
117

Chapter

J2EE Patterns
Overview

he J2EE patterns are a collection of J2EE-based solutions to common prob-
lems. They reflect the collective expertise and experience of Java architects
at the Sun Java Center, gained from successfully executing numerous J2EE

engagements. The Sun Java Center is Sun’s consulting organization, focused on
architecting Java technology-based solutions for customers. The Sun Java Center
has been architecting solutions for the J2EE platform since its early days, focusing
on achieving Quality of Service (QoS) qualities, such as scalability, availability,
performance, securability, reliability, and flexibility.

These J2EE patterns describe typical problems encountered by enterprise appli-
cation developers and provide solutions for these problems. We have formulated
these solutions based on our ongoing work with numerous J2EE customers and on
exchanges with other Java architects experiencing similar problems. The patterns
capture the essence of these solutions, and they represent the solution refinement
that takes place over the course of time and from collective experience. To put it
another way, they extract the core issues of each problem, offering solutions that
represent an applicable distillation of theory and practice.

Our work has focused on the J2EE area, especially regarding such J2EE compo-
nents as Enterprise Java Beans (EJB), JavaServer Pages (JSP), and servlets. During
our work with J2EE customers implementing the various components, we have
come to recognize the common problems and difficult areas that may impede a
good implementation. We’ve also developed effective best practices and
approaches for using the J2EE components in combination.

T

CJP2.book Page 117 Friday, May 16, 2003 10:58 AM

 118 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

The patterns presented here extract these “best practice” approaches and
present them to you in a way that enables you to apply the patterns to your own
particular application and to accommodate your own needs. The patterns clearly
and simply express proven techniques. They make it easier for you to reuse suc-
cessful designs and architectures. Simply put, you can use the patterns to design
your J2EE system successfully and quickly.

What Is a Pattern?

In Chapter 1, we discussed how different experts define a pattern. We also dis-
cussed some of the peripheral issues around patterns including the benefits of
using patterns. Here, we revisit this discussion in the context of the J2EE Pattern
Catalog.

As discussed in Chapter 1, some experts define a pattern as a recurring solu-
tion to a problem in a context.

These terms—context, problem, and solution—deserve a bit of explanation.
First, what is a context? A context is the environment, surroundings, situation, or
interrelated conditions within which something exists. Second, what is a prob-
lem? A problem is an unsettled question, something that needs to be investigated
and solved. Typically, the problem is constrained by the context in which it
occurs. Finally, the solution refers to the answer to the problem in a context that
helps resolve the issues.

So, if we have a solution to a problem in a context, is it a pattern? Not neces-
sarily. The characteristic of recurrence also needs to be associated with the defini-
tion of a pattern. That is, a pattern is only useful if it can be applied repeatedly. Is
that all? Perhaps not. As you can see, while the concept of a pattern is fairly sim-
ple, actually defining the term is more complex.

We point you to the references so that you can dig more deeply into the pat-
tern history and learn about patterns in other areas. In our catalog, a pattern is
described according to its main characteristics: problem, and solution, along
with other important aspects, such as forces and consequences. The section
describing the pattern template (see “Pattern Template” on page 129) explains
these characteristics in more detail.

Identifying a Pattern
We have handled many J2EE projects at the Sun Java Center, and over time we
have noticed that similar problems recur across these projects. We have also seen
similar solutions emerge for these problems. While the implementation strategies

CJP2.book Page 118 Friday, May 16, 2003 10:58 AM

What Is a Pattern? 119

J2EE Patterns
Overview

varied, the overall solutions were quite similar. Let us discuss, in brief, our pat-
tern identification process.

When we see a problem and solution recur, we try to identify and document
its characteristics using the pattern template. At first, we consider these initial
documents to be candidate patterns. However, we do not add candidate patterns
to the pattern catalog until we are able to observe and document their usage mul-
tiple times on different projects. We also undertake the process of pattern mining
by looking for patterns in implemented solutions.

As part of the pattern validation process, we use the Rule of Three, as it is
known in the pattern community. This rule is a guide for transitioning a candidate
pattern into the pattern catalog. According to this rule, a solution remains a candi-
date pattern until it has been verified in at least three different systems. Certainly,
there is much room for interpretation with rules such as this, but they help provide
a context for pattern identification.

Often, similar solutions may represent a single pattern. When deciding how to
form the pattern, it is important to consider how to best communicate the solu-
tion. Sometimes, a separate name improves communication among developers. If
so, then consider documenting two similar solutions as two different patterns. On
the other hand, it might be better to communicate the solution by distilling the
similar ideas into a pattern/strategy combination.

Patterns Versus Strategies
When we started documenting the J2EE patterns, we made the decision to docu-
ment them at a relatively high level of abstraction. At the same time, each pattern
includes various strategies that provide lower level implementation details.
Through the strategies, each pattern documents a solution at multiple levels of
abstraction. We could have documented some of these strategies as patterns in
their own right; however, we feel that our current template structure most clearly
communicates the relationship of the strategies to the higher level pattern struc-
ture in which they are included.

