50 AM Page 799

33_576828 appE.qxd 11/3/04 11:50 AM Page 800

801

Index

NUMERICS
1:N (one-to-many) relationships, 411, 416–420
1:1 (one-to-one) relationships, 411–416
2PC (two-phase commit) protocol, 340–342

A
Aardvark Knowledge Builder legacy data integration

tool, 472
aborting transactions, 329
abstract entities, 39
abstract persistence schema (CMP entity beans), 186–187
accessing databases, 13
AccessLocalException exception, 794
ACID properties (transactions), 304–306
activation

entity beans, 129
stateful session beans, 83–84, 86–88
stateless session beans, 84

Active Directory (Microsoft), 69
administration of EJB servers, 616
aggregate functions (EJB-QL), 751–752
aggregation relationship, 434–436
agreement between application server and components, 7
Ambler, Scott W., The Unified Process Inception Phase, 606
Anderson, Ross, Security Engineering, 350
Ant build tool (Apache group), 607
AOP (Aspect-Oriented Programming), 284–287
application assembler, 16–17
application integration

defined, 478
infrastructure services problem, 482–483
J2EE Connector Architecture, 479–480, 542
Java Message Service (JMS), 479, 542
M x N integration problem, 480–481
message-driven beans, 479, 542
proprietary solutions, 480–481
Web Services, 479, 543

application logic components, 122
application servers

agreement with components, 7
choosing, 603
component architecture, 7
deploying EJB applications, 288–289
J2EE application servers, 18
market for, 7
middleware, 5

application-level exceptions, 58–59
APS (arrivals per second), 573
architectures

collocated, 573–577
component, 7, 9

distributed, 573–577
J2EE Connector Architecture, 479–480, 483, 542
Service-Oriented Architecture (SOA), 8–9, 103–105

arrivals per second (APS), 573
Ascential Software DataStage legacy data integration

tool, 472
Aspect-Oriented Programming (AOP), 284–287
assembly descriptor, 732–737
asynchronous method invocation, 254
asynchronous programming, 218
atomic operations, 300–301
attribute-oriented programming, 288
auditing, 6
authentication

defined, 352
Java Authentication and Authorization Service

(JAAS), 357–368
Web applications, 354–355

authorization
declarative, 352, 368, 373–376
defined, 352
instance-level, 376
programmatic, 352, 368–373, 376–377
security roles, 368
Web applications, 355

availability
EJB servers, 613
large business systems, 571

AVG aggregate function (EJB-QL), 751

B
back-end integration, 5
bank account example

AccountBean.java, 158–170
AccountException.java, 170
AccountHome.java home interface, 153
Account.java remote interface, 151–152
AccountLocalHome.java local home interface, 155–156
AccountLocal.java local interface, 152–155
AccountPK.java, 156–157
class diagram, 150
client program, 175–177
Client.java, 171–173
container-specific deployment descriptor, 175
deployment descriptor, 173–174

Batch utility (Unix), 392
BEA WebLogic

J2EE application server, 18
Workshop, 19

34_576828 bindex.qxd 11/3/04 11:50 AM Page 801

cmalone
Rectangle

cmalone
MasteringEJB

cmalone
Text Box
Click here to purchase this book.

http://www.amazon.com/exec/obidos/ASIN/0764576828/qid%3D1100533352/sr%3D11-1/ref%3Dsr%5F11%5F1/102-1797734-3651315
cmalone
MasteringEJB

802 Index

bean class
defined, 35–36
entity beans, 124–125
Hello World example, 61–62
message-driven beans, 234–236

bean failure, 549
bean instance pooling, 42
bean instances, 46
bean provider, 16
bean-independent resources, 553–554
bean-managed persistence (BMP), 131
bean-specific resources, 553–554
begin() method, 326, 799
benchmarks for SPECjAppServer, 567
best practices

Aspect-Oriented Programming (AOP), 284–287
client-side callbacks, 282–283
code reuse, 292–293
debugging, 290–291
deploying EJB applications, 288–289
Extreme Programming (XP), 277–279
integration, 541
method invocation, 287–288
Middle Driven Development (MDD), 275–276
RMI-IIOP versus messaging, 294–297
servlets, 284
singletons, 293
unit testing, 279–282
Web application frameworks, 272–274
when to use EJB, 270–271
XML, 293–294

BMP (bean-managed persistence), 131
BMP entity beans

bank account example
AccountBean.java, 158–170
AccountException.java, 170
AccountHome.java home interface, 153
Account.java remote interface, 151
AccountLocalHome.java local home interface, 155–156
AccountLocal.java local interface, 152–153
AccountPK.java, 156–157
class diagram, 150
client program, 175–177
Client.java, 171–173
container-specific deployment descriptor, 175
deployment descriptor, 173–174

bPassivate() method, 147
bugs, 451
code reduction, 450
control, 451
cost, 452
differences from CMP entity beans, 181–186, 410
directionality of relationships, 429–430
ejbActivate() method, 146
ejbCreate() method, 145
ejbFind() method, 144
ejbHome() method, 145
ejbLoad() method, 146
ejbPostCreate() method, 146
ejbRemove() method, 147
ejbStore() method, 147
fake many-to-many (M:N) relationships, 423–424
learning curve, 452
life cycle, 177–180
one-to-many (1:N) relationships, 418–419
one-to-one (1:1) relationships, 413–414
performance, 450
referential integrity, 440
relationships, 452
setEntityContext() method, 144, 779
true many-to-many (M:N) relationships, 426–427
unsetEntityContext() method, 147

Borland JBuilder, 19
bPassivate() method, 147
Brose, Vogel, and Duddy, Java Programming With

CORBA, 688
bugs in CMP/BMP entity beans, 451
business interface, 74–75
business logic, 13
business logic tier, 630–631
business process integration, 479
business requirements, 593–594

C
caching

large business systems, 6
persistence, 448

callbacks (client-side), 282–283
calling beans from other beans

EJB references, 257–259
environment properties, 262–263
handles, 263–265
JDNI lookups, 256–257
layers, 255–256
resource factories, 259–262

capacity planning, 549–550
cardinality, 411
CCI (Common Client Interfaces), 483
centralized naming servers, 589–590
certified message delivery, 220
chained transactions, 310
circular relationships, 438–439
CLASSPATH directory, 566
clean shutdown, 6, 617
CleanDayLimitOrdersEJB timer example

bean class, 401–403
clients, 404–406
deployment descriptor, 403–404
features, 399
home interface, 403
remote interface, 400

client code
product line example, 212–214
transactions, 330–331

client-initiated transactions, 313–316
clients

CleanDayLimitOrdersEJB timer example, 404–406
CORBA clients, 68
distributed objects, 30–31
dynamically generated Web pages, 14
Java RMI-IIOP–based, 68
thick clients, 14
Web Services, 14–15, 114–116

client-side callbacks, 282–283
client-side output, 73
clustering

arrivals per second (APS), 573
clusters (defined), 572
EJB servers, 616
Enterprise JavaBeans (EJB), 578–580
entity beans, 584–588
fail-overs, 572
highly available systems, 572
idempotent, 579–580
invocations per second (IPS), 573
large business systems, 5, 569–571
load balancing, 572
logic, 578
message-driven beans, 243–244, 588–590
naming servers, 589–590
node, 572
partitioning clusters, 573–577
redundancy, 571
requests per second (RPS), 573
session beans, 581–584
single access point simplicity, 572
throughput, 573
transactions per second (TPS), 573

CMP (container-managed persistence), 132
CMP entity beans

abstract persistence schema, 186–187
application server and database independence, 451–452
bugs, 451
code reduction, 450
control, 451
cost, 452
dependent value classes, 453–454
differences from BMP entity beans, 181–186, 410
directionality of relationships, 430–431
ejbActivate() method, 194
ejbCreate() method, 193
ejbFind() method, 192
ejbHome() method, 193
ejbLoad() method, 194

34_576828 bindex.qxd 11/3/04 11:50 AM Page 802

Index 803

ejbPassivate() method, 195
ejbPostCreate() method, 194
ejbRemove() method, 195
ejbSelect() method, 189–190, 192
ejbStore() method, 195
fake many-to-many (M:N) relationships, 424–426
get/set methods, 184–185
learning curve, 452
life cycle, 214–215
one-to-many (1:N) relationships, 419–420
one-to-one (1:1) relationships, 414–416
performance, 450
product line example, 196–214
query language, 187–188
rapid application development, 450
referential integrity, 440
relationships, 452
setEntityContext() method, 191, 779
subclassing, 181–183
true many-to-many (M:N) relationships, 427–428
unsetEntityContext() method, 195

code
glue-code tools, 39
thread-safe, 226

code reuse, 292–293, 601
code testing, 279–282
collocated architecture, 573–577
commit() method, 326, 799
Common Client Interfaces (CCI), 483
Common Object Request Broker Architecture

(CORBA). See CORBA (Common Object Request
Broker Architecture)

Common Secure Interoperability version 2 (CSIv2),
379–381

component architecture, 7, 9
component interfaces

implementing, 73–75
message-driven beans, 228

components
application logic, 122
persistent data, 122–123

composition relationship, 434–436
concurrency control (transactions)

dirty reads, 334–335
need for, 332–333
optimistic, 339
pessimistic, 339
phantom problem, 336–337
unrepeatable reads, 336–337

Connection interface, 225
connection management contract, 484, 495–498
connection pooling, 260
ConnectionFactory instance (JMS), 222
ConnectionFactory interface, 225
connections (JMS), 222
Connector Architecture. See J2EE Connector Architecture
connectors. See J2EE Connector Architecture
Constantine, Larry L.

