

Published on TheServerSide July 15th, 2003

A major portion of the development of an enterprise application involves the creation and
maintenance of the persistence layer used to store and retrieve objects from the database of
choice. Many organizations resort to creating homegrown, often buggy, persistence layers. If
changes are made to the underlying database schema, it can be expensive to propagate those
changes to the rest of the application. Hibernate steps in to fill this gap, providing an easy-to-use
and powerful object-relational persistence framework for Java applications.

Hibernate provides support for collections and object relations, as well as composite types. In
addition to persisting objects, Hibernate provides a rich query language to retrieve objects from
the database, as well as an efficient caching layer and Java Management Extensions (JMX)
support. User-defined data types and dynamic beans are also supported.

Hibernate is released under the Lesser GNU Public License, which is sufficient for use in
commercial as well as open source applications. It supports numerous databases, including
Oracle and DB2, as well as popular open source databases such as PostgreSQL and MySQL. An
active user community helps to provide support and tools to extend Hibernate and make using it
easier.

This article covers Hibernate 2.0.1, which was released on June 17, 2003.

How Hibernate Works

Rather than utilize bytecode processing or code generation, Hibernate uses runtime reflection to
determine the persistent properties of a class. The objects to be persisted are defined in a
mapping document, which serves to describe the persistent fields and associations, as well as any
subclasses or proxies of the persistent object. The mapping documents are compiled at
application startup time and provide the framework with necessary information for a class.
Additionally, they are used in support operations, such as generating the database schema or
creating stub Java source files.

A SessionFactory is created from the compiled collection of mapping documents. The
SessionFactory provides the mechanism for managing persistent classes, the Session
interface. The Session class provides the interface between the persistent data store and the
application. The Session interface wraps a JDBC connection, which can be user-managed or

controlled by Hibernate, and is only intended to be used by a single application thread, then
closed and discarded.

The Mapping Documents

Our example utilizes two trivial classes, Team and Player. The mappings for these classes are
shown below.

<hibernate-mapping>

<class name="example.Team" table="teams">
<id name="id" column="team_id" type="long" unsaved-value="null">
<generator class="hilo"/>

</id>
<property name="name" column="team_name" type="string"

length="15" not-null="true"/>
<property name="city" column="city" type="string"

length="15" not-null="true"/>
<set name="players" cascade=”all" inverse="true" lazy="true">
<key column="team_id"/>
<one-to-many class="example.Player"/>

</set>
</class>

</hibernate-mapping>

Figure 1 – example.Team mapping document.

<hibernate-mapping>

<class name="example.Player" table="players">
<id name="id" column="player_id" type="long" unsaved-value="null">
<generator class="hilo"/>

</id>
<property name="firstName" column="first_name" type="string"

length="12" not-null="true"/>
<property name="lastName" column="last_name" type="string"

length="15" not-null="true"/>
<property name="draftDate" column="draft_date" type="date"/>
<property name="annualSalary" column="salary" type="float"/>
<property name="jerseyNumber" column="jersey_number"

type="integer" length="2" not-null="true"/>
<many-to-one name="team" class="example.Team" column="team_id"/>

</class>
</hibernate-mapping>

Figure 2 – example.Player mapping document

The mapping documents are reasonably clear, but certain areas warrant explanation. The id
element block describes the primary key used by the persistent class. The attributes of the id
element are:

• name: The property name used by the persistent class.
• column: The column used to store the primary key value.
• type: The Java data type used. In this case, we’re going to use longs.
• unsaved-value: This is the value used to determine if a class has been made

persistent, i.e., stored to the database. If the value of the id attribute is null, Hibernate
knows that this object has not been persisted. This is important when calling the
saveOrUpdate() method, discussed later.

The generator element describes the method used to generate primary keys. I’ve chosen to
use the hilo generator for purposes of illustration. The hilo generator will use a supporting
table to create the key values. If this method doesn’t appeal to you, don’t worry. In Hibernate
2.0, ten primary key generation methods are available and it’s possible to create your own
mechanism, including composite primary keys.

The property elements define standard Java attributes and how they are mapped to columns in
the schema. Attributes are available to specify column length, specific SQL types, and whether
or not to accept null values. The property element supports the column child element to
specify additional properties, such as the index name on a column or a specific column type.

