
1

Building Enterprise
Applications With Spring

Keith Donald

http://www.springframework.com

keith@interface21.com

Agenda

� The Spring architecture end-to-end

�Applied to a realistic business case

�You’ll learn the value Spring provides:
• In the middle tier

• In the web tier

�Goal: experience why enterprise Java
development is fun again

Spring Is…

� The leading full-stack application framework

applicable:

• Everywhere—

� System configuration and assembly

• In the Middle tier—

� Java/J2EE support libraries focused on ease-of-use

• In the Web tier—

� Model 2 MVC, Web Flow

• On the Desktop—

� A Swing-based rich client platform

�You use what you need

2

Spring AgileDev
(Build, Test, Deploy)

Spring Web Stack

Servlet MVC Portlet MVC

Web Flow Remoting

Spring Middleware Stack
(IOC, AOP, TX, DAO, ORM, MGMT, JCA)

Many view Spring increasingly as an integration pla tform of
best-of-breed components…

People like Spring because it…

� Is not invasive

�Brings leverage

� Lets you focus

�Provides choices in a consistent manner

�Delivers on power and convenience

� Is sustainable
• Interface21, BEA, Oracle all provide professional Spring
support

Spring Point of Sale (POS)™

� The best way to learn is by example

�Retail industry, order provisioning module

� This vertical slice must:

• Allow a sales rep

• To place a product order

• On behalf of a customer

�Goal: implement this “end-2-end” slice in the

next 45 minutes

3

How can Spring help in the middle tier?

�Managing your business objects

�Making your business objects testable

� Executing data access operations

�Demarcating transactions

�Performing security checks

�Messaging other systems (JCA, web, etc)

What are the key business contracts?

@Transactional

public interface SalesProcessor {

public void processSale(Sale sale);

}

public class Sale {

private int itemCount;

private MonetaryAmount price;

private ShippingType type;

private CustomerKey customer;

public MonetaryAmount discountRate();

public MonetaryAmount totalCost();

}

Managing your business objects

�What are the implementations of those

contracts?

• public class JdbcSalesProcessor

�What does that implementation need “to

work”?

• A DataSource

• Jdbc Helper

• A Transaction Manager

4

Managing your business objects

�Spring drives object assembly

Transactional
SalesProcessor

(Dynamic
Proxy)

JdbcSales
Processor

DataSource
Spring generated

Your object

“Off the shelf” component

<beans>

<import resource=“transaction-proxy-creators.xml”/>

<bean id=“salesProcessor” class=“sellitem.JdbcSalesProcessor”>

<property name=“dataSource” ref=“dataSource”/>

</bean>

<bean id=“dataSource” class=“org.apache.dbcp.BasicDataSource”>

<property name=“driverClassName” value=“${db.driver}”/>

<property name=“url” value=“${db.url}”/>

<property name=“username” value=“${db.username}”/>

<property name=“password” value=“${db.password}”/>

</bean>

</beans>

�Your business objects are J2SE POJOs focused

on “main line” logic

� They are handed what they need “to work”

• They don’t ask for it

• So they don’t hard code dependencies on expensive

resources

�What they need to work can be mocked to test

main line logic in isolation

Making your business objects testable

5

Unit testing

�Unit tests test an object implementation in

isolation

�No need for the Spring container

� Just extend TestCase, use the new operator to

create objects to test

�Use mocks if necessary

Unit Testing - Example

public class SaleUnitTests extends TestCase {

public void testCalculateDiscountRate() {

MonetaryAmount amt = new MonetaryAmount(100);

Sale sale = new Sale(5, amt);

sale.setCategory(Category.A);

assertEquals(new MonetaryAmount(20), sale.getDiscountRate());

}

}

Integration Testing

� Integration tests test object interaction to

complete a use case

�Spring’s container handles system test

configuration

� Each test runs in its own transaction

�With automatic transaction rollback on test

tear down

� Testing is fast

• No need to deploy to a J2EE container

6

Integration Testing - Example

public class SellItemIntegrationTests extends
AbstractTransactionalDataSourceSpringContextTests {

private SalesProcessor salesProcessor;

