
7

.

. .
JPQL

Java Persistence Query Language, SQL, and bulk operations

This chapter is focused on the Java Persistence Query Language (JPQL). After you are briefly introduced to the JPQL, you will jump
right into creating queries. All aspects of a query are covered in this chapter, including the fetch join operator. The fetch join
operator enables you to eagerly fetch lazy relationships, potentially eliminating the LazyInitializationException, which has
plagued many applications that use an ORM solution. You will also look at the JPQL’s bulk operation support. By the end of this
chapter you will be familiar with all aspects of the JPQL.

. .OV E R V I E W

The JPQL is a database-independent, entity-based query language. It is an extension of the EJB Query Language
(EJB QL) and adds many features that have been unavailable in the EJB QL. The JPQL includes support for
projection (selecting individual entity fields instead of the entire entity), bulk operations (update and delete),
subqueries, join, group by, and having operations. All JPQL operations are supported in both static (named
queries) and dynamic queries. In addition, JPQL queries are polymorphic, so fetching Rank entities will return
SpecialRank and PostCountRank instances (Rank is an abstract class, and JPQL returns only concrete types).

The JPQL is SQL-like in its syntax: “select from [where] [group by] [having] [order by]”. If you know
SQL, you already know much of the JPQL syntax. The JPQL also supports SQL-like functions such as max and
min, but it is not as comprehensive as its SQL counterpart. Regardless of how similar, an important difference
exists between the two: the JPQL operates on the “abstract persistence schema” and not on the physical schema
defined in the database. You define the abstract persistence schema using JPA metadata in annotations or in ORM

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 154

files (see Chapter 2: Entities Part I, Chapter 3: Entities Part II, and Chapter 4: Packaging for more information about
annotations and ORM). The abstract persistence schema encompasses entities, their fields, and any relationships
you have defined. The JPA persistence provider translates your JPQL into native SQL queries, which means that
you specify an entity or its fields in the SELECT portion of your query and entities in the WHERE clause. You can also
use the dot (.) notation to traverse relationships in the SELECT portion of your query. Here is an example of
traversing the PrivateMessage to User association from the agoraBB object model:

SELECT p.toUser FROM PrivateMessage p

This query will retrieve the User the PrivateMessage was addressed to.

Although the JPQL refers to all possible operations as queries, only three types of “queries” exist in reality: SELECT
queries (what you would normally think of as a query), update queries (which are not queries but update state-
ments), and delete queries (again not really queries but delete statements). The JPA specification refers to all of
these operations as queries, and you define all three of them using the same syntax; all that differs is their effect on
the database.

This chapter covers the following topics:

• JPQL overview

• Joins

• Where, Group by, Having

• The SELECT clause
• Order By

• Bulk operation support

• Examples

JPA 101: Java Persistence Explained

JPQL

PAGE 155

. .
 .

. .

. .JPQL O V E R V I E W

NOTE: JPQL queries
are case insensitive,
except for entity names
and entity fields. There-
fore, you can use any
case you want in all
other portions of the
query. Throughout this
chapter, I use all caps
for JPQL-reserved iden-
tifiers, but you do not
need to use this format
in your application.

JPQL operates over what is called the abstract persistence schema, which is the schema that is defined by the entities of
a persistence unit. With SQL, you select columns from database tables; with JPQL, you select fields from entities.
All portions of a JPQL statement operate on entities and their fields or properties. You never refer to the database
table or column an entity is mapped to. Here is the most basic JPQL statement you can create:

SELECT u FROM User

This query fetches all User instances from the database.

JPQL TYPES

JPQL is a typed language in which each expression in a JPQL statement has a type.

NOTE: A typed
language is one that
defines which opera-
tions are valid for which
types. For example, if
you try to compile
“123” + 3 in Java, you
receive an incompat-
ible types compiler
error.

For example, take the following query:

SELECT u.username FROM User u

In this query, u.username is an expression that results in a String type. This query returns a list of String
objects, and each item in the list represents a different user name in the system. The JPQL specification refers to
the various types contained in an entity (fields and properties) as the abstract schema type.

An entity can have one or more of the following abstract schema types:

• state-field: This type includes any field or property of an entity that does not represent a relationship.
The type of the field or the result of the get method for a property determines the abstract schema-
type of a state-field.