Our Team class has an additional element block for the collection of Players that belong to a
Team:

<set name="players" cascade=”all” inverse=”true” lazy=”true”>
<key column="team_id"/>
<one-to-many class="example.Player"/>

</set>
Figure 3 – example.Team collection defintion

Figure 3 defines a set of Players that will be mapped to the Team using the bi-directional
mapping defined in the Player class, which Hibernate will create when the schema is
generated. The key element is used to distinguish an instance of the collection using a foreign
key to the owning entity. The one-to-many element specifies the collected class and the
column used to map to the entity.

Two attributes in the set element are of interest: lazy and inverse. Marking a collection as
lazy=”true” means that the collection will not be automatically populated when the object
containing the collection is retrieved from the database. For example, if we retrieve a Team from
the database, the set of Players will not be populated until the application accesses it. Lazy
initialization of collections will be explained in more detail in the Performance Considerations
section.

The inverse attribute allows this set to be bi-directional, meaning that we can determine the
Team that a Player belongs to with the following entry from the Player mapping document:

<many-to-one name="team" class="example.Team" column="team_id"/>

Figure 4 – bi-directional association from the Player class to the Team class

The line shown in Figure 4 will create a bi-directional association from the Player to its
associated Team.

Hibernate Properties

The properties that Hibernate uses to connect to the database and generate the schema are stored
in a file called hibernate.properties. For our purposes, this file only has five properties,
but many more are available:

hibernate.connection.username=ralph
hibernate.connection.password=nader
hibernate.connection.url=jdbc:postgresql://localhost/example
hibernate.connection.driver_class=org.postgresql.Driver
hibernate.dialect=net.sf.hibernate.dialect.PostgreSQLDialect

Figure 5 – example hibernate.properties

The first four property values are familiar to any developer that has worked with JDBC. The last
property, hibernate.dialect, defines the SQL dialect used when converting the Hibernate
Query Language (HQL) into SQL, as well as when generating the database schema for initial
use. If we chose to use Oracle instead of PostgreSQL in the future, we’d simply change the
dialect used and update the connection parameters as necessary. The HQL statements would
largely stay the same except for features unique to a given database, such as the lack of nested
select statements in MySQL.

The Schema

Mapping files in hand, it’s time to generate the database schema. Hibernate ships with the
SchemaExport utility that will create the schema necessary for the mapping documents. This
utility may be run from the command line or from an Ant build script to connect to the database
and create the schema, or to export the schema to a file.

java -cp classpath \
net.sf.hibernate.tool.hbm2ddl.SchemaExport options mapping_files

Figure 6 – SchemaExport usage

This is what our schema looks like:

Figure 7 – generated database schema

The hibernate_unique_key table is used to store the id value used for the hilo generator
type.

The Source Files

postgresql://localhost/example

Rather than create the persistent classes by hand, I’ve chosen to use the CodeGenerator that
ships with the Hibernate Extensions package. The CodeGenerator will create stub files based
on the mapping documents described above, which are suitable for our needs. (The code bundle
supporting this article can be found in the Resources section.) Using the CodeGenerator is
similar to the SchemaExport utility:

java -cp classpath \
net.sf.hibernate.tool.hbm2java.CodeGenerator options mapping_files

Figure 8 - CodeGenerator usage

The generated classes have the following structure (constructors removed from diagram for
brevity):

Figure 9 – diagram of example classes generated by Hibernate

Creating the SessionFactory

The SessionFactory stores the compiled mapping documents specified when the factory is
created. Configuring the SessionFactory is fairly straightforward. All of the mappings are
added to an instance of net.sf.hibernate.cfg.Configuration, which is then used to
create the SessionFactory instance.

Configuration cfg = new Configuration()
.addClass(example.Player.class)
.addClass(example.Team.class);

SessionFactory factory = cfg.buildSessionFactory();
Figure 10 – Configuring and creating a SessionFactory

The Configuration class is only needed for the creation of the SessionFactory and can be
discarded after the factory is built. Instances of Session are obtained by calling
SessionFactory.openSession(). The logical lifecycle of a Session instance is the span
of a database transaction.