While we continue to have lively debates about converting these strategies to
patterns, we have deferred these decisions for now, believing the current docu-
mentation to be clear. We have noted some of the issues with respect to the rela-
tionship of the strategies to the patterns:

• The patterns exist at a higher level of abstraction than the strategies.

• The patterns include the most recommended or most common implemen-
tations as strategies.

CJP2.book Page 119 Friday, May 16, 2003 10:58 AM

 120 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

• Strategies provide an extensibility point for each pattern. Developers dis-
cover and invent new ways to implement the patterns, producing new
strategies for well-known patterns.

• Strategies promote better communication by providing names for lower
level aspects of a particular solution.

The Tiered Approach

Since this catalog describes patterns that help you build applications that run on
the J2EE platform, and since a J2EE platform (and application) is a multitiered
system, we view the system in terms of tiers. A tier is a logical partition of the
separation of concerns in the system. Each tier is assigned its unique responsibil-
ity in the system. We view each tier as logically separated from one another. Each
tier is loosely coupled with the adjacent tier. We represent the whole system as a
stack of tiers. See Figure 5.1.

Figure 5.1 Tiered approach

CJP2.book Page 120 Friday, May 16, 2003 10:58 AM

J2EE Patterns 121

J2EE Patterns
Overview

Client Tier

This tier represents all device or system clients accessing the system or the appli-
cation. A client can be a Web browser, a Java or other application, a Java applet, a
WAP phone, a network application, or some device introduced in the future. It
could even be a batch process.

Presentation Tier

This tier encapsulates all presentation logic required to service the clients that
access the system. The presentation tier intercepts the client requests, provides
single sign-on, conducts session management, controls access to business ser-
vices, constructs the responses, and delivers the responses to the client. Servlets
and JSP reside in this tier. Note that servlets and JSP are not themselves UI ele-
ments, but they produce UI elements.

Business Tier

This tier provides the business services required by the application clients. The
tier contains the business data and business logic. Typically, most business pro-
cessing for the application is centralized into this tier. It is possible that, due to
legacy systems, some business processing may occur in the resource tier. Enter-
prise bean components are the usual and preferred solution for implementing the
business objects in the business tier.

Integration Tier

This tier is responsible for communicating with external resources and systems
such as data stores and legacy applications. The business tier is coupled with the
integration tier whenever the business objects require data or services that reside
in the resource tier. The components in this tier can use JDBC, J2EE connector
technology, or some proprietary middleware to work with the resource tier.

Resource Tier

This is the tier that contains the business data and external resources such as
mainframes and legacy systems, business-to-business (B2B) integration systems,
and services such as credit card authorization.

J2EE Patterns

We used the tiered approach to divide the J2EE patterns according to functional-
ity, and our pattern catalog follows this approach. The presentation tier patterns

CJP2.book Page 121 Friday, May 16, 2003 10:58 AM

 122 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

contain the patterns related to servlets and JSP technology. The business tier pat-
terns contain the patterns related to the EJB technology. The integration tier pat-
terns contain the patterns related to JMS and JDBC. See Figure 5.2 on page 132.

Presentation Tier Patterns
Table 5-1 lists the presentation tier patterns, along with a brief description of each
pattern.

Table 5-1 Presentation Tier Patterns

Pattern Name Synopsis

Intercepting Filter
(144)

Facilitates preprocessing and post-processing of a request.

Front Controller
(166)

Provides a centralized controller for managing the handling
of a request.

Context Object (181) Encapsulates state in a protocol-independent way to be
shared throughout your application.

Application Control-
ler (205)

Centralizes and modularizes action and view management.

View Helper (240) Encapsulates logic that is not related to presentation format-
ting into Helper components.

Composite View
(262)

Creates an aggregate View from atomic subcomponents.

Service to Worker
(276)

Combines a Dispatcher component with the
Front Controller (166) and View Helper (240) patterns.

Dispatcher View
(288)

Combines a Dispatcher component with the
Front Controller (166) and View Helper (240) patterns,
deferring many activities to View processing.

CJP2.book Page 122 Friday, May 16, 2003 10:58 AM

J2EE Patterns 123

J2EE Patterns
Overview

Business Tier Patterns
Table 5-2 lists the business tier patterns, along with a brief synopsis of each pat-
tern.

Integration Tier Patterns
Table 5-3 lists the integration tier patterns and a brief description of each pattern.

Table 5-2 Business Tier Patterns

Pattern Name Synopsis

Business Delegate
(302)

Encapsulates access to a business service.

Service Locator
(315)

Encapsulates service and component lookups.

Session Façade
(341)

Encapsulates business-tier components and exposes a
coarse-grained service to remote clients.

Application Service
(357)

Centralizes and aggregates behavior to provide a uniform
service layer.