• association-field: This type includes any field or property of an entity that represents a relationship.
The abstract schema type of the association-field is that of the target entity.

The domain of your JPQL statement is defined by the entities of the persistence unit you are executing the query
on.

An entity is referred to by its name in a query. An entity’s name is the name you specified with the @Entity anno-
tation or the entity’s unqualified name. Consider the entity in Listing 7.1:

http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 156

Listing 7.1

The name of the entity in Listing 7.1 is “message” because you defined the name using the @Entity annotation
(entity names must be unique within a persistence unit). In Listing 7.2, the entity’s unqualified name is User (starts
with an uppercase letter “U”). The entity’s full name is com.sourcebeat.jpa.model.User, but its unqualified
name is simply User.

Listing 7.2

When referring to an entity in JPQL, you need to use the entity’s name as specified with @Entity or its unqualified
name. Some JPA persistence providers (for example, Hibernate) allow you to use the fully qualified name but other
persistence providers (for example, TopLink) throw an exception. For portability, use the unqualified entity name
in queries.

An identification variable is an identifier that is specified in a FROM clause. In the following query, u is an identifica-
tion variable. The type of u is the abstract schema type of the entity that was identified by the name User. In this
example, the entity is User (defined earlier), so the type of u is User.

SELECT u FROM User u

Identification variables can also be defined using the JOIN keyword, like this:

SELECT r.name FROM User u JOIN u.roles r

package com.sourcebeat.jpa.model;

@Entity(name="message")
public class PrivateMessage extends ModelBase {

 // fields/methods removed for readability

}

package com.sourcebeat.jpa.model;

@Entity
public class User extends ModelBase {

 // fields/methods removed for readability

}

JPA 101: Java Persistence Explained

JPQL

PAGE 157

. .
 .

. .

Here, the identification variables are u and r. r represents any Role that is directly reachable from a User instance.

RESERVED IDENTIFIERS

The JPA defines the following reserved identifiers (even though the list below is shown in uppercase, reserved
identifiers are case insensitive, so SELECT is the same as select or SelECt):

SELECT, FROM, WHERE, UPDATE, DELETE, JOIN, OUTER, INNER, LEFT, GROUP, BY, HAVING, FETCH, DISTINCT,
OBJECT, NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN, EMPTY, MEMBER, OF, IS, AVG,
MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, MOD, UPPER, LOWER, TRIM, POSITION, CHARACTER_LENGTH,
CHAR_LENGTH, BIT_LENGTH, CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, NEW, EXISTS, ALL, ANY,
SOME.

UNKNOWN is not currently used in the JPQL.

PATH EXPRESSIONS

A path expression is defined as an identification variable followed by the navigation operator (.) followed by a
state-field or an association-field. You can traverse relationships as long as they are not collections. Figure 7.1
shows a portion of the agoraBB object model and is used to help explain path expressions.

Figure 7.1: Path expression example model

The PrivateMessage to User relationship is represented by the PrivateMessage association-field toUser. User
has a collection association-field to Roles called roles and another to UserIpAddress called userIpAddress.
Given these relationships, you can perform the following navigations:

• PrivateMessage to User to UserIpAddresses

SELECT p.toUser.userIPAddresses from PrivateMessage p

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 158

• PrivateMessage to User to Role
SELECT p.toUser.roles from PrivateMessage p

• User to Role, fetching all distinct role names
SELECT DISTINCT r.name FROM User u JOIN u.roles r

• User to UserIpAddress
SELECT DISTINCT u.userIPAddresses FROM User u

The relationships in Figure 7.2 are slightly different than those shown in Figure 7.1.

Figure 7.2: Path expression example model 2

In Figure 7.2, you have the Forum to Topics relationship represented by the Forum field topics, and the Topics
to Post relationship represented by the Topic field posts. This object graph illustrates which JPQL path expres-
sions are legal and which are not:

• Forum to Topic, fetching the subject: This path expression is illegal: you cannot navigate across
collections.

SELECT f.topics.subject FROM Forum f – ILLEGAL

• Forum to Topic to Post: This path expression is legal using the JOIN operator.

SELECT t.subject FROM Forum f JOIN f.topics AS t

• Forum to Topic to Post: This path expression is illegal; you cannot navigate across a collection.

SELECT f.topics.posts FROM Forum f – ILLEGAL

• Forum to Topic to Post: This path expression is legal using the JOIN keyword.