The SessionFactory can also be configured using an XML mapping file, placed in the root of
your classpath. The obvious advantage to this approach is that your configuration isn’t
hardcoded in the application.

Creating and Updating Persistent Classes

As far as Hibernate is concerned, classes are either transient or persistent. Transient classes are
instances that have not been saved to the database. To make a transient instance persistent,
simply save it using the Session class:

Player player = new Player();
// … populate player object
Session session = SessionFactory.openSession();
session.saveOrUpdate(player);

Figure 11 – saving persistent objects

The saveOrUpdate(Object) call will save the object if the id property is null, issuing a
SQL INSERT to the database. This refers to the unsaved-value attribute that we defined in
the Player mapping document. If the id is not null, the saveOrUpdate(Object) call would
issue an update, and a SQL UPDATE would be issued to the database. (Please refer to the sidebar
Unsaved-Value Strategies for more information on this topic.)

To create and save a Team with assigned Players, follow the same pattern of creating the object
and saving it with a Session instance:

Team team = new Team();
team.setCity(“Detroit”);
team.setName(“Pistons”);

// add a player to the team.
Player player = new Player();
player.setFirstName(“Chauncey”);
player.setLastName(“Billups”);
player.setJerseyNumber(1);
player.setAnnualSalary(4000000f);
Set players = new HashSet();
players.add(player);

team.setPlayers(players);
// open a session and save the team
Session session = SessionFactory.openSession();
session.saveOrUpdate(team);

Figure 12 – persisting objects

This will persist the Team instance and each of the Player instances in the Set.

Unsaved Value Strategies

The unsaved-value attribute supported by the id element indicates when an object is
newly created and transient, versus an object already persisted. The default value is
null, which should be sufficient for most cases. However, if your identifier property
doesn’t default to null, you should give the default value for a transient (newly created)
object.

Other values supported by the unsaved-value attribute are:

• any
• none

• id-value

Retrieving Persistent Classes

If you know the primary key value of the object that you want to retrieve, you can load it with
the Session.load() method. This method is overloaded to provide support for standard
classes and BMP entity beans.

// method 1: loading a persistent instance
Session session = SessionFactory.createSession();
Player player = session.load(Player.class, playerId);

// method 2: loading the Player’s state
Player player = new Player();
session.load(player, playerId);

Figure 13 – Loading persistent instances

To retrieve a persistent class without knowing its primary key value, you can use the
Session.find() methods. The find() method allows you to pass an HQL (Hibernate Query
Language) statement and retrieve matching objects as a java.util.List. The find()
method has three signatures, allowing you to pass arguments to JDBC-like “?” parameters as a
single argument, named parameters, or as an Object[]. (Please refer to the sidebar Hibernate
Query Language for more information on HQL.)

Hibernate Query Language

Queries written in HQL are essentially as powerful as their SQL counterparts. Inner and
outer joins are supported, as are various functions such as avg(…), sum(…), min(…),
and count(…). HQL also supports many other SQL-like functions and operations such
as distinct and like. Subqueries are also supported if supported by the underlying
database, as is the group by clause.

Named parameters allow you to specify names in the HQL statements instead of
question marks as parameter flags. For example:

select team.id from team in class example.Team where
team.name=:name

To set the value of the :name parameter, use the Query.setParameter(…) method.
For the aforementioned statement, it would look like:

query.setParameter(“name”, “Pistons”, Hibernate.STRING);

HQL is a very rich object query language and, because of its depth, will be the subject
of a future article.

Deleting Persistent Classes

Making a persistent object transient is accomplished with the Session.delete() method.
This method supports passing either a specific object to delete or a query string to delete multiple
objects from the database.

// method 1 – deleting the Player loaded in figure 12
session.delete(player);

// method 2 – deleting all of the Players with a
// salary greater than 4 million
session.delete(“from player in class example.Player where player.annualSalary
> 4000000”);

Figure 14 – deleting a persistent object

It’s important to note that while the object may be deleted from the database, your application
may still hold a reference to the object. Deleting an object with collections of objects, such as
the Team’s set of Players, can cascade to child objects by specifying cascade=”delete” for
the set element in the mapping document.