Business Object
(374)

Separates business data and logic using an object model.

Composite Entity
(391)

Implements persistent Business Objects (374) using local
entity beans and POJOs.

Transfer Object
(415)

Carries data across a tier.

Transfer Object
Assembler (433)

Assembles a composite transfer object from multiple data
sources.

Value List Handler
(444)

Handles the search, caches the results, and provide the abil-
ity to traverse and select items from the results.

Table 5-3 Integration Tier Patterns

Pattern Name Synopsis

Data Access Object
(462)

Abstracts and encapsulates access to persistent store.

CJP2.book Page 123 Friday, May 16, 2003 10:58 AM

 124 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

Guide to the Catalog

To help you effectively understand and use the J2EE patterns in the catalog, we
suggest that you familiarize yourself with this section before reading the individ-
ual patterns. Here we introduce the pattern terminology and explain our use of the
Unified Modeling Language (UML), stereotypes, and the pattern template. In
short, we explain how to use these patterns. We also provide a high-level road-
map to the patterns in the catalog.

Terminology
Players in the enterprise computing area, and particularly establishments using
Java-based systems, have incorporated a number of terms and acronyms into their
language. While many readers are familiar with these terms, sometimes their use
varies from one setting to another. To avoid misunderstandings and to keep things
consistent, we define in Table 5-4 how we use these terms and acronyms.

Service Activator
(496)

Receives messages and invokes processing asynchro-
nously.

Domain Store (516) Provides a transparent persistence mechanism for business
objects.

Web Service Broker
(557)

Exposes one or more services using XML and web proto-
cols

Table 5-4 Terminology

Term Description/Definition Used In

BMP Bean-managed persistence: a
strategy for entity beans where the
bean developer implements the
persistence logic for entity beans.

Business tier patterns

Table 5-3 Integration Tier Patterns (continued)

Pattern Name Synopsis

CJP2.book Page 124 Friday, May 16, 2003 10:58 AM

Guide to the Catalog 125

J2EE Patterns
Overview

CMP Container-managed persistence: a
strategy for entity beans where the
container services transparently
manage the persistence of entity
beans.

Business tier patterns

Composite A complex object that holds other
objects. Also related to the Com-
posite pattern described in the
GoF book. (See GoF later in this
table.)

Composite View
(262), Composite
Entity (391)

Controller Interacts with a client, controlling
and managing the handling of
each request.

Presentation and busi-
ness tier patterns

Data Access Object An object that encapsulates and
abstracts access to data from a
persistent store or an external sys-
tem.

Business and integra-
tion tier patterns

Delegate A stand-in, or surrogate, object
for another component; an inter-
mediate layer. A Delegate has
qualities of a proxy and façade.

Business Delegate
(302) and many other
patterns

Dependent Object An object that does not exist by
itself and whose lifecycle is man-
aged by another object.

Business Objects
(374) and Composite
Entity (391)

Dispatcher Some of the responsibilities of a
Controller include managing the
choice of and dispatching to an
appropriate View. This behavior
may be partitioned into a separate
component, referred to as a Dis-
patcher.

Dispatcher View
(288), Service to
Worker (276)

Table 5-4 Terminology (continued)

Term Description/Definition Used In

CJP2.book Page 125 Friday, May 16, 2003 10:58 AM

 126 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

Enterprise Bean Refers to an Enterprise JavaBean
component; can be a session or
entity bean instance. When this
term is used, it means that the
bean instance can be either an
entity or a session bean.

Many places in this
literature

Façade A pattern for hiding underlying
complexities; described in the
GoF book.

Session Façade pat-
tern

Factory (Abstract
Factory or Factory
Method)

Patterns described in the GoF
book for creating objects or fami-
lies of objects.

Business tier pat-
terns: Data Access
Object (462)

Iterator A pattern to provide accessors to
underlying collection facilities;
described in the GoF book.

Value List Handler
(444)

GoF Gang of Four—refers to the
authors of the popular design pat-
terns book, Design Patterns: Ele-
ments of Reusable
Object-Oriented Software, by
Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlis-
sides. [GoF]

Many places in this
literature

Helper Responsible for helping the Con-
troller and/or View. For example,
the Controller and View may del-
egate the following to a Helper:
content retrieval, validation, stor-
ing the model or adapting it for
use by the display.

Presentation tier pat-
terns, Business Dele-
gate (302)

Independent Object An object that can exist by itself
and may manage the lifecycles of
its dependent objects.

Composite Entity
(391) pattern

Table 5-4 Terminology (continued)

Term Description/Definition Used In

CJP2.book Page 126 Friday, May 16, 2003 10:58 AM

Guide to the Catalog 127

J2EE Patterns
Overview

Model A physical or logical representa-
tion of the system or its sub-
system.

Presentation and busi-
ness tier patterns

Persistent Store Represents persistent storage sys-
tems such as RDBMSs,
ODBMSs, file systems, and so
forth.