@Override

public String[] getConfigLocations() {

return new String[] {

“sellitem/middle-tier-configuration.xml

}

}

@Transactional

public void testProcessSaleSuccess() {

// main line test logic here

}

}

Executing data access operations

�Resource connection management and

statement preparation is handled for you

• No more evil “TCFTC”

• No more resource leaks

� Exception root cause analysis is handled for

you

�All data access operations participate in

transactions automatically

JDBC Data Access - Example
public class JdbcSalesProcessor extends JdbcDaoSupport implements

SalesProcessor {

public void process(Sale sale) {

getJdbcTemplate().executeUpdate(“insert into SALES values

(?, ?, ?, ?)”, new Object[] { null,

sale.getItemCount(),

sale.getPrice(),

sale.getShippingType(),

sale.getCustomerKey().longValue() });

}

}

Notice the code you are not writing…

7

Demarcating Transactions

�You express the TX policies you need, Spring
makes it happen
• TX management is an aspect

� The transactional context propagates to
individual DAO operations seamlessly

� The TX manager is pluggable

�Scaling up from JDBC-driven to JTA-driven
transactions is a matter of configuration
• Does NOT impact application code
• Does NOT impact demarcation metadata

Demarcating Transactions - Annotations

<bean class="o.s…DefaultAdvisorAutoProxyCreator"/>

<beanclass="o.s…TransactionAttributeSourceAdvisor">
<property name="transactionInterceptor” ref=“txInterceptor"/>

</bean>

<bean id="txInterceptor“ class="o.s...TransactionInterceptor">
<property name="transactionManager” ref=“txManager"/>
<property name="transactionAttributeSource">
<bean class="o.s...AnnotationsTransactionAttributeSource“/>

</property>
</bean>

<bean id=“txManager”
class=“o.s…DataSourceTransactionManager”>
<property name=“dataSource” ref=“dataSource”/>

</bean>

How can Spring help in the web tier?

�Managing your web tier objects

�Making your web tier objects testable

�Modeling the page flow

�Managing conversational state

�Routing requests to handlers

�Binding form input to your domain objects

�Validating your domain objects, with error
reporting

� Integrating multiple view technologies

8

Hosting your web-tier services

�You can “spring to life” your web tier, too

�Spring glues your web-tier with your middle-

tier—seamlessly

� Examples of web-tier services:

• Controllers

• Flows

• View Resolvers

• Message Sources

Flow Architecture

�A wizard for a phone operator to use to sell

items to her customers

�Characteristics:

• An “application transaction” or “conversation” that spans

several steps

• Some steps solicit user input

• Some steps are decision points

• Some steps perform calculations

• Navigation from step-to-step is controlled

9

How would you do this today with
Struts?
1. Create a session-scoped ActionForm to hold

the wizard form data

2. Define a JSP for each step

3. Define an Action for each step

4. Expose each Action at a request URL

5. Have the form rendered by the JSP submit to

that URL

6. At the end, delegate to a business service to

commit the transaction

What this looks like

/step1.do

Controller 1 HTTP
Session

storeForm

page1

/step2.do

Controller 2
page2

updateForm

/lastStep.do

Controller 3
confirmationPage

processTx

Business
Service

Issues with this approach

�Request centric: no concept of an ongoing
conversation or flow

�Brittle dependency on request URLs

�Manual state management

�Odd new window behavior

�Proper back button behavior is difficult

� “Loose” controlled navigation

�Difficult to observe process lifecycle

�Controller and command logic are coupled

�Heavily tied to HTTP

10

Consequences

�Many lines of custom code are written to

address these issues

�As an application grows more complex

maintainability breaks down

� Fundamentally, something is missing

� Traditional approaches today lack a key

abstraction: the Flow

�A Flow is typically longer than a single request

but shorter than a session: a conversation!