Constantine on Peopleware, 605
The Unified Process Inception Phase, 606

consumers (JMS), 223
container-managed persistence (CMP), 132
containers

built-in thread support, 38
debug logs, 73
defined, 18
EJB timer service, 394–395
glue-code tools, 39
layer of indirection, 38
life cycle of deployed beans, 42
management methods, 39
monitoring, 38
resource management, 42
transactions, 37, 310, 317–318, 330

container-specific deployment descriptor
bank account example, 175
product line example, 210–211

contexts
defined, 62–64
entity beans, 137–138
message-driven contexts, 786

security contexts, 377–378
session contexts, 92, 787
transactional contexts, 342

controls (security), 351–353
conversational state

Java object serialization, 84
session beans, 84–85

conversations, defined, 80
conversion tools, 610
CORBA (Common Object Request Broker Architecture)

advantages, 684–685
basis of EJB, 684
clients, 68
CORBA Component Model (CCM), 691
CORBA Naming Service (COS Naming), 691, 699–700
CORBA-EJB interoperability, 700–703
differences from RMI, 695–696
disadvantages, 685
distributed objects, 31
Internet Inter-ORB Protocol (IIOP), 683–684, 697
interoperability with RMI, 692–694, 698–699
invocation process, 689–690
Java-to-IDL Mapping, 696–697
middleware, 684
object adapter, 690
Object Request Broker (ORB), 686–687
Object Transaction Service (OTS), 324–325
OMG interface definition language (OMG IDL),

687–689
OMG Web site, 688
Portable Object Adapter (POA), 690
services, 691
uses, 684–685

Core J2EE Patterns, John Crupi, et al., 600
CosTransactions interfaces, 324
CosTSPortability interface, 325
COUNT aggregate function (EJB-QL), 751
count bean

client code, 94–97
client-side output, 97
CountBean.java code, 90–92
defined, 88
deployment descriptor, 93–94
Ejb-jar file, 94
home interface, 92–93
proprietary descriptor, 94
remote interface, 90
server-side output, 97–98

create() method, 60
CreateException exception, 794
createTimer() method, 395, 794
Cron jobs, 392
CRUD operations (session beans), 551
Crupi, John, Core J2EE Patterns, 600
cryptography, 383–386
CSIv2 (Common Secure Interoperability version 2),

379–381

D
data confidentiality protection

defined, 353
Web applications, 356

data integrity protection
defined, 352
Web applications, 356

data model, 459
data tier, 631
database access, 13
databases

impact of updates, 461
large result sets, 474–475
legacy databases

common design problems, 463–471
integration tools, 472
migration strategies, 472–474

DataStage (Ascential Software) legacy data integration
tool, 472

Date, C.J., An Introduction to Database Systems,
7th Edition, 458

DCOM (Microsoft), 31
deadlocks, 333
debug logs, 73

34_576828 bindex.qxd 11/3/04 11:50 AM Page 803

804 Index

debugging, 290–291, 451
declarative authorization, 352, 368, 373–376
declarative (implicit) middleware, 33–35
declarative transactions, 312–314, 328
decompilers, 291
deferred database writes, 611
Demarco, Tom, Peopleware: Productive Project and Teams,

2nd Edition, 605
denormalization, 457–459
dependent value classes, 453–454
deploying

EJB applications, 288–289
Enterprise JavaBeans (EJB), 66–67
Web services, 113–114

deployment descriptor
assembly descriptor, 732–737
assembly-descriptor element, 733–734
autogenerating, 49
bank account example, 173–174
bean management, 48
CleanDayLimitOrdersEJB timer example, 403–404
cmp-field element, 713–714
cmr-field element, 731–732
container-transaction element, 735
count bean, 93–94
defined, 48–49, 51
EJB references, 257–259, 722–725
Ejb-client jar file, 67–68
ejb-jar element, 707–708
ejb-local-ref element, 724–725
ejb-ref element, 723–724
ejb-relation element, 730
ejb-relationship-role element, 730–731
entity beans, 710–715
entity element, 710–714
env-entry element, 722
environment properties, 262–263, 721–722
exclude-list element, 735–736
header element, 706–707
Hello World example, 64–65
jaxrpc-mapping-file element, 720
lifecycle requirements, 48
message-destination-type element, 718
message-driven beans, 236–241, 716–718
message-driven element, 716–717
messaging-type element, 718
method element, 736
method-params element, 715, 737
method-permission element, 734–735
OutboundLoanRA example, 534–535
persistence requirements, 48
port-component element, 721
product line example, 207–210
query element, 714
query-method element, 715
relationship-role-source element, 731
relationships, 729–732
relationships element, 730
resource factories, 260–261, 727–728
resource-env-ref element, 728
resource-ref element, 727–728
root element, 706–707
run-as element, 726
security, 725–726
security requirements, 48–49
security-identity element, 726
security-role element, 734
security-role-ref element, 725
session beans, 708–710
session element, 708–710
timers, 718
transaction requirements, 48
Web Services, 719–721
webservice-description element, 719–720
webservices element, 719
writing, 49
XML Schema definitions (XSD), 705–706

designing J2EE object model, 600
Destination interface, 225
destinations (JMS), 222

developing EJBs
bean class, 61–62
deployment descriptor, 64–65
Ejb-jar file, 65–66
Hello World object model, 55
home interface, 57–58
local home interface, 59–60
local interface, 56–57
remote interface, 55–56
step-by-step, 54
vendor-specific files, 65

diagrams
BMP entity beans, 178
CMP entity beans, 215
entity beans, 765–769
message-driven beans, 770–771
session beans, 758–764

directionality of relationships, 428–433
Directory Server (iPlanet), 69
directory services. See naming and directory services
dirty reads, 334–335
distributed architecture, 573–577
distributed objects

clients, 30–31
CORBA (OMG), 31
DCOM (Microsoft), 31
defined, 30
Java RMI-IIOP (Sun), 31
middleware, 32–35
stubs, 30–31

distributed systems, 4
distributed transactions, 340–342, 618
distribution transparency, 31–32
DNS load balancing, 590
document-style SOAP, 8
domains (messaging), 220–222
dooming transactions, 329
Duddy, Vogel, and Brose, Java Programming With

CORBA, 688
DuplicateKey exception, 795
durability of transactions, 340–341
dynamic proxy invocation, 287–288
dynamic redeployment, 5
dynamically generated Web pages, 14

E
Eclipse IDE, 19
Ecosystem

application assembler, 16–17
bean provider, 16
business models, 15
container, 18
EJB deployer, 17
integrated development environments (IDEs), 18–19
roles of participants, 19–20
server provider, 18
system administrator, 17–18

EIS (enterprise information system), 480
EIS-specific client interfaces, 483
EJB (Enterprise JavaBeans)

clustering, 578–580
CORBA-EJB interoperability, 684, 700–703
defined, 3, 27–28
deployment, 66–67
development

bean class, 61–62
deployment descriptor, 64–65
Ejb-jar file, 65–66
Hello World object model, 55
home interface, 57–58
local home interface, 59–60
local interface, 56–57
remote interface, 55–56
step-by-step, 54
vendor-specific files, 65

entity beans, 28–29
industry agreement, 11
Java interfaces, 12
JMS-EJB integration, 226–227
message-driven beans, 29
portability, 11
rapid application development, 12

34_576828 bindex.qxd 11/3/04 11:50 AM Page 804

Index 805

security, 37, 353
session beans, 28
specification, 12
when to use, 270–271

EJB containers
built-in thread support, 38
debug logs, 73
defined, 18
EJB timer service, 394–395
glue-code tools, 39
layer of indirection, 38
life cycle of deployed beans, 42
management methods, 39
monitoring, 38
resource management, 42
transactions, 37, 310, 317–318, 330

EJB context object, 62–64
EJB deployer, 17
EJB Design Patterns, Floyd Marinescu, 269, 545, 600
EJB Ecosystem

application assembler, 16–17
bean provider, 16
business models, 15
container, 18
EJB deployer, 17
integrated development environments (IDEs), 18–19
roles of participants, 19–20
server provider, 18
system administrator, 17–18

EJB home handles, 264–265
EJB object

bean instances, 46
container-specific code, 38
create() method, 60
defined, 38–39, 51
home interface, 43–46
home objects, 42–43
remote interface, 39–40
remove() method, 60
request interceptor role, 38

EJB object factory, 43
EJB object handles, 263–264
EJB object model, 459
EJB Query Language (EJB-QL)

aggregate functions, 751–752
CMP entity beans, 188
conditional expressions, 745–747
defined, 739–740
example, 740–741
FROM clause, 742–744
functions, 745
ORDER BY clause, 752–753
performance optimization, 754–755
relationships, 436–437, 741–742
SELECT clause, 748–751
syntax, 742–753
truth tables, 753–754
WHERE clause, 744, 748

EJB references
calling beans from other beans, 257–259
deployment descriptor, 257–259, 722–725

EJB servers
administration, 616
automatic EJB generation, 617
availability, 613
clean shutdown, 617
clustering, 616
compatibility, 610
complex mappings, 611
conversion tools, 610
deferred database writes, 611
distributed transactions, 618
hot deployment, 617
IDE integration, 614
in-memory data cache, 612
instance pooling, 617
integrated tier support, 612
Java Management Extension (JMX), 616
Java Runtime Environment (JRE), 610
JDBC driver support, 611
lazy loading, 611

load balancing, 615
messaging, 618
nontechnical criteria, 621
open source, 620
performance optimization, 567
pluggable persistence providers, 611–612
provided EJB components, 619
real-time deployment, 618
scalability, 612–613
security, 613–614
special features, 620–621
SPECjAppServer benchmarks, 567
technical support, 621
training, 621
transparent fail-over, 58–59, 615
UML editor integration, 615
Web Services, 619
workflow engines, 619–620

EJB timer service
strengths, 406–407
timer service APIs, 394–398
weaknesses, 407

ejbActivate() method
BMP entity beans, 146, 782
CMP entity beans, 194, 782
entity beans, 129
session beans, 86–89, 788

Ejb-client jar file, 67–68
EJBContext object, 772–773
ejbCreate() method

BMP entity beans, 145, 780
CMP entity beans, 193, 780
entity beans, 132–134
message-driven beans, 232, 786, 788
session beans, 89, 788

EJBException exception, 795
ejbFind() method, 144, 192, 779
ejbHome() method, 145, 193, 780
EJBHome object, 773–774
Ejb-jar file, 49–51, 65–66, 94
ejbLoad() method

BMP entity beans, 146, 782
CMP entity beans, 194, 782
entity beans, 126–127, 139

EJBLocalHome object, 774
EJBLocalObject object, 775
EJBMetaData object, 775–776
EJBObject object, 776–777
ejbPassivate() method