Business and integra-
tion tier patterns

Proxy A pattern to provide a placeholder
for another object to control
access to it; described in the GoF
book.

Many places in this
literature

Scriptlet Application logic embedded
directly within a JSP.

Presentation tier pat-
terns

Session Bean Refers to a stateless or stateful
session bean. May also refer col-
lectively to the session bean’s
home, remote object, and bean
implementation.

Business tier patterns

Singleton A pattern that provides a single
instance of an object, as described
in the GoF book.

Many places in this
literature

Template Template text refers to the literal
text encapsulated within a JSP
View. Additionally, a template
may refer to a specific layout of
components in a display.

Presentation tier pat-
terns

Transfer Object A serializable POJO that is used
to carry data from one object/tier
to another. It does not contain any
business methods.

Business tier patterns

Table 5-4 Terminology (continued)

Term Description/Definition Used In

CJP2.book Page 127 Friday, May 16, 2003 10:58 AM

 128 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

Use of UML
We have used UML extensively in the pattern catalog, particularly as follows:

• Class diagrams – We use the class diagrams to show the structure of the
pattern solution and the structure of the implementation strategies. This
provides the static view of the solution.

• Sequence (or Interaction) diagrams – We use these diagrams to show
the interactions between different participants in a solution or a strategy.
This provides the dynamic view of the solution.

• Stereotypes – We use stereotypes to indicate different types of objects
and roles in the class and interaction diagrams. The list of stereotypes and
their meanings is included in Table 5-5.

Each pattern in the pattern catalog includes a class diagram that shows the
structure of the solution and a sequence diagram that shows the interactions for
the pattern. In addition, patterns with multiple strategies use class and sequence
diagrams to explain each strategy.

To learn more about UML, please see the Bibliography.

UML Stereotypes
While reading the patterns and their diagrams, you will encounter certain stereo-
types. Stereotypes are terms coined or used by designers and architects. We cre-
ated and used these stereotypes to present the diagrams in a concise and easy to
understand manner. Note that some of the stereotypes relate to the terminology
explained in the previous section. In addition to these stereotypes, we also use
pattern names and the main roles of a pattern as the stereotypes when it helps in
explaining a pattern and its strategies.

View The View manages the graphics
and text that make up the display.
It interacts with Helpers to get
data values with which to popu-
late the display. Additionally, it
may delegate activities, such as
content retrieval, to its Helpers.

Presentation tier pat-
terns

Table 5-4 Terminology (continued)

Term Description/Definition Used In

CJP2.book Page 128 Friday, May 16, 2003 10:58 AM

Guide to the Catalog 129

J2EE Patterns
Overview

Pattern Template
The J2EE patterns are all structured according to a defined pattern template. The
pattern template consists of sections presenting various attributes for a given pat-
tern. You’ll also notice that we’ve tried to give each J2EE pattern a descriptive pat-
tern name. While it is difficult to fully encompass a single pattern in its name, the
pattern names are intended to provide sufficient insight into the function of the pat-
tern. Just as with names in real life, those assigned to patterns affect how the reader
will interpret and eventually use that pattern.

Table 5-5 UML Stereotypes

Stereotype Meaning

EJB Represents an enterprise bean component; associated with a busi-
ness object. This is a role that is usually fulfilled by a session or
entity bean.

SessionEJB Represents a session bean as a whole without specifying the ses-
sion bean remote interface, home interface, or the bean imple-
mentation.

EntityEJB Represents an entity bean as a whole without specifying the
entity bean remote interface, home interface, the bean implemen-
tation, or the primary key.

View A View represents and displays information to the client.

JSP A JavaServer Page; a View is typically implemented as a JSP.

Servlet A Java servlet; a Controller is typically implemented as a servlet.

Singleton A class that has a single instance in accordance with the Single-
ton pattern.

Custom Tag JSP custom tags are used to implement Helper objects, as are Jav-
aBeans. A Helper is responsible for such activities as gathering
data required by the View and for adapting this data model for
use by the View. Helpers can service requests for data from the
View by simply providing access to the raw data or by formatting
the data as Web content.

CJP2.book Page 129 Friday, May 16, 2003 10:58 AM

 130 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

We have adopted a pattern template that consists of the following sections:

• Problem: Describes the design issues faced by the developer.

• Forces: Lists the reasons and motivations that affect the problem and the
solution. The list of forces highlights the reasons why one might choose
to use the pattern and provides a justification for using the pattern.

• Solution: Describes the solution approach briefly and the solution ele-
ments in detail. The solution section contains two subsections:

• Structure: Uses UML class diagrams to show the basic structure of
the solution. The UML Sequence diagrams in this section present the
dynamic mechanisms of the solution. There is a detailed explanation
of the participants and collaborations.

• Strategies: Describes different ways a pattern may be implemented.
Please see “Patterns Versus Strategies” on page 119 to gain a better
understanding of strategies. Where a strategy can be demonstated
using code, we include a code snippet in this section. If the code is
more elaborate and lengthier than a snippet, we include it in the
“Sample Code” section of the pattern template.

