Logging is an age-old and intrinsic part of virtually every server-side application. It’s the primary method by which applications output live state in a persistent and readable manner. Some applications may only log a few megabytes a day, while others may log gigabytes of data or more in a matter of hours.

As logging usually involves IO to write data to disk (either blocking or async) – it comes at a cost. When logging large amounts of data over short periods of time, that cost can ramp up quickly. We decided to take a deeper look at the speed of some of today’s leading logging engines.

We decided to pick five of today’s most prominent logging engines, and see how they perform in a number of races. Now, before you take out the torches and pitchforks, I wanted to clarify that the point is not to say which is better, but to give a sense of the differences in throughput between the engines across a number of common logging tasks.

Read more here

Edited by: Cameron McKenzie on Mar 2, 2014 10:29 AM