BMP entity beans, 781
CMP entity beans, 195, 781
entity beans, 86–87, 89
session beans, 130–131, 788

ejbPostCreate() method, 146, 194, 781
EJB-QL (EJB Query Language). See EJB Query

Language (EJB-QL)
ejbRemove() method

BMP entity beans, 147, 783
CMP entity beans, 195, 783
entity beans, 89, 133–135, 139
message-driven beans, 232, 245, 786
session beans, 101, 788

ejbSelect() method, 189–190, 192, 779
ejbStore() method

BMP entity beans, 147, 781
CMP entity beans, 195, 781
entity beans, 126–127

ejbTimeout() method, 397, 399
encryption, 383–386
end-to-end security, 382–383
enterprise bean class. See bean class
enterprise bean instance, 50–51
enterprise information system (EIS), 480
Enterprise JavaBeans (EJB)

clustering, 578–580
CORBA-EJB interoperability, 684, 700–703
defined, 3, 27–28
deployment, 66–67
development

bean class, 61–62
deployment descriptor, 64–65

34_576828 bindex.qxd 11/3/04 11:50 AM Page 805

806 Index

Enterprise JavaBeans (EJB), development (continued)
Ejb-jar file, 65–66
Hello World object model, 55
home interface, 57–58
local home interface, 59–60
local interface, 56–57
remote interface, 55–56
step-by-step, 54
vendor-specific files, 65

entity beans, 28–29
industry agreement, 11
Java interfaces, 12
JMS-EJB integration, 226–227
message-driven beans, 29
portability, 11
rapid application development, 12
security, 37, 353
session beans, 28
specification, 12
when to use, 270–271

Enterprise Security with EJB and CORBA, Bret Hartman
et al., 350

EnterpriseBean object, 777
entity beans

bean-managed persistence, 131
BMP entity beans

bank account example, 150–177
bPassivate() method, 147
bugs, 451
code reduction, 450
control, 451
cost, 452
differences from CMP entity beans, 181–186
directionality of relationships, 429–430
ejbActivate() method, 146
ejbCreate() method, 145
ejbFind() method, 144
ejbHome() method, 145
ejbLoad() method, 146
ejbPostCreate() method, 146
ejbRemove() method, 147
ejbStore() method, 147
fake many-to-many (M:N) relationships, 423–424
learning curve, 452
life cycle, 177–180
one-to-many (1:N) relationships, 418–419
one-to-one (1:1) relationships, 413–414
performance, 450
referential integrity, 440
relationships, 410, 452
setEntityContext() method, 144, 779
true many-to-many (M:N) relationships, 426–427
unsetEntityContext() method, 147

characteristics, 125–126
client interaction, 30
clustering, 584–588
CMP entity beans

abstract persistence schema, 186–187
application server and database independence,

451–452
bugs, 451
code reduction, 450
control, 451
cost, 452
dependent value classes, 453–454
differences from BMP entity beans, 181–186
directionality of relationships, 430–431
ejbActivate() method, 194
ejbCreate() method, 193
ejbFind() method, 192
ejbHome() method, 193
ejbLoad() method, 194
ejbPassivate() method, 195
ejbPostCreate() method, 194
ejbRemove() method, 195
ejbSelect() method, 189–190, 192
ejbStore() method, 195
fake many-to-many (M:N) relationships, 424–426
get/set methods, 184–185
learning curve, 452

life cycle, 214–215
one-to-many (1:N) relationships, 419–420
one-to-one (1:1) relationships, 414–416
performance, 450
product line example, 196–214
query language, 187–188
rapid application development, 450
referential integrity, 440
relationships, 410, 452
setEntityContext() method, 191, 779
subclassing, 181–183
true many-to-many (M:N) relationships, 427–428
unsetEntityContext() method, 195

contexts, 137–138
data instances, 124
defined, 28–29, 119, 124
deployment descriptor, 710–715
diagrams, 765–769
ejbActivate() method, 129, 782
ejbCreate() method, 132–134, 780
ejbFind() method, 779
ejbHome() method, 780
ejbLoad() method, 126–127, 139, 782
ejbPassivate() method, 130–131, 781
ejbPostCreate() method, 781
ejbRemove() method, 133–135, 139, 783
ejbSelect() method, 779
ejbStore() method, 126–127, 781
enterprise bean class, 36
entity bean class, 124–125
failures, 125
finder methods, 136, 143–150
getEJBLocalObject() method, 138, 784
getEJBObject() method, 138, 784
getPrimaryKey() method, 138–139, 784
granularity, 453–454
instances, 124, 126–130
javax.ejb.EntityBean interface, 36, 141–143
large result sets, 474–475
life cycle, 125
lifetime, 123
modifying data, 136–137
persistence

bean-managed, 131
container-managed, 132
defined, 123–124

pooling, 128–130
primary key class, 125
session beans, 29, 123–124
SetEntityContext (EntityContext ctx) method, 779
transactions, 315
tuning, 556–562
unsetEntityContext() method, 783

EntityBean object, 777–778
EntityContext object, 778–784
environment properties

calling beans from other beans, 262–263
deployment descriptor, 262–263, 721–722

ETI*Extract legacy data integration tool, 472
exceptions
AccessLocalException, 794
application-level, 58–59
CreateException, 794
DuplicateKey, 795
EJBException, 795
FinderException, 795
NoSuchEntityException, 795
NoSuchObjectLocalException, 795
ObjectNotFoundException, 795
remote, 58
RemoveException, 795
system-level, 58–59
throwing, 58–59
TransactionRequiredLocalException, 796
TransactionRolledBackLocalException, 796
unchecked, 59

explicit middleware, 32–33
Extreme Programming (XP), 277–279
ExtremeProgramming.Org Web site, 606

34_576828 bindex.qxd 11/3/04 11:50 AM Page 806

Index 807

F
fail-overs, 572
failures

entity beans, 125
session beans, 549
transactions, 301–302

fat key pattern, 450
files

deployment descriptor, 49, 51, 64–65
Ejb-client jar, 67–68
Ejb-jar, 49–51, 65–66
vendor-specific, 49, 51, 65
Web Services Definition Language (WSDL) file, 104

finder methods (entity beans), 136, 143–150
FinderException exception, 795
firewalls, 577
flag for switching between local and remote access to

beans, 47–48
flat transactions, 306–308
Forte for Java, 19
Fowler, Martin, Refactoring: Improving the Design of

Existing Code, 278
frameworks

choosing, 272–273
Hibernate, 122, 272
integration with EJB, 273
open source versus closed source, 274
small device support, 273
Spring, 272
standards support, 274
StrutsEJB project, 273
tools support, 273
unit testing, 280–281
Wafer project, 274
XDoclet, 289–290

G
getEJBLocalObject() method, 138, 784, 789
getEJBObject() method, 138, 784, 789
getHandle() method, 264
getInfo() method, 396
getMessageContext() method, 789
getPrimaryKey() method, 138–139, 784
getStatus() method, 326–327, 799
getTimers() method, 395, 794
getTimerService() method, 398
glue-code tools, 39
granularity of entity beans, 453–454
guaranteed message delivery, 220

H
handles, 263–265, 784
hard-coded SQL, 454–455
hardware proxies, 590
Harrison, Neil B., Organizational Patterns for Teams, 606
Hartman, Bret, Enterprise Security with EJB and

CORBA, 350
helper code, 39
Hibernate framework, 122, 272
highly available systems, 572
home handles, 264–265, 784–785
home interface

bank account example, 153
CleanDayLimitOrdersEJB timer example, 403
count bean, 92–93
defined, 51
Hello World example, 57–58
problems, 44–46
rules, 43–44

home objects, 43, 69–72
hot deployment, 617
HTTP servlets, 637–639

I
IBM

Lotus Notes Domino Server, 69
WebSphere application server, 18
WebSphere Studio Application Developer, 19

IDE (integrated development environment), 18–19, 614
idempotent, 579–580
IDL (interface definition language), 687–689
IIOP (Internet Inter-ORB Protocol), 683–684, 697

impedance mismatch, 454
implementing

component interfaces, 73–75
Web services, 110–111

Implementing Enterprise Web Services JSR 921
specification, 110

implicit middleware, 33–35
infinite block problem, 316
Informatica PowerCenter legacy data integration tool, 472
infrastructure services problem, 482–483
inheritance, 291–293
initial vertical slice, 601–602
instance pooling, 42, 617
instance-level authorization, 376
integrated development environment (IDE), 18–19, 614
integration

application integration
defined, 478
infrastructure services problem, 482–483
J2EE Connector Architecture, 479–480, 542
Java Message Service (JMS), 479, 542
M x N integration problem, 480–481
message-driven beans, 479, 542
proprietary solutions, 480–481
Web Services, 479, 543

benefits, 478
best practices, 541–542
business process integration, 479
existing applications, 14
importance of, 477–478
JMS-EJB, 226–227
RMI-IIOP and JNDI, 679–681

interface definition language (IDL), 687–689
interfaces

business, 74–75
Common Client Interfaces (CCI), 483
component

implementing, 73–75
message-driven beans, 228

Connection, 225
ConnectionFactory, 225
CosTransactions, 324
CosTSPortability, 325
Destination, 225
EIS-specific client interfaces, 483
home interface

bank account example, 153
CleanDayLimitOrdersEJB timer example, 403
count bean, 92–93
defined, 51
Hello World example, 57–58
problems, 44–45
rules, 43–46, 51

java.io.Serializable, 84–85
java.rmi.Remote, 41
java.rmi.RemoteException, 41
javax.coordination.ServiceManager, 346
javax.ejb.EJBContext, 63, 772–773
javax.ejb.EJBHome, 44, 773–774
javax.ejb.EJBLocalHome, 47, 774
javax.ejb.EJBLocalObject, 47, 775
javax.ejb.EJBMetaData, 775–776
javax.ejb.EJBObject, 39–41, 776–777
javax.ejb.EnterpriseBean, 36, 777
javax.ejb.EntityBean, 36, 141–143, 777–778
javax.ejb.EntityContext, 137–138, 778–784
javax.ejb.Handle, 784
javax.ejb.HomeHandle, 785
javax.ejb.MessageDrivenBean, 36, 231, 785
javax.ejb.MessageDrivenContext, 786
javax.ejb.SessionBean, 36, 786–787
javax.ejb.SessionContext, 92, 787–789
javax.ejb.SessionSynchronization, 789–790
javax.ejb.TimedObject, 397, 790
javax.ejb.Timer, 396–397, 791–792
javax.ejb.TimerHandle, 397, 792
javax.ejb.TimerService, 395–396, 793–794
javax.jms.MessageListener, 231
javax.transaction.UserTransaction, 325–327
local home interface

bank account example, 155–156
defined, 51

34_576828 bindex.qxd 11/3/04 11:50 AM Page 807

808 Index

interfaces, local home interface (continued)
Hello World example, 59–60
writing, 46–47

local interface
bank account example, 152–155
defined, 51
Hello World example, 56–57
local objects, 45
performance optimization, 552–553
relationships, 433
writing, 46–47

marker interface, 36, 662
MessageConsumer, 225
MessageProducer, 225
remote interface

bank account example, 151–152
CleanDayLimitOrdersEJB timer example, 400
counter bean, 90
defined, 51
Hello World example, 55–56
javax.ejb.EJBObject interface, 39–40
performance optimization, 552–553
RMI-IIOP, 657–658
rules, 39–40