• Consequences: Here we describe the pattern trade-offs. Generally, this
section focuses on the results of using a particular pattern or its strategy,
and notes the pros and cons that may result from the application of the
pattern.

• Sample Code: This section includes example implementations and code
listings for the patterns and the strategies. This section is rendered
optional if code samples can be adequately included with the discussion
in the “Strategies” section.

• Related Patterns: This section lists other relevant patterns in the J2EE
Pattern Catalog or from other external resources, such as the GoF design
patterns. For each related pattern, there is a brief description of its rela-
tionship to the pattern being described.

J2EE Pattern Relationships

A recent focus group of architects and designers raised a major concern: There
seems to be a lack of understanding of how to apply patterns in combination to
form larger solutions. We address this problem with a high-level visual of the pat-
terns and their relationships. This diagram is called the J2EE Pattern Relation-
ships Diagram and is shown in Figure 5.2. In the Epilogue, “Web Worker

CJP2.book Page 130 Friday, May 16, 2003 10:58 AM

J2EE Pattern Relationships 131

J2EE Patterns
Overview

Micro-Architecture”, we explore example use cases to demonstrate how many
patterns come together to form a patterns framework to realize a use case.

Individual patterns offer their context, problem, and solution when addressing
a particular need. However, it is important to step back and grasp the big picture
to put the patterns to their best use. This grasping the big picture results in better
application of the patterns in a J2EE application.

Reiterating Christopher Alexander’s quote from Chapter 1, a pattern does not
exist in isolation and needs the support of other patterns to bring meaning and
usefulness. Virtually every pattern in the catalog has a relationship to other pat-
terns. Understanding these relationships when designing and architecting a solu-
tion helps in the following ways:

• Enables you to consider what other new problems may be introduced
when you consider applying a pattern to solve your problem. This is the
domino effect: What new problems are introduced when a particular pat-
tern is introduced into the architecture? It is critical to identify these con-
flicts before coding begins.

• Enables you to revisit the pattern relationships to determine alternate
solutions. After possible problems are identified, revisit the pattern rela-
tionships and collect alternate solutions. Perhaps the new problems can be
addressed by selecting a different pattern or by using another pattern in
combination with the one you have already chosen.

Figure 5.2 on page 132 shows the relationships among the patterns.
Intercepting Filter (144) intercepts incoming requests and outgoing responses

and applies a filter. These filters may be added and removed in a declarative man-
ner, allowing them to be applied unobtrusively in a variety of combinations. After
this preprocessing and/or post-processing is complete, the final filter in the group
vectors control to the original target object. For an incoming request, this is often
a Front Controller (166), but may be a View (240).

Front Controller (166) is a container to hold the common processing logic that
occurs within the presentation tier and that may otherwise be erroneously placed
in a View. A controller handles requests and manages content retrieval, security,
view management, and navigation, delegating to a Dispatcher component to dis-
patch to a View.

Application Controller (205) centralizes control, retrieval, and invocation of
view and command processing. While a Front Controller (166) acts as a central-
ized access point and controller for incoming requests, the Application Controller
(205) is responsible for identifying and invoking commands, and for identifying
and dispatching to views.

CJP2.book Page 131 Friday, May 16, 2003 10:58 AM

 132 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

Figure 5.2 J2EE Pattern Relationships

Intercepting Filter

Front Controller

View Helper

Dispatcher View Service To Worker

Apply zero or more

Centralize Control

Front Controller

Business Delegate

Dispatch to
target View

uses

Control Processing

uses

Compose View
from Sub-Views

Session Facade

Service Locator

Transfer Object

Value List Handler

Composite Entity
Service Activator

Data Access Object

Connect and Invoke

Locate
Services

Assembles
Model

Invoke
Business

Processing

Invoke
Business

Processing

Front Controller

Lightweight Control Processing

Context Object

Application Controller

Delegate processing
to Helpers

Business Object

Application Service

Domain Store

Web Service Broker

Dispatch to
View

Delegate Control

Encapsulate and coordinate

Delegate
Business

Processing

Chain
Asynchronous

Processing

Implement
Entity Beans

Send
Data

Facade
for
List

Send
Data

Transfer Object

uses uses

Send Data

Invoke Business Processing

Service
Layers

Transparently
Persist

Delegate
Asynchronous

Processing

Uses for
Bean-managed

Persistence

Coordinate
Business

Processing

Uses

Access
Business
Service

Access
Business
Service

Access Business Service

CreateCreate

Dispatch
to View

Dispatch
to View

Integration-tier

Transfer Object Assembler

CJP2.book Page 132 Friday, May 16, 2003 10:58 AM

J2EE Pattern Relationships 133

J2EE Patterns
Overview

Context Object (181) encapsulates state in a protocol-independent way to be
shared throughout your application. Using Context Object (181) makes testing
easier, facilitating a more generic test environment with reduced dependence
upon a specific container.