Flow Conversation Analogy

Keith (on his European vacation)

Friend (Melbourne, Florida)

Friend: Hello?
Keith: Hi Friend!
Friend: Hi Keith! So, have you
decided to just stay in Europe
for good now?
Keith: Life IS great here, huh?
☺

Keith: Gotta go, bye!

The SWF approach

start “sell Item”

Flow
Execution
Storage

store

firstPage

“Sell Item”
FlowExecution

submit

nextPage

submit

confirmationPage

load

11

Significant architectural differences

�One flow drives the entire conversation

�When user input is required, the flow “pauses”

and control returns to the client

�Clients “signal” events to tell the flow what

happened

� The flow responds to events to decide what to

do next

�What to do next is fully encapsulated

• Flows are modular “black boxes”

Flow Execution State Transition Diagram

Created

Active

start

user input
needed

Paused

user event
signaled

Resuming

subflow
spawned

Ending

end

Question

Q: How do you program the Flow?

Q: How does it know what to do in response to

user events?

A: You create a Flow definition

12

Flow Definition Structure

�A Flow definition serves as instructions to a
finite state machine

� It consists of a set of states that you define

� Each state executes a polymorphic behavior
when entered
• View states solicit user input

• Action states execute commands

• Subflow states spawn child flows

• End states terminate flows

� Events you define drive state transitions

The “Sell Item” Flow Definition

start
Enter Price

and Item Count

submit

Select Item
Category

Is Shipping
Required?

Enter Shipping
Information

yes

no
Process Salesubmit

submit

Show
Cost Overview

View State

Action State

Decision State

End State

Code Break!

� The “Sell Item” Flow Definition

• If viewing on-line, see presentation notes

� The Flow Integration Test

� The Views (JSPs)

�Demo of the Flow Execution

13

Advantages

� The logical flow is clearly defined, readable

� Navigation rules are encapsulated in one place

� No dependency on any request URLs

� Navigation is strictly enforced

� State management is automatic

� Flow lifecycle is fully observable

� Controller logic is clearly decoupled from command
logic
• The Flow is the controller, deciding what state to enter next

• States execute arbitrary behavior when entered

� HTTP independent

� Flow definitions are extremely toolable

Tying it all together

�User starts a new “sell item” process

�A new conversation is started, a new “Sale”

object is put in “flow scope”

�User completes forms, the flow drives

navigation and updates “Sale” state

�On completion of the flow, processSale is

invoked

�processSale begins a transaction that

propagates across multiple DAO calls

� End-2-end in very few lines of code

Resources and Upcoming Events

� www.springframework.org
• New CMS portal means we now bring you a lot more content

� Web Flow Wiki provides a “Quick Start”
• Practical guide

• Articles

� Web Flow Ships with 7 sample applications
• Phone Book (Core sample)

• Sell Item (Wizard with Continuations)

• Birth Date (Struts integration)

• Item List (Transaction Synchronization)

• Number Guess (Example of conversation history)

• Flow Launcher (How to launch flows)

• File Upload (A flow to upload files)

14

Resources and Upcoming Events

� Public Spring Training
• 4-day “bootcamps” across North America, Europe

• www.springframework.com/training

� The Spring Experience
• International conference for agile Java developers

• http://www.thespringexperience.com

• December 7 – 10th, 2005, Sheraton Resort, Bal Harbour
Beach Florida

• 40+ technical sessions across four tracks: Web, Enterprise,
Process, Beyond J2EE

• Featuring
� Rod Johnson (Spring Founder, i21 CEO)
� Juergen Hoeller (Spring Co-Founder, i21 CTO)
� Adrian Colyer (AspectJ Founder, i21 Chief Scientist)
� Rob Harrop (Author, Pro Spring)
� … and many more

• Super early bird registration period open now

Think Big: The Spring Experience 2005

Conclusion

�Spring is a complete, modular, pragmatic full-

stack application framework

� It adds serious value in:

• The middle tier

• The web tier

�Spring will continue to innovate

�Spring will continue to simplify

�Got Spring?