Service Endpoint Interface (SEI), 111–112
service interfaces, 104
Session, 225

Internet Inter-ORB Protocol (IIOP), 683–684, 697
interoperability

CORBA-EJB, 700–703
CORBA-RMI, 692–694, 698–699
secure interoperability, 378–381
Web services, 105

An Introduction to Database Systems, 7th Edition, C.J.
Date, 458

invocation models
dynamic proxy invocation, 287–288
reflective invocation, 287–288
static invocation, 287

invocations per second (IPS), 573
iPlanet Directory Server, 69
isolation levels

READ COMMITTED, 335, 797
READ UNCOMMITTED, 334–335, 797
REPEATABLE READ, 336, 797
SERIALIZABLE, 337, 797

isolation of transactions, 331–333, 338

J
JAAS (Java Authentication and Authorization Service),

26, 357–368
Jad decompiler, 291
Java 2 Platform, Enterprise Edition (J2EE), 21–23
Java 2 Platform, Micro Edition (J2ME), 21
Java 2 Platform, Standard Edition (J2SE), 21–22
Java API for XML Parsing (JAXP), 25
Java API for XML RPC (JAX-RPC), 23, 112
Java Authentication and Authorization Service (JAAS),

26, 357–368
Java Community Process (JCP), 21, 272
Java Data Objects (JDO) specification, 122
Java Database Connectivity (JDBC), 13, 24, 142
Java IDL, 25
Java language

cross-platform functionality, 13
interface/implementation separation, 12
security, 12

Java Management Extension (JMX), 616
Java Message Service (JMS)

application integration, 479, 542
client-side callbacks, 282–283
connection, 222
Connection interface, 225
ConnectionFactory instance, 222
ConnectionFactory interface, 225
consumer, 223
defined, 24, 220
destination, 222
Destination interface, 225
JMS-EJB integration, 226–227
MessageConsumer interface, 225
message-driven beans, 228–229, 231

MessageProducer interface, 225
messaging domains, 220–222
non-durable subscriptions, 231
producer, 223
sending/receiving messages, 223–225
Service Provider Interface (SPI), 220
session, 222
Session interface, 225

Java Naming and Directory Interface (JNDI)
architecture, 671–672
atomic name, 672
benefits, 670–671
bindings, 672–673
client API, 671
code example, 677–678
composite name, 674
composite namespaces, 674–676
compound name, 672
context operations, 678
contexts, 673
defined, 24
home objects, 69–72
initial context factories, 674–675
initial contexts, 674–677
initialization parameters, 256–257
integrating with RMI-IIOP, 679–681
mixing implementations, 654
namespaces, 674
naming systems, 674
provider URL, 677
Service Provider Interface (SPI), 671
specification, 653
subcontexts, 673
supplying environment information, 72–73
tutorial, 653

Java Native Interfaces (JNI), 480
Java platforms

Java 2 Platform, Enterprise Edition (J2EE), 21–23
Java 2 Platform, Micro Edition (J2ME), 21
Java 2 Platform, Standard Edition (J2SE), 21–22

Java Programming With CORBA, Brose, Vogel, and
Duddy, 688

Java RMI-IIOP–based clients, 68
Java Runtime Environment (JRE), 610
Java Server Pages (JSP), 24–25, 639
Java servlets, 24
Java Timer APIs, 393
Java Transaction API (JTA), 24, 325–327
Java Transaction Service (JTS), 24, 325
Java Virtual Machine (JVM)

crashes, 660
tuning, 563–565

JavaBeans, 16
java.io.Serializable interface, 84–85
JavaMail service, 25
java.rmi.Remote interface, 41
java.rmi.RemoteException interface, 41
Java-to-IDL Mapping, 696–697
javax.coordination.ServiceManager interface, 346
javax.ejb.EJBContext interface, 63, 772–773
javax.ejb.EJBHome interface, 44, 773–774
javax.ejb.EJBLocalHome interface, 47, 774
javax.ejb.EJBLocalObject interface, 47, 775
javax.ejb.EJBMetaData interface, 775–776
javax.ejb.EJBObject interface, 39–41, 776–777
javax.ejb.EnterpriseBean interface, 36, 777
javax.ejb.EntityBean interface, 36, 141–143, 777–778
javax.ejb.EntityContext interface, 137–138, 778–784
javax.ejb.Handle interface, 784
javax.ejb.HomeHandle interface, 785
javax.ejb.MessageDrivenBean interface, 36, 231, 785
javax.ejb.MessageDrivenContext interface, 786
javax.ejb.SessionBean interface, 36
javax.ejb.Session-Bean interface, 786–787
javax.ejb.SessionContext interface, 92, 787–789
javax.ejb.SessionSynchronization interface, 789–790
javax.ejb.TimedObject interface, 397, 790
javax.ejb.Timer interface, 396–397, 791–792
javax.ejb.TimerHandle interface, 397, 792
javax.ejb.TimerService interface, 395–396, 793–794
javax.jms.MessageListener interface, 231

34_576828 bindex.qxd 11/3/04 11:50 AM Page 808

Index 809

javax.resource Package (J2EE Connector API), 486
javax.resource.cci Package (J2EE Connector API), 486–489
javax.resource.spi Package (J2EE Connector API), 490–492
javax.resource.spi.endpoint Package (J2EE Connector

API), 492
javax.resource.spi.security Package (J2EE Connector

API), 493
javax.resource.spi.work Package (J2EE Connector API),

493–494
javax.transaction.UserTransaction interface, 325–327
JAXP (Java API for XML Parsing), 25
JAX-RPC (Java API for XML RPC), 23, 112
JBoss open source application server, 18
JBuilder (Borland), 19
JCA (J2EE Connector Architecture). See J2EE Connector

Architecture
JCP (Java Community Process), 21, 272
JDBC connection pool tuning, 565–566
JDBC driver support (EJB servers), 611
JDBC (Java Database Connectivity), 13, 24, 142
JDeveloper (Oracle), 19
JDO (Java Data Objects) specification, 122
JMS (Java Message Service)

application integration, 479, 542
client-side callbacks, 282–283
connection, 222
Connection interface, 225
ConnectionFactory instance, 222
ConnectionFactory interface, 225
consumer, 223
defined, 24, 220
destination, 222
Destination interface, 225
durable subscriptions, 231
JMS-EJB integration, 226–227
MessageConsumer interface, 225
message-driven beans, 228–229, 231
MessageProducer interface, 225
messaging domains, 220–222
non-durable subscriptions, 231
producer, 223
sending/receiving messages, 223–225
Service Provider Interface (SPI), 220
session, 222
Session interface, 225

JMS message-driven beans. See message-driven beans
JMX (Java Management Extension), 616
JNDI (Java Naming and Directory Interface)

architecture, 671–672
atomic name, 672
benefits, 670–671
bindings, 672–673
client API, 671
code example, 677–678
composite name, 674
composite namespaces, 674–676
compound name, 672
context operations, 678
contexts, 673
defined, 24
home objects, 69–72
initial context factories, 674
initial contexts, 674–677
initialization parameters, 256–257
integrating with RMI-IIOP, 679–681
mixing implementations, 654
namespaces, 674
naming systems, 674
provider URL, 677
Service Provider Interface (SPI), 671
specification, 653
subcontexts, 673
supplying environment information, 72–73
tutorial, 653

JNI (Java Native Interfaces), 480
JProb performance-profiling tool, 565
JRE (Java Runtime Environment), 610
JSP (Java Server Pages), 24–25, 639
JTA (Java Transaction API), 24, 325–327
JTS (Java Transaction Service), 24, 325

J2EE Activity Service, 346–347
“J2EE and .NET” article, Rima Patel Sriganesh, 598
J2EE application servers, 18
J2EE Blueprints best practices guide, 600
J2EE Connector API

javax.resource Package, 486
javax.resource.cci Package, 486–489
javax.resource.spi Package, 490–492
javax.resource.spi.endpoint Package, 492
javax.resource.spi.security Package, 493
javax.resource.spi.work Package, 493–494

J2EE Connector Architecture
defined, 479–480
message-driven beans, 228
non-managed environments, 483
OutboundLoanRA example

architecture, 508–509
client contracts, 511
ConnectionFactoryImpl.java, 512–514
ConnectionImpl.java, 514–516
ConnectionMetaDataImpl.java, 516–517
ConnectionRequestInfoImpl.java, 532–533
ConnectionSpecImpl.java, 517
deployment, 533–534
deployment descriptor, 534–535
extending, 541
InteractionImpl.java, 517–519
JavaLoanApp.java, 509–510
LoanApp.dll, 510–511
LoanRatesClient standalone Java application, 538–541
LoanRatesEJB stateless session bean, 535–538
ManagedConnectionFactoryImpl.java, 525–528
ManagedConnectionImpl.java, 528–532
ManagedConnectionMetaDataImpl.java, 533
MappedRecordImpl.java, 520–522
RecordFactoryImpl.java, 522
ResourceAdapterMetaDataImpl.java, 523–525
system contracts, 525

system contracts
connection management, 484, 495–498
life cycle management, 484, 494–495
message in-flow, 486, 506–508
security management, 484, 498–500
transaction inflow, 485
transaction management, 484, 501–504
work management, 485, 504–506

transactions, 319
uses, 14, 25
when to use, 542

J2EE Deployment API (JSR-88), 289
J2EE (Java 2 Platform, Enterprise Edition), 21–23
J2EE object model, 600
“J2EE vs. Microsoft.NET” whitepaper, Roger Sessions,