View Helper (240) encourages the separation of formatting-related code from
other business logic. It suggests using Helper components to encapsulate logic
relating to initiating content retrieval, validation, and adapting and formatting the
model. The View component is then left to encapsulate the presentation format-
ting. Helper components typically delegate to the business services via a Business
Delegate (302) or an Application Service (357), while a View may be composed of
multiple subcomponents to create its template.

Composite View (262) suggests composing a View from numerous atomic
pieces. Multiple smaller views, both static and dynamic, are pieced together to
create a single template. The Service to Worker (276) and Dispatcher View (288)
patterns represent a common combination of other patterns from the catalog. The
two patterns share a common structure, consisting of a controller working with a
Dispatcher, Views, and Helpers. Service to Worker (276) and Dispatcher View
(288) have similar participant roles, but differ in the division of labor among those
roles. Unlike Service to Worker (276), Dispatcher View (288) defers business pro-
cessing until view processing has been performed.

Business Delegate (302) reduces coupling between remote tiers and provides
an entry point for accessing remote services in the business tier. A Business Dele-
gate (302) might also cache data as necessary to improve performance. A Business
Delegate (302) encapsulates a Session Façade (341) and maintains a one-to-one
relationship with that Session Façade (341). An Application Service (357) uses a
Business Delegate (302) to invoke a Session Façade (341).

Service Locator (315) encapsulates the implementation mechanisms for look-
ing up business service components. A Business Delegate (302) uses a Service
Locator (315) to connect to a Session Façade (341). Other clients that need to
locate and connect to Session Façade (341), other business-tier services, and web
services can use a Service Locator (315).

Session Façade (341) provides coarse-grained services to the clients by hiding
the complexities of the business service interactions. A Session Façade (341)
might invoke several Application Service (357) implementations or Business
Objects (374). A Session Façade (341) can also encapsulate a Value List Handler
(444).

Application Service (357) centralizes and aggregates behavior to provide a uni-
form service layer to the business tier services. An Application Service (357)
might interact with other services or Business Objects (374). An Application Ser-

CJP2.book Page 133 Friday, May 16, 2003 10:58 AM

 134 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

vice (357) can invoke other Application Services (357) and thus create a layer of
services in your application.

Business Object (374) implements your conceptual domain model using an
object model. Business Objects (374) separate business data and logic into a sepa-
rate layer in your application. Business Objects (374) typically represent persistent
objects and can be transparently persisted using Domain Store (516).

Composite Entity (391) implements a Business Object (374) using local entity
beans and POJOs. When implemented with bean-managed persistence, a Com-
posite Entity (391) uses Data Access Objects (462) to facilitate persistence.

The Transfer Object (415) pattern provides the best techniques and strategies
to exchange data across tiers (that is, across system boundaries) to reduce the net-
work overhead by minimizing the number of calls to get data from another tier.

The Transfer Object Assembler constructs a composite Transfer Object (415)
from various sources. These sources could be EJB components, Data Access
Objects (462), or other arbitrary Java objects. This pattern is most useful when the
client needs to obtain data for the application model or part of the model.

The Value List Handler (444) uses the GoF iterator pattern to provide query
execution and processing services. The Value List Handler (444) caches the
results of the query execution and return subsets of the result to the clients as
requested. By using this pattern, it is possible to avoid overheads associated with
finding large numbers of entity beans. The Value List Handler (444) uses a Data
Access Object (462) to execute a query and fetch the results from a persistent
store.

Data Access Object (462) enables loose coupling between the business and
resource tiers. Data Access Object (462) encapsulates all the data access logic to
create, retrieve, delete, and update data from a persistent store. Data Access
Object (462) uses Transfer Object (415) to send and receive data.

Service Activator (496) enables asynchronous processing in your enterprise
applications using JMS. A Service Activator (496) can invoke Application Ser-
vice (357), Session Façade (341) or Business Objects (374). You can also use sev-
eral Service Activators (496) to provide parallel asynchronous processing for long
running tasks.

Domain Store (516) provides a powerful mechanism to implement transparent
persistence for your object model. It combines and links several other patterns
including Data Access Objects (462). Web Service Broker (557) exposes and bro-
kers one or more services in your application to external clients as a web service
using XML and standard web protocols. A Web Service Broker (557) can interact
with Application Service (357) and Session Façade (341). A Web Service Broker
(557) uses one or more Service Activators (496) to perform asynchronous pro-
cessing of a request.

CJP2.book Page 134 Friday, May 16, 2003 10:58 AM

Relationship to Known Patterns 135

J2EE Patterns
Overview

Relationship to Known Patterns

There is a wealth of software pattern documentation available today. The patterns
in these different books are at various levels of abstraction. There are architecture
patterns, design patterns, analysis patterns, and programming patterns. The most
popular and influential of these books is Design Patterns: Elements of Reusable
Object-Oriented Software, [GoF] better known as the Gang of Four, or GoF book.
The patterns in the GoF book describe expert solutions for object design. We also
reference patterns from Patterns of Enterprise Application Architecture [PEAA],
by Martin Fowler.