Collections

Hibernate can manage the persistence of object collections, whether they are Sets, Maps, Lists,
arrays of objects or primitive values. It also allows another form of collection called a “bag”. A
bag can be mapped to a Collection or List, and contains an unordered, unindexed collection
of entities. Bags can contain the same element many times.

Additional semantics supported by implementing classes, such as LinkedList, are not
maintained when persisted. Another note is that the property of a collection must be the
interface type (List, Map, Set). This is because, in order to support lazy collections, Hibernate
uses it’s own implementations of the List, Map or Set interfaces.

When accessing a lazily initialized collection, it’s important to remember that a Session must
be open, or an exception will be thrown:

Session session = factory.openSession();
Team team = (Team) session.find(“from team in class example.Team where
team.city = ?”, cityName, Hibernate.STRING).get(0);

Set players = team.getPlayers();
session.close();

Player p = (Player) players.get(0); // exception will be thrown here

Figure 15 – incorrect use of lazy initialization

The exception is thrown in Figure 15 because the Session needed to populate players was
closed prematurely. Because of the potential for this bug, Hibernate defaults to non-lazy
collections. However, lazy collections should be used for performance reasons.

Performance Considerations

Fortunately this functionality doesn’t come at much of a performance cost. The Hibernate
website claims that its “overhead is much less than 10% of the JDBC calls,” and my experience
in deploying applications using Hibernate supports this. Hibernate can make multiple
optimizations when interacting with the database, including caching objects, efficient outer join
fetching and executing SQL statements only when needed. It is difficult to achieve this level of
sophistication with hand-coded JDBC.

A link to the performance FAQ on the Hibernate website can be found in the Resources section.

Alternative Persistence Frameworks

Hibernate isn’t the only framework available for mapping objects to persistent data stores. I
encourage you to evaluate each of them and choose the best one for your needs. Some
alternative frameworks, listed in no particular order, are:

• OJB. “ObjectRelationalBridge (OJB) is an Object/Relational mapping tool that allows
transparent persistence for Java Objects against relational databases.” Apache license.
http://db.apache.org/ojb/

• Castor. “Castor is an open source data binding framework for Java[tm].” BSD-like
license. http://castor.exolab.org/

• CocoBase. “CocoBase® offers a simple to use, powerful Dynamic Object to Relational
Mapping™ tool for Java developers writing applications on the J2EE, J2SE and J2ME
platforms.” Commercial. http://www.thoughtinc.com/cber_index.html

• TopLink. “With TopLink, developers can map both Java Objects and Entity Beans to a
relational database schema.” TopLink was recently purchased by Oracle. Commercial.
http://www.oracle.com/features/9iAS/index.html?t1as_toplink.html

Conclusion

http://db.apache.org/ojb/
http://castor.exolab.org/
http://www.thoughtinc.com/cber_index.html
http://www.oracle.com/features/9iAS/index.html?t1as_toplink.html

This article has given you an introduction to what Hibernate can do. Hibernate delivers a high-
performance, open source persistence framework comparable to many of its open source and
commercial counterparts. Developers utilizing Hibernate can greatly reduce the amount of time
and effort needed to code, test, and deploy applications. However, we’ve only scratched the
surface and I encourage you to explore Hibernate for yourself.

About the Author

Nick Heudecker is a software developer with more than six years of experience designing and
building enterprise applications. His firm, System Mobile, Inc., specializes in application
integration, custom software development and wireless applications. He is a Sun Certified Java
Programmer and is located in Ann Arbor, Michigan.

Resources

• The example source code and mapping documents can be found:
http://www.systemmobile.com/articles/hibernate.zip

• Hibernate website: http://hibernate.bluemars.net/
• Hibernate performance FAQ: http://hibernate.bluemars.net/15.html
• Hibernate feature list: http://hibernate.bluemars.net/4.html
• A comparison a various ORM tools: http://c2.com/cgi-

bin/wiki?ObjectRelationalToolComparison
• The System Mobile website: http://www.systemmobile.com/

http://www.systemmobile.com/articles/hibernate.zip
http://hibernate.bluemars.net/
http://hibernate.bluemars.net/15.html
http://hibernate.bluemars.net/4.html
http://c2.com/cgi-bin/wiki?ObjectRelationalToolComparison
http://www.systemmobile.com/