598
J2ME (Java 2 Platform, Micro Edition), 21
J2SE (Java 2 Platform, Standard Edition), 21–22
JVM (Java Virtual Machine)

crashes, 660
tuning, 563–565

L
large result sets, 474–475
lazy loading, 433–435, 558, 611
LDAP (Lightweight Directory Access Protocol), 670
legacy databases

common design problems, 463–471
integration tools, 472
migration strategies, 472–474

life cycle
BMP entity beans, 177–180
CMP entity beans, 214–215
defined, 6
entity beans, 123, 125
message-driven beans, 233–234
role of containers, 42
session beans, 79–80, 98–101

life cycle management contract, 484, 494–495
Lightweight Directory Access Protocol (LDAP), 670
Lister, Timothy, Peopleware: Productive Project and Teams,

2nd Edition, 605

34_576828 bindex.qxd 11/3/04 11:50 AM Page 809

810 Index

load balancing
clustering, 572
DNS, 590
EJB servers, 615
large business systems, 5
message-driven beans, 242

local home interface
bank account example, 155–156
defined, 51
Hello World example, 59–60
writing, 46–47

local interface
bank account example, 152–155
defined, 51
Hello World example, 56–57
local object, 45
performance optimization, 552–553
relationships, 433
writing, 46–47

local object (defined), 51
local/remote transparency, 660
location transparency, 32, 38, 43
locking transactions, 333
logging

debug logs, 73
large business systems, 6
tuning, 565

lost update problem, 332
Lotus Notes Domino Server (IBM), 69

M
M x N integration problem, 480–481
Mandatory transaction attribute, 321–322, 324
many-to-many (M:N) relationships, 411, 421–428
mapping objects to relational data, 120–122
Marinescu, Floyd, EJB Design Patterns, 269, 545
marker interfaces, 36, 662
MAX aggregate function (EJB-QL), 752
MDD (Middle Driven Development), 275–276
message in-flow contract, 486, 506–508
MessageConsumer interface, 225
message-driven beans

application integration, 479, 542
bean implementation class, 234–236
characteristics, 229–230
client interaction, 30
client program, 241
clustering, 243–244, 588–590
component interfaces, 228
defined, 29, 217, 227–228
deployment descriptor, 236–241, 716–718
diagrams, 770–771
ejbCreate() method, 232, 786
ejbRemove() method, 232, 245, 786
enterprise bean class, 36
Java Message Service (JMS), 228–229, 231
javax.ejb.MessageDrivenBean interface, 36, 231
javax.jms.MessageListener interface, 231
J2EE Connector Architecture, 228
life cycle, 233–234
load-balancing, 242
message ordering, 245
onMessage(Message) method, 232, 786
poison messages, 246–249
pull model, 242
push model, 242
queues, 246
request() method, 253
request/response paradigm, 249–253
security, 242
SetMessageDrivenContext (MessageDrivenContext)

method, 233, 785
timers, 236
transactions, 241–242, 316
tuning, 563

message-driven contexts, 786
MessageDrivenBean object, 785
MessageDrivenContext object, 786
message-oriented middleware (MOM), 6, 219–220
MessageProducer interface, 225

messaging
certified message delivery, 220
consumers, 218
defined, 217–218
domains, 220–222
EJB servers, 618
guaranteed message delivery, 220
Java Message Service (JMS), 220
producers, 218
remote method invocations, 218
RMI-IIOP, 219, 294–297
store and forward, 220

method invocation models
dynamic proxy invocation, 287–288
reflective invocation, 287–288
static invocation, 287

methods
begin(), 326, 799
bPassivate(), 147
commit(), 326, 799
create(), 60
createTimer(), 395, 794
ejbActivate()

BMP entity beans, 146, 782
CMP entity beans, 194, 782
entity beans (general), 129
session beans, 86–89, 788

ejbCreate()
BMP entity beans, 145, 780
CMP entity beans, 193, 780
entity beans, 132–134, 780
message-driven beans, 786
session beans, 89, 788

ejbFind(), 144, 192, 779
ejbHome(), 145, 193, 780
ejbLoad()

BMP entity beans, 146, 782
CMP entity beans, 194, 782
entity beans, 126–127, 139

ejbPassivate()
BMP entity beans, 781
CMP entity beans, 195, 781
entity beans, 86–87, 89, 788
session beans, 130–131, 788

ejbPostCreate(), 146, 194, 781
ejbRemove()

BMP entity beans, 147, 783
CMP entity beans, 195, 783
entity beans, 89, 101, 133–135, 139
message-driven beans, 786
session beans, 101, 788

ejbSelect(), 189–190, 192, 779
ejbStore()

BMP entity beans, 147, 781
CMP entity beans, 195, 781
entity beans, 126–127

ejbTimeout(), 397, 399
getEJBLocalObject(), 138, 784, 789
getEJBObject(), 138, 784, 789
getHandle(), 264
getInfo(), 396
getMessageContext(), 789
getPrimaryKey(), 139, 784
getStatus(), 326–327, 799
getTimers(), 395, 794
getTimerService(), 398
onMessage(), 232, 786
remove(), 60
request(), 253
rollback(), 326, 799
setEntityContext()

BMP entity beans, 144, 779
CMP entity beans, 191, 779

SetMessageDrivenContext (MessageDrivenContext),
233, 785

setRollbackOnly(), 326, 799
setSessionContext(), 62, 89, 92, 788
setTransactionTimeout(int), 326, 799
unsetEntityContext(), 147, 195, 783

34_576828 bindex.qxd 11/3/04 11:50 AM Page 810

Index 811

Microsoft
Active Directory, 69
DCOM distributed objects, 31
.NET, 13

Middle Driven Development (MDD), 275–276
middleware

application servers, 5
building versus buying, 5
CORBA, 684
defined, 5–6
deployment descriptors, 48–49
distributed objects, 32–35
explicit, 32–33
implicit, 33–35
message-oriented middleware (MOM), 6, 219–220

Middleware Company, 599
Middleware Dark Matter article, Steve Vinoski, 109
migration of legacy data, 449, 472–474
MIN aggregate function (EJB-QL), 752
M:N (many-to-many) relationships, 411, 421–428
mock object code generation, 282
mock object unit testing, 281–282
modifying entity bean data, 136–137
MOM (message-oriented middleware), 6, 219–220
monitoring EJB containers, 38
multithreaded beans, 226

N
naming and directory services

Active Directory (Microsoft), 69
CORBA Naming Service (COS Naming), 691, 699–700
defined, 68–69, 667–669
Directory Server (iPlanet), 69
Java Naming and Directory Interface (JNDI), 670–677
Lightweight Directory Access Protocol (LDAP), 670
Lotus Notes Domino Server (IBM), 69
Network Directory System (NDS), 670
Network Information System (NIS), 670

naming servers
centralized, 589–590
clustering, 589–590
shared, replicated, 589

natural keys, 460–461
nested transactions, 308–310
.NET (Microsoft), 13
NetBeans IDE, 19
Network Directory System (NDS), 670
Network Information System (NIS), 670
network or machine failures during transactions, 301–302
Never transaction attribute, 321–322, 324
nonpersistent objects, 80
normalization, 457–459
NoSuchEntityException exception, 795
NoSuchObjectLocalException exception, 795
NotSupported transaction attribute, 321–322, 324
Novell Network Directory System (NDS), 670

O
object factory, 43
object handles, 263–264
object life cycle, 6
Object Request Broker (ORB), 686–687
object serialization, 84, 662–667
Object Transaction Service (OTS), 324–325
ObjectNotFoundException exception, 795
Object-Oriented Programming (OOP), 286–287
object-relational mapping

data model, 459
defined, 120–121
denormalization, 457–459
design process, 459–460
EJB object model, 459
hard-coded versus soft-coded SQL, 454–455
impedance mismatch, 454
normalization, 457–459
stored procedures, 455–457
tools, 122

object. See EJB object
OMG CORBA. See CORBA (Common Object Request

Broker Architecture)
OMG interface definition language (OMG IDL), 687–689
OMG Web site, 688

one-to-many (1:N) relationships, 411, 416–420
one-to-one (1:1) relationships, 411–416
onMessage(Message) method, 232, 786
OOP (Object-Oriented Programming), 286–287
open source EJB servers, 620
optimistic concurrency control (transactions), 339
OptimizeIt performance-profiling tool, 565
optimizing performance. See performance optimization
O/R mapping frameworks, 272
Oracle Application Server, 18
Oracle JDeveloper, 19
Oracle TopLink, 122
ORB (Object Request Broker), 686–687
Organizational Patterns for Teams, Neil B. Harrison, 606
OTS (Object Transaction Service), 324–325
OutboundLoanRA example

architecture, 508–509
client contracts, 511
ConnectionFactoryImpl.java, 512–514
ConnectionImpl.java, 514–516
ConnectionMetaDataImpl.java, 516–517
ConnectionRequestInfoImpl.java, 532–533
ConnectionSpecImpl.java, 517
deployment, 533–534
deployment descriptor, 534–535
extending, 541
InteractionImpl.java, 517–519
JavaLoanApp.java, 509–510
LoanApp.dll, 510–511
LoanRatesClient standalone Java application, 538–541
LoanRatesEJB stateless session bean, 535–538
ManagedConnectionFactoryImpl.java, 525–528
ManagedConnectionImpl.java, 528–532
ManagedConnectionMetaDataImpl.java, 533
MappedRecordImpl.java, 520–522
RecordFactoryImpl.java, 522
ResourceAdapterMetaDataImpl.java, 523–525
system contracts, 525

P
packaging Web services, 113–114
partitioning

clusters, 573–577
resources, 553–554

pass-by-reference, 655–656, 662
pass-by-value, 655–656, 661–662
passivation

entity beans, 130–131
stateful session beans, 83–84, 86–87
stateless session beans, 84