Our pattern catalog includes patterns that describe the structure of an applica-
tion and others that describe design elements. The unifying theme of the pattern
catalog is its support of the J2EE platform. In some cases, the patterns in the cata-
log are based on or related to an existing pattern in the literature. In these cases,
we communicate this relationship by referencing the existing pattern in the name
of the J2EE pattern and/or including a reference and citation in the Related Pat-
terns section at the end of each pattern description. For example, some patterns
are based on GoF patterns but are considered in a J2EE context. In those cases,
the J2EE pattern name includes the GoF pattern name as well as a reference to the
GoF pattern in the related patterns section.

Patterns Roadmap

Here we present a list of common requirements that architects encounter when
creating solutions with the J2EE. We present the requirement or motivation in a
brief statement, followed by a list of one or more patterns addressing that require-
ment. While this requirements list is not exhaustive, we hope that it helps you to
quickly identify the relevant patterns based on your needs.

Table 5-1 shows the functions typically handled by the presentation tier pat-
terns and indicates which pattern provides a solution.

Table 5-1 Presentation Tier Patterns

If you are looking for this Find it here

Preprocessing or postprocessing of your
requests

Pattern Intercepting Filter (144)

Adding logging, debugging, or some other
behavior to be completed for each request

Pattern Front Controller (166)
Pattern Intercepting Filter (144)

CJP2.book Page 135 Friday, May 16, 2003 10:58 AM

 136 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

Centralizing control for request handling Pattern Front Controller (166)
Pattern Intercepting Filter (144)
Pattern Application Controller
(205)

Creating a generic command interface or con-
text object for reducing coupling between con-
trol components and helper components

Pattern Front Controller (166)
Pattern Application Controller
(205)
Pattern Context Object (181)

Whether to implement your Controller as a
servlet or JSP

Pattern Front Controller (166)

Creating a View from numerous sub-Views Pattern Composite View (262)

Whether to implement your View as a servlet
or JSP

Pattern View Helper (240)

How to partition your View and Model Pattern View Helper (240)

Where to encapsulate your presentation-related
data formatting logic

Pattern View Helper (240)

Whether to implement your Helper compo-
nents as JavaBeans or Custom tags

Pattern View Helper (240)

Combining multiple presentation patterns Pattern Intercepting Filter (144)
Pattern Dispatcher View (288)

Where to encapsulate View Management and
Navigation logic, which involves choosing a
View and dispatching to it

Pattern Service to Worker (276)
Pattern Dispatcher View (288)

Where to store session state Design “Session State on the Cli-
ent” (20)
Design “Session State in the Pre-
sentation Tier” (21)
Design “Storing State on the
Business Tier” (48)

Table 5-1 Presentation Tier Patterns (continued)

If you are looking for this Find it here

CJP2.book Page 136 Friday, May 16, 2003 10:58 AM

Patterns Roadmap 137

J2EE Patterns
Overview

Table 5-2 shows the functions handled by the business tier patterns and indi-
cates where you can find the particular pattern or patterns that may provide solu-
tions.

Controlling client access to a certain View or
sub-View

Design “Controlling Client
Access” (22)
Refactoring “Hide Resources
From a Client” (88)

Controlling the flow of requests into the appli-
cation

Design “Duplicate Form Sub-
missions” (27)
Design “Introduce Synchronizer
Token” (67)

Controlling duplicate form submissions Design “Duplicate Form Submis-
sions” (27)
Refactoring “Introduce Synchro-
nizer Token” (67)

Design issues using JSP standard property
auto-population mechanism via
<jsp:setProperty>

Design “Helper Properties—
Integrity and Consistency” (30)

Reducing coupling between presentation tier
and business tier

Refactoring “Hide Presentation
Tier-Specific Details From the
Business Tier” (80)
Refactoring “Introduce Business
Delegate” (94)

Partitioning data access code Refactoring “Separate Data
Access Code” (102)

Table 5-2 Business Tier Patterns

If you are looking for this Find it here

Minimize coupling between presentation and
business tiers

Pattern Business Delegate
(302)

Cache business services for clients Pattern Business Delegate
(302)

Table 5-1 Presentation Tier Patterns (continued)

If you are looking for this Find it here

CJP2.book Page 137 Friday, May 16, 2003 10:58 AM

 138 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

Hide implementation details of business service
lookup/creation/access

Pattern Business Delegate
(302)
Pattern Service Locator (315)

Isolate vendor and technology dependencies for
services lookup

Pattern Service Locator (315)

Provide uniform method for business service
lookup and creation

Pattern Service Locator (315)

Hide the complexity and dependencies for enter-
prise bean and JMS component lookup

Pattern Service Locator (315)