Peopleware: Productive Project and Teams, 2nd Edition,
Tom Demarco and Timothy Lister, 605

performance
BMP entity beans, 450
CMP entity beans, 450

performance optimization
capacity planning, 549–550
CLASSPATH directory, 566
defining performance requirements, 545–546
EJB Query Language (EJB-QL), 754–755
EJB server, 567
local interface, 552–553
partitioning resources, 553–554
remote interface, 552–553
RMI-IIOP, 218, 566
session façade, 550–552
statelessness, 547–549
tuning

entity beans, 556–562
Java Virtual Machine (JVM), 563–565
JDBC connection pool, 565–566
logging, 565
message-driven beans, 563
performance-profiling tools, 565
session beans, 554–556
Web applications, 566

tuning stateless session beans, 555
performance-profiling tools, 565
persistence

bean-managed, 131
caching, 448
container-managed, 132

34_576828 bindex.qxd 11/3/04 11:50 AM Page 811

812 Index

persistence (continued)
defined, 37, 80
migration, 449
object-relational mapping, 120–122, 454–460
pluggable persistence providers, 611–612
rapid application development, 449
schema independence, 448–449
session beans, 446–449

persistent data components, 122–123
pessimistic concurrency control (transactions), 339
phantom problem, 336–337
Plain Old Java Object (POJO), 272
platform independence of Web services, 109–110
platform selection, 594–598
platforms

Java 2 Platform, Enterprise Edition (J2EE), 21–23
Java 2 Platform, Micro Edition (J2ME), 21
Java 2 Platform, Standard Edition (J2SE), 21–22

pluggable persistence providers, 611–612
POA (Portable Object Adapter), 690
point-to-point (PTP) messaging domain, 221
poison messages, 246–249
POJO (Plain Old Java Object), 272
pooling

connection pooling, 260
entity beans, 128–130
stateful session beans, 83–84

port component, 110
portability

Enterprise JavaBeans (EJB), 11
Web services, 105

Portable Object Adapter (POA), 690
presentation tier, 630, 637
primary key class, 125
primary key generation, 659–660
primary keys, 460–461
Principles of Databases Systems, Jeffrey D. Ullman, 333
producers (Java Message Service), 223
product line example

class diagram, 196
client code, 212–214
container-specific deployment descriptor, 210–211
deployment descriptor, 207–210
ProductBean.java, 203–207
ProductHome.java, 198–200
Product.java, 197
ProductLocalHome.java, 200–201
ProductLocal.java, 198
ProductPK.java, 201–202
running the client program, 214

programmatic authorization, 352, 368–373, 376–377
programmatic transactions

benefits, 314
CORBA Object Transaction Service (OTS), 324
declarative versus programmatic, 328
defined, 311
spaghetti code, 330

project team, 603–606
proprietary descriptor, 94
PTP (point-to-point) messaging domain, 221
publish/subscribe messaging domain, 220–221
pull model in message-driven beans, 242
push model in message-driven beans, 242

Q
Quartz scheduler, 394
queues (message-driven beans), 246

R
rapid application development (RAD), 12, 449–450
RAS properties, 570–572
READ COMMITTED isolation level, 335, 797
read locks, 333
READ UNCOMMITTED isolation level, 334–335, 797
real-time deployment, 618
recursive relationships, 437–438
redundancy, 571
refactoring, 278–279
Refactoring: Improving the Design of Existing Code,

Martin Fowler, 278
references. See EJB references
referential integrity, 439–444

reflective invocation, 287–288
relationships

aggregation, 434–436
BMP entity beans, 410, 452
cardinality, 411
circular, 438–439
CMP entity beans, 410, 452
composition, 434–436
deployment descriptor, 729–732
directionality, 428–433
EJB Query Language (EJB-QL), 436–437
lazy loading, 433–435
local interfaces, 433
many-to-many (M:N), 411, 421–428
one-to-many (1:N), 411, 416–420
one-to-one (1:1), 411–416
recursive, 437–438
referential integrity, 439–444
session beans, 412

reliability
large business systems, 570–571
RMI-IIOP, 218

remote accessibility, 37–38
remote exceptions, 41, 58
remote interface

bank account example, 151–152
CleanDayLimitOrdersEJB timer example, 400
counter bean, 90
defined, 51
Hello World example, 55–56
javax.ejb.EJBObject interface, 39–40
performance optimization, 552–553
RMI-IIOP, 657–658
rules, 39–40

Remote Method Invocation over the Internet Inter-ORB
Protocol (RMI-IIOP). See RMI-IIOP (Remote Method
Invocation over the Internet Inter-ORB Protocol)

Remote Method Invocation (RMI)
client-side callbacks, 283
defined, 23
differences from CORBA, 695–696
features, 654
Internet Inter-ORB Protocol (IIOP), 697
interoperability with CORBA, 692–694, 698–699
Java-to-IDL Mapping, 696–697

remote method invocations
defined, 654
large business systems, 5
marshalling/unmarshalling, 655
messaging, 218
network or machine instability, 655
parameter passing conventions, 655

remote procedure call (RPC), 654
remove() method, 60
RemoveException exception, 795
REPEATABLE READ isolation level, 336, 797
request() method, 253
request/reply messaging domain, 222
requests per second (RPS), 573
Required transaction attribute, 319–320, 322, 324
RequiresNew transaction attribute, 320, 322, 324
resource factories

calling beans from other beans, 259–262
deployment descriptor, 260–261, 727–728

resource managers, 304
resource pooling, 6
resources

bean-independent, 553–554
bean-specific, 553–554
partitioning, 553–554

reusable services, 9–11
reusing code, 292–293, 601
risk assessment (security), 351–352
RMI (Remote Method Invocation)

client-side callbacks, 283
defined, 23
differences from CORBA, 695–696
features, 654
Internet Inter-ORB Protocol (IIOP), 697
interoperability with CORBA, 692–694, 698–699
Java-to-IDL Mapping, 696–697

34_576828 bindex.qxd 11/3/04 11:50 AM Page 812

Index 813

rmic (RMI compiler) tool, 661
RMI-IIOP (Remote Method Invocation over the

Internet Inter-ORB Protocol)
clients, 68
defined, 23–24, 654
distributed objects, 31
integrating with JNDI, 679–681
integration with other MOM systems, 218
java.rmi.Remote interface, 41
JVM crashes, 660
local/remote transparency, 660
messaging, 219, 294–297
mixing implementations, 654
object serialization, 662–667
parameter-passing conventions, 41
pass-by-reference, 655–656, 662
pass-by-value, 655–656, 661–662
performance optimization, 218, 566
primary key generation, 659–660
reliability, 218
remote interface, 657–658
remote method invocations, 654–655
remote object implementation, 658–659
RMI-IIOP/CORBA combinations, 694–695
skeletons, 660–661
specification, 653
stubs, 660–661
support, 218
threading, 660
tutorial, 653

rollback() method, 326, 799
Ronin International, 599
RPC (remote procedure call), 654
RPC-style SOAP, 8
RPS (requests per second), 573

S
sagas, 310
Salesforce.com enterprise software, 10
SAML (Security Assertion Markup Language),

386–387, 389
scalability of EJB servers, 612–613
scheduling

Batch utility (Unix), 392
code execution, 391–392
Cron jobs, 392
EJB support, 394
EJB timer service, 394–398, 406–407
Java Timer APIs, 393
Quartz scheduler, 394
Sims Computing Flux Scheduler, 394
workflows, 391–392

schema independence, 448–449
secure interoperability, 378–381
security

authentication, 352, 354–355
authorization, 352, 355, 368–377
Common Secure Interoperability version 2 (CSIv2),

379–381
controls, 351–353
cryptography, 383–386
data confidentiality protection, 353, 356
data integrity protection, 352, 356
deployment descriptor, 725–726
EJB servers, 613–614
Enterprise JavaBeans (EJB), 37, 353
firewalls, 577
Java Authentication and Authorization Service

(JAAS), 357–368
Java language, 12
large business systems, 6
message-driven beans, 242
risk assessment, 351–352
Security Assertion Markup Language (SAML),

386–387, 389
security roles, 368
social engineering, 350
SSL/TLS, 379
violations (security breaches), 351
vulnerabilities, 351
Web applications, 353–356
Web Services, 381–383

WS-Security, 387–389
XML Digital Signature, 383–386, 389
XML Encryption, 383–386

Security Assertion Markup Language (SAML),
386–387, 389

security contexts, 377–378
Security Engineering, Ross Anderson, 350
security management contract, 484, 498–500
SEI (Service Endpoint Interface), 111–112
serializability of transactions, 333
SERIALIZABLE isolation level, 337, 797
serialization, 84, 662–667
server provider, 18
server-side output, 73
TheServerSide.com Web site, 598, 600, 606
Service Endpoint Interface (SEI), 111–112
service interfaces, 104
Service Provider Interface (SPI), 220
serviceability, 571
Service-Oriented Architecture (SOA), 8–9, 103–105
services

CORBA, 691
defined, 8
directory services, 68–69
JavaMail service, 25
naming services, 68–69
reusable services, 9–11
Web Services, 8–9, 103

servlets, 24, 284, 637–639
session beans

client interaction, 30
clustering, 581–584
conversational state, 84–85
count bean example, 88, 90–98
CRUD operations, 551
defined, 28, 79
deployment descriptor, 708–710
diagrams, 758–764
ejbActivate() method, 86–89, 788
ejbCreate() method, 89, 788
ejbPassivate() method, 86–87, 89, 788
ejbRemove() method, 89, 101, 788
enterprise bean class, 36
entity beans, 29, 123–124
failures, 549
getEJBLocalObject() method, 789
getEJBObject() method, 789
getMessageContext() method, 789
javax.ejb.SessionBean interface, 36
life cycle, 98–101
lifetime, 79–80
LoanRatesEJB example, 535–538
persistence, 446–449
relationships, 412
setSessionContext() method, 89, 92, 788
stateful (defined), 80–81, 83–84
stateless (defined), 81–82, 84
tuning, 554–556
Web Service endpoints, 284

session contexts, 92, 787
session façade, 550–552
Session interface, 225
SessionBean object, 786–787
SessionContext object, 787–789
sessions (Java Message Service), 222
Sessions, Roger, “J2EE vs. Microsoft.NET”

whitepaper, 598
SessionSynchronization object, 789–790
setEntityContext() method

BMP entity beans, 144, 779
CMP entity beans, 191, 779

SetMessageDrivenContext (MessageDrivenContext)
method, 233, 785

setRollbackOnly() method, 326, 799
setSessionContext() method, 62, 89, 92, 788
setTransactionTimeout(int) method, 326, 799
shared, replicated naming servers, 589–590
shutdown (clean), 6, 617
Siebel enterprise software, 10
Simple Object Access Protocol (SOAP). See SOAP protocol
Sims Computing Flux Scheduler, 394
single access point simplicity, 572