Transfer data between business objects and cli-
ents across tiers

Pattern Transfer Object (415)

Provide simpler uniform interface to remote cli-
ents

Pattern Business Delegate
(302)
Pattern Session Façade (341)
Pattern Application Service
(357)

Reduce remote method invocations by providing
coarse-grained method access to business tier
components

Pattern Session Façade (341)

Manage relationships between enterprise bean
components and hide the complexity of interac-
tions

Pattern Session Façade (341)

Protect the business tier components from direct
exposure to clients

Pattern Session Façade (341)
Pattern Application Service
(357)

Provide uniform boundary access to business tier
components

Pattern Session Façade (341)
Pattern Application Service
(357)

Implement complex conceptual domain model
using objects

Pattern Business Object
(374)

Table 5-2 Business Tier Patterns (continued)

If you are looking for this Find it here

CJP2.book Page 138 Friday, May 16, 2003 10:58 AM

Patterns Roadmap 139

J2EE Patterns
Overview

Identify coarse-grained objects and dependent
objects for business objects and entity bean
design

Pattern Business Object
(374)
Pattern Composite Entity
(391)

Design for coarse-grained entity beans Pattern Composite Entity
(391)

Reduce or eliminate the entity bean clients’
dependency on the database schema

Pattern Composite Entity
(391)

Reduce or eliminate entity bean to entity bean
remote relationships

Pattern Composite Entity
(391)

Reduce number of entity beans and improve man-
ageability

Pattern Composite Entity
(391)

Obtain the application data model for the applica-
tion from various business tier components

Pattern Transfer Object
Assembler (433)

On the fly construction of the application data
model

Pattern Transfer Object
Assembler (433)

Hide the complexity of data model construction
from the clients

Pattern Transfer Object
Assembler (433)

Provide business tier query and results list pro-
cessing facility

Pattern Value List Handler
(444)

Minimize the overhead of using enterprise bean
finder methods

Pattern Value List Handler
(444)

Provide query-results caching for clients on the
server side with forward and backward naviga-
tion

Pattern Value List Handler
(444)

Trade-offs between using stateful and stateless
session beans

Design “Session Bean—
Stateless Versus Stateful” (46)

Provide protection to entity beans from direct cli-
ent access

Refactoring “Wrap Entities
With Session” (92)

Encapsulate business services to hide the imple-
mentation details of the business tier

Refactoring “Introduce Busi-
ness Delegate” (94)

Table 5-2 Business Tier Patterns (continued)

If you are looking for this Find it here

CJP2.book Page 139 Friday, May 16, 2003 10:58 AM

 140 Chapter 5 J2EE Patterns Overview

J2EE Patterns
Overview

Table 5-3 shows the functions typically handled by the presentation tier pat-
terns and indicates which pattern provides a solution.

Coding business logic in entity beans Design “Business Logic in
Entity Beans” (50)
Refactoring “Move Business
Logic to Session” (100)

Provide session beans as coarse-grained business
services

Refactoring “Merge Session
Beans” (96)
Refactoring “Wrap Entities
With Session” (92)

Minimize and/or eliminate network and container
overhead due to entity-bean-to-entity-bean com-
munication

Refactoring “Reduce
Inter-Entity Bean Communi-
cation” (98)

Partition data access code Refactoring “Separate Data
Access Code” (102)

Table 5-3 Integration Tier Patterns

If you are looking for this Find it here

Minimize coupling between business and
resource tiers

Pattern Data Access Object
(462)

Centralize access to resource tiers Pattern Data Access Object
(462)

Minimize complexity of resource access in busi-
ness tier components

Pattern Data Access Object
(462)

Provide asynchronous processing for enterprise
applications

Pattern Service Activator
(496)

Send an asynchronous request to a business ser-
vice

Pattern Service Activator
(496)

Asynchronously process a request as a set of par-
allel tasks

Pattern Service Activator
(496)

Transparently persist an object model Pattern Domain Store (516)

Table 5-2 Business Tier Patterns (continued)

If you are looking for this Find it here

CJP2.book Page 140 Friday, May 16, 2003 10:58 AM

Summary 141

J2EE Patterns
Overview

Summary

So far, we have seen the basic concepts behind the J2EE patterns, understood the
tiers for pattern categorization, explored the relationships between different pat-
terns, and taken a look at the roadmap to help guide you to a particular pattern. In
the following chapters, we present the patterns individually.

There are three chapters, for presentation, business, and integration tiers.
Refer to the appropriate chapter to find the pattern you’re interested in.

Implement a custom persistence framework Pattern Domain Store (516)

Expose a web service using XML and standard
Internet protocol

Pattern Web Service Broker
(557)

Aggregate and broker existing services as web
services

Pattern Web Service Broker
(557)

Table 5-3 Integration Tier Patterns (continued)

If you are looking for this Find it here

CJP2.book Page 141 Friday, May 16, 2003 10:58 AM