34_576828 bindex.qxd 11/3/04 11:50 AM Page 813

814 Index

single-threaded beans, 226
singletons, 293
skeletons (RMI-IIOP), 660–661
SOA (Service-Oriented Architecture), 8–9, 103–105
SOAP protocol

defined, 8
document-style, 8
RPC-style, 8
Web services, 108–109

social engineering, 350
soft-coded SQL, 454–455
software proxies, 590
specifications

Enterprise JavaBeans (EJB), 12
Implementing Enterprise Web Services JSR 921, 110
J2EE Activity Service and the Extended Transactions

(JSR 095), 346
Java Data Objects (JDO), 122
RMI-IIOP, 653
Sun Java Data Objects (JDO) specification, 122

SPECjAppServer benchmarks, 567
SPI (Service Provider Interface), 220
Spring open source framework, 13, 272
Sriganesh, Rima Patel, “J2EE and .NET” article, 598
SSL/TLS, 379
staffing, 598–599
standard build process, 607
stateful session beans

activation, 83–84, 86–88
clustering, 583–584
count bean example, 88, 90–98
defined, 80–81
diagrams, 762–764
ejbActivate() method, 89
ejbCreate() method, 89
ejbPassivate() method, 89
ejbRemove() method, 89
life cycle, 100–101
passivation, 83–84, 86–87
pooling, 83–84
relationships, 412
setSessionContext() method, 89, 92
tuning, 555–556

stateless session beans
activation, 84
clustering, 581–582
defined, 81–82
diagrams, 759–761
ejbActivate() method, 89
ejbCreate() method, 89
ejbPassivate() method, 89
ejbRemove() method, 89
life cycle, 98–100
LoanRatesEJB example, 535–538
passivation, 84
relationships, 412
setSessionContext() method, 89
tuning, 554–555
Web Service endpoints, 284

statelessness, 547–549
static invocation, 287
status of transactions, 327, 798
store and forward, 220
stored procedures, 455–457
StrutsEJB project, 273
stubs, 30–31, 660–661
SUM aggregate function (EJB-QL), 752
Sun Microsystems

Java Studio, 19
Java System Application Server, 18
ONE Application Server, 18
Web site, 653

Supports transaction attribute, 320, 322, 324
surrogate keys, 460–461
system administrator, 17–18
system contracts

connection management, 484, 495–498
lifecycle management, 484, 494–495
message in-flow, 486, 506–508

security management, 484, 498–500
transaction inflow, 485
transaction management, 484, 501–504
work management, 485, 504–506

system-level exceptions, 58–59
systems management, 6

T
team organization strategies, 603–606
testing code, 279–282
TheServerSide.com Web site, 598, 600, 606
thick clients, 14
thread support, 38
threading, 6, 660
thread-safe code, 226
throughput, 573
throwing exceptions, 58–59
TimedObject object, 790
Timer object, 791–792
timer service API, 395–398
TimerHandle object, 792
timers

CleanDayLimitOrdersEJB example, 399–406
deployment descriptor, 718
EJB timer service, 394–398, 406–407
Java Timer APIs, 393
message-driven beans, 236
transactions, 399

TimerService object, 793–794
tools

Apache group’s Ant build tool, 607
conversion tools, 610
glue-code tools, 39
legacy data integration tools, 472
mock object code generation, 282
product reviews, 606
rmic (RMI compiler) tool, 661

TopLink (Oracle), 122
TPS (transactions per second), 573
training programs, 599, 621
transaction inflow contract, 485
transaction management contract, 484, 501–504
transactional communications protocol, 342–343
transactional contexts, 342
TransactionRequiredLocalException

exception, 796
TransactionRolledBackLocalException

exception, 796
transactions

aborting, 329
ACID properties, 304–306
atomic operations, 300–301
attributes, 317–324, 796–797
begin() method, 326
benefits, 303–304
chained transactions, 310
client code, 330–331
client-initiated, 313–316
commit() method, 326
concurrency control

dirty reads, 334–335
need for, 332–333
optimistic, 339
pessimistic, 339
phantom problem, 336–337
unrepeatable reads, 336–337

container-managed, 37, 310, 317–318, 330
deadlocks, 333
declarative, 312–314, 328
defined, 303–304
designing transactional conversations, 343–345
distributed, 340–342, 618
dooming, 329
durability, 340–341
entity beans, 315
failures, 301–302
flat transactions, 306–308
getStatus() method, 326–327
isolation, 331–333

34_576828 bindex.qxd 11/3/04 11:50 AM Page 814

Index 815

isolation levels, 334–338, 797
J2EE Activity Service, 346–347
J2EE connectors, 319
Java Transaction API (JTA), 24, 325–327
Java Transaction Service (JTS), 24, 325
javax.coordination.ServiceManager interface, 346
javax.transaction.UserTransaction interface, 325–327
large business systems, 5
locking, 333
lost update, 332
message-driven beans, 241–242, 316
methods, 799
multiple users, 302–303
nested transactions, 308–310
network or machine failures, 301–302
Object Transaction Service (OTS), 324–325
programmatic, 311, 314, 324, 328, 330
read locks, 333
resource managers, 304
resources, 304
rollback() method, 326
sagas, 310
serializability, 333
setRollbackOnly() method, 326
setTransactionTimeout(int) method, 326
status, 327, 798
timeouts, 799
timers, 399
transaction managers, 304
transactional objects, 304
two-phase commit protocol, 340–342
write locks, 333

transactions per second (TPS), 573
transparent fail-over

EJB servers, 58–59, 615
large business systems, 5

Trillium Control Center legacy data integration tool, 472
truth tables (EJB-QL), 753–754
tuning

entity beans, 556–562
Java Virtual Machine (JVM), 563–565
JDBC connection pool, 565–566
logging, 565
message-driven beans, 563
performance-profiling tools, 565
session beans, 554–556
Web applications, 566

tutorials for RMI-IIOP and JDNI, 653
two-phase (2PC) commit protocol of transactions,

340–342

U
UDDI (Universal Description, Discovery, and

Integration), 104
Ullman, Jeffrey D, Principles of Databases Systems, 333
UML editor, 615
unchecked exceptions, 59
The Unified Process Inception Phase, Scott W. Ambler and

Larry L. Constantine, 606
unit testing, 279–282
Universal Description, Discovery, and Integration

(UDDI), 104
unrepeatable reads, 336–337
unsetEntityContext() method, 147, 195, 783

V
vendor-specific files, 49, 51, 65
versioning, 461–463
vertical slice, 601–602
Vinoski, Steve, Middleware Dark Matter article, 109
violations (security breaches), 351
Vogel, Brose, and Duddy, Java Programming With

CORBA, 688
vulnerabilities in security, 351

W
Wafer project, 274
Web application frameworks

choosing, 272–273
Hibernate, 122, 272
integration with EJB, 273
open source versus closed source, 274
small device support, 273
Spring, 272
standards support, 274
StrutsEJB project, 273
tools support, 273
Wafer project, 274
XDoclet, 289–290

Web applications
security, 353–356
tuning, 566

Web Service Description Language (WSDL), 8–9,
106–107

Web Services
application integration, 479, 543
clients, 14–15, 114–116
client-side callbacks, 283
defined, 8–9, 103
deploying, 113–114
deployment descriptor, 719–721
EJB servers, 619
implementing, 110–111
interoperability, 105
Java APIs for XML RPC (JAX-RPC), 112
packaging, 113–114
platform independence, 109–110
port component, 110
portability, 105
security, 381–383
Service Endpoint Interface (SEI), 111–112
service interfaces, 104
Service-Oriented Architecture (SOA), 103–105
servlets, 284
SOAP protocol, 108–109
stateless session beans, 284
Universal Description, Discovery, and Integration

(UDDI), 104
Web Services Definition Language (WSDL) file, 104
XML artifacts, 109–110

Web sites
Aardvark Knowledge Builder, 472
Ascential Software DataStage, 472
ETI*Extract, 472
ExtremeProgramming.Org, 606
Informatica PowerCenter, 472
Middleware Company, 599
OMG, 688
Ronin International, 599
StrutsEJB project, 273
Sun Microsystems, 653
TheServerSide.com, 598, 600, 606
Trillium Control Center, 472
Wafer project, 274

work management contract, 485, 504–506
workflow engines (EJB servers), 619–620
write locks, 333
WSDL (Web Service Description Language), 8–9,

106–107
WS-Security, 387–389

X
XDoclet framework, 289–290
XML, 293–294
XML artifacts, 109–110
XML Digital Signature, 383–386, 389
XML Encryption, 383–386
XP (Extreme Programming), 277–279

34_576828 bindex.qxd 11/3/04 11:50 AM Page 815

COMPANY BACKGROUND
The Middleware Company offers the world’s leading knowledge network for middleware pro-
fessionals. The Middleware Company enables developers, technology vendors and enterprises
to implement, innovate and communicate emerging technology offerings. The Middleware
Company solutions include TheServerSide Communities, MiddlewareREACH and Middleware-
PRO. TheServerSide Communities inform over half a million professionals monthly using an
open forum to discuss and solve the most challenging middleware issues. Clients of The Mid-
dleware Company include the world’s top software organizations including BEA Systems, Bor-
land, Compuware, HP, IBM, Microsoft, Oracle, Sun Microsystems and VERITAS Software. The
Middleware Company was founded in 1998 and is headquartered in Mountain View, CA,
middleware-company.com.

OUR SOLUTIONS
The Middleware Company business solutions, MiddlewareREACH and MiddlewarePRO, are
designed to help vendors, enterprises, press and analysts to fully realize the full power and
range of possibilities that middleware has to offer. Our developer solution, TheServerSide Com-
munities, is designed to help middleware practitioners fully deliver middleware’s capabilities.

MiddlewareREACH is a technical marketing solution for mid-
dleware vendors that includes strategic planning, applied
research and reports, and custom promotion packages.
MiddlewareREACH allows middleware vendors to plan an
approach, prove their point, and promote the results. Mid-
dlewareREACH enables strategists and marketers to empha-
size a technology’s core strengths and divert its perceived
weaknesses.

MiddlewarePRO offers consulting from a network of middle-
ware architects and is available to enterprises, middleware
vendors and developers. Offerings include Architecture Plan-
ning, Architecture Audits, and Performance and Scalability
Services.

TheServerSide Communities are comprised of TheServerSide
.com, Your Enterprise Java Community; TheServerSide.NET,
Your Enterprise .NET Community; and TheServerSide Sympo-
siums, the most focused and exclusive international developer
conferences. TheServerSide.com and TheServerSide.NET,
independently operated and managed, provide news,
TechTalks, case studies, design patterns, discussion forums
and satire — as well as provide a medium for knowledge
exchange among middleware practitioners. TheServerSide
Symposiums are differentiated from other conferences by
their advanced sessions and all-star lineups of speakers who
are privately invited in recognition of their contributions to
the enterprise development community.

35_576828 BOB.qxd 11/3/04 11:50 AM Page 816

	Mastering Enterprise JavaBeans Third Edition
	Credits
	Contents
	Acknowledgments
	Introduction
	Goals for This Edition
	Organization of the Book
	Illustrations in the Text
	The Accompanying Web Site
	Feedback
	From Here
	About the Authors

	Part One: Overview
	Chapter 1: Overview
	The Motivation for Enterprise JavaBeans
	Component Architectures
	Divide and Conquer to the Extreme with Reusable Services
	Introducing Enterprise JavaBeans
	The EJB Ecosystem
	The Java 2 Platform, Enterprise Edition (J2EE)
	Summary

	Chapter 2: EJB Fundamentals
	Enterprise Beans
	Distributed Objects: The Foundation for EJB
	Distributed Objects and Middleware
	What Constitutes an Enterprise Bean?
	Summary

	Chapter 3: Writing Your First Bean
	How to Develop an EJB Component
	The Remote Interface
	The Local Interface
	The Home Interface
	The Local Home Interface
	The Bean Class
	The Deployment Descriptor
	The Vendor-Specific Files
	The Ejb-jar File
	Deploying the Bean
	The Optional EJB Client JAR File
	Understanding How to Call Beans
	Running the System
	Implementing Component Interfaces
	Summary

	Part Two: The Triad of Beans
	Chapter 4: Introduction to Session Beans
	Session Bean Lifetime
	Session Bean Subtypes
	Special Characteristics of Stateful Session Beans
	Summary

	Chapter 5: Writing Session Bean Web Services
	Web Services Concepts
	Implementing a Web Service
	Implementing a Web Service Client
	Summary

	Chapter 6: Introduction to Entity Beans
	Persistence Concepts
	What Is an Entity Bean?
	Features of Entity Beans
	Entity Contexts
	Summary

	Chapter 7: Writing Bean-Managed Persistent Entity Beans
	Entity Bean Coding Basics
	Bean-Managed Persistence Example: A Bank Account
	Running the Client Program
	Putting It All Together: Walking through a BMP Entity Bean’s Life Cycle
	Summary

	Chapter 8: Writing Container-Managed Persistent Entity Beans
	Features of CMP Entity Beans
	Implementation Guidelines for Container-Managed Persistence
	Container-Managed Persistence Example: A Product Line
	Running the Client Program
	The Life Cycle of a CMP Entity Bean
	Summary

	Chapter 9: Introduction to Message-Driven Beans
	Motivation to Use Message-Driven Beans
	The Java Message Service
	Integrating JMS with EJB
	Developing Message-Driven Beans
	Advanced Concepts
	JMS Message-Driven Bean Gotchas
	Summary

	Chapter 10: Adding Functionality to Your Beans
	Calling Beans from Other Beans
	Resource Factories
	Environment Properties
	Understanding Handles
	Summary

	Part Three: Advanced Enterprise JavaBeans Concepts
	Chapter 11: EJB Best Practices
	When to Use EJB
	How to Choose a Web Application Framework to Work with EJB
	Applying Model Driven Development in EJB Projects
	Applying Extreme Programming in EJB Projects
	Testing EJB
	Implementing Client-Side Callback Functionality in EJB
	Choosing Between Servlets and Stateless Session Beans as Service Endpoints
	Considering the Use of Aspect-Oriented Programming Techniques in EJB Projects
	Reflection, Dynamic Proxy, and EJB
	Deploying EJB Applications to Various Application Servers
	Debugging EJB
	Inheritance and Code Reuse in EJB
	Writing Singletons in EJB
	When to Use XML with EJB
	When to Use Messaging Versus RMI-IIOP
	Summary

	Chapter 12: Transactions
	Motivation for Transactions
	Benefits of Transactions
	Transactional Models
	Enlisting in Transactions with Enterprise JavaBeans
	Container-Managed Transactions
	Programmatic Transactions in EJB
	Transactions from Client Code
	Transactional Isolation
	Distributed Transactions
	Designing Transactional Conversations in EJB
	J2EE Transaction Service and Extended Transactions
	Summary

	Chapter 13: Security
	Introduction
	Web Application Security
	Understanding EJB Security
	Secure Interoperability
	Web Services Security
	Summary

	Chapter 14: EJB Timers
	Scheduling
	EJB and Scheduling
	The EJB Timer Service
	Timer Example: CleanDayLimitOrdersEJB
	Strengths and Limitations of EJB Timer Service
	Summary

	Chapter 15: BMP and CMP Relationships
	The CMP and BMP Difference
	Cardinality
	Directionality
	Lazy Loading
	Aggregation Versus Composition and Cascading Deletes
	Relationships and EJB-QL
	Recursive Relationships
	Circular Relationships
	Referential Integrity
	Summary

	Chapter 16: Persistence Best Practices
	Comparing Entity Beans with Other Persistence Approaches
	Choosing Between CMP and BMP
	Choosing the Right Granularity for Entity Beans
	Persistence Tips and Tricks
	Summary

	Chapter 17: EJB Integration
	Why Does Integration Matter?
	EJB and Integration
	J2EE Connector Architecture
	The J2EE Connector API
	System Contracts
	Connector Example: OutboundLoanRA
	Integration Best Practice: When to Use Which Technology
	Summary

	Chapter 18: EJB Performance Optimizations
	It Pays to Be Proactive!
	The Stateful Versus Stateless Debate from a Performance Point of View
	How to Guarantee a Response Time with Capacity Planning
	Use Session FaÁade for Better Performance
	Choosing Between Local Interfaces and Remote Interfaces
	Partitioning Your Resources
	Tuning Stateless Session Beans
	Tuning Stateful Session Beans
	Tuning Entity Beans
	Tuning Message-Driven Beans
	Tuning Java Virtual Machine
	Miscellaneous Tuning Tips
	Choosing the Right EJB Server
	Summary

	Chapter 19: Clustering
	Overview of Large-Scale Systems
	Instrumenting Clustered EJBs
	Other EJB Clustering Issues
	Summary

	Chapter 20: Starting Your EJB Project on the Right Foot
	Get the Business Requirements Down
	Decide Whether J2EE Is the Right Choice
	Staff Your Project
	Design Your Complete Object Model
	Implement a Single Vertical Slice
	Choose an Application Server
	Divide Your Team
	Invest in Tools
	Invest in a Standard Build Process
	Next Steps
	Summary

	Chapter 21: Choosing an EJB Server
	J2EE Standard Compliance
	Pluggable JRE
	Conversion Tools
	Complex Mappings
	Third-Party JDBC Driver Support
	Lazy Loading
	Deferred Database Writes
	Pluggable Persistence Providers
	In-Memory Data Cache
	Integrated Tier Support
	Scalability
	High Availability
	Security
	IDE Integration
	UML Editor Integration
	Intelligent Load Balancing
	Stateless Transparent Fail-over
	Clustering
	Java Management Extension (JMX)
	Administrative Support
	Hot Deployment
	Instance Pooling
	Automatic EJB Generation
	Clean Shutdown
	Real-Time Deployment
	Distributed Transactions
	Superior Messaging Architecture
	Provided EJB Components
	Web Services
	Workflow
	Open Source
	Specialized Services
	Nontechnical Criteria
	Summary

	Chapter 22: EJB-J2EE Integration: Building a Complete Application
	The Business Problem
	A Preview of the Final Web Site
	Scoping the Technical Requirements
	Example Code
	Summary

	Appendix A: RMI-IIOP and JNDI Tutorial
	Java RMI-IIOP
	Object Serialization and Parameter Passing
	The Java Naming and Directory Interface
	Integrating RMI-IIOP and JNDI
	Summary

	Appendix B: CORBA Interoperability
	What Is CORBA?
	Why Should I Care about CORBA?
	Understanding How CORBA Works
	The OMG Interface Definition Language
	CORBA’s Many Services
	The Need for RMI-IIOP
	Steps to Take for RMI and CORBA to Work Together: An Overview
	The Big Picture: CORBA and EJB Together
	Summary

	Appendix C: Deployment Descriptor Reference
	How to Read the XML Schema
	The Header and Root Element
	Defining Session Beans
	Defining Entity Beans
	Defining Message-Driven Beans
	Defining Timer Beans
	Defining J2EE Web Service
	Defining Environment Properties
	Defining EJB References
	Defining Security
	Defining Resource Factories
	Defining Relationships
	Defining the Assembly Descriptor

	Appendix D: The EJB Query Language (EJB-QL)
	EJB-QL Overview
	EJB-QL Syntax
	The ORDER BY Clause
	Truth Tables
	Final Note
	Summary

	Appendix E: EJB Quick Reference Guide
	Session Bean Diagrams
	Entity Bean Diagrams
	Message-Driven Bean Diagrams
	EJB API Reference
	TimedObject
	Timer
	TimerHandle
	TimerService
	Exception Reference
	Transaction Reference

	Index