SELECT p FROM Forum f JOIN f.topics t JOIN t.posts p

JPA 101: Java Persistence Explained

JPQL

PAGE 159

. .
 .

. .

NOTE: Although the
JPA specification states
that you cannot navi-
gate a collection associ-
ation-field, my testing
with both Hibernate
and TopLink allowed
me to navigate across a
collection association
and access a state-field
in the target entity. The
JPA BNF grammar for
path navigation also
indicates the Forum to
Topic, so fetching the
subject should be an
illegal operation. If you
need to access the
target of a collection
association-field, use
the JOIN syntax shown
in the second example.

In summary, you can use the navigation operator (.) to traverse your entity object graph. The query type is deter-
mined by the variables in the SELECT clause. The SELECT clause can contain identification variables or path expres-
sions. A path expression can navigate across the entity object graph as long as you move from left to right across
single-value association-fields. You cannot navigate across a collection association-field or a state-field.

RANGE VARIABLES

Range variables use syntax similar to SQL and tie together an entity name with an identification variable. A range
variable declaration is defined (in the FROM clause of a query) as:

entityName [AS] identification_variable

You can use the same entity name in multiple-range variable declarations as in the example in Listing 7.3, which is
taken from the JPA specification:

Listing 7.3

This query retrieves all orders that have a quantity greater than John Smith’s order.

. .JO I N S

A join occurs when the results of two or more entities are combined to produce the results of a JPQL query. JPQL
joins are similar to SQL joins: In the end, all JPQL queries are translated into native SQL anyway. A join occurs
when any of the following conditions are met:

• A path expression, which traverses an association-field, appears in the SELECT clause

• The join reserved identifier appears in the WHERE clause

• Two or more range variables are defined

SELECT DISTINCT o1
FROM Order o1, Order o2
WHERE o1.quantity > o2.quantity AND
o2.customer.lastname = ‘Smith’ AND
o2.customer.firstname= ‘John’

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 160

If you have more than one entity involved in your query and you do not use a join, you retrieve all instances from
all entities. This result is referred to as the Cartesian product. Assuming you have eight roles and four users in your
system, the following query returns 32 objects:

SELECT r, u FROM Role r, User u

Typically, you will use some form of a join to reduce the number of entities returned from your query. If you want
to join entities on a field other than their primary keys, you can use a theta-join. Here is an example:

SELECT t FROM Topic t, Forum f WHERE t.postCount = f.forumPostCount

This query returns any Topic that has the same post count as a Forum. A theta-join allows you to join entities that
otherwise might not have an explicit relationship or to join them on unrelated but similar information.

INNER JOIN

An inner join in JPQL is also referred to as a relationship join. The syntax of an inner join is:

[INNER] JOIN join_association_path_expression [AS] identification_variable

Both INNER and AS are optional; you can use them to more clearly document the intent of your query, although
they do not affect the query in any way.

So what does join_assocation_path_expression mean? It means you are navigating an association-field of an
entity — either a single-valued association or a collection. Figure 7.3 shows two inner join queries.

Figure 7.3: Two example join queries

JPA 101: Java Persistence Explained

JPQL

PAGE 161

. .
 .

. .

Because you cannot navigate a collection association-field in a SELECT clause, the JPQL gives you the INNER JOIN
operator. If you want to navigate the Forum-to-Topic-to-Post relationship (shown in Figure 7.2) and fetch all
Post titles, you would create a query like this:

SELECT p.title FROM Forum f JOIN f.topics AS t JOIN t.posts AS p

This query would result in a list of zero or more String objects that represent the various post titles in which a
Forum to Topic to Post join occurred.

LEFT OUTER JOIN

An outer join will return all instances of one entity and the instances of the other entity that match the join criteria.
The syntax for a left join is

LEFT [OUTER] JOIN join_association_path_expression [AS] identification_variable

The [OUTER] reference is optional because the LEFT JOIN and LEFT OUTER JOIN operators are considered to be
the same thing in JPQL. Using the Forum/Post entities in Figure 7.2, the following left join fetches all Forum
instances and any Topic that is associated with a Forum. If no Topic is found, the second item in the Object array
will be null:

SELECT f, t FROM Forum f LEFT JOIN f.topics t

Using my sample database, the above query returned the following results:

[Object: [Forum] Object: [Topic]]
[Object: [Forum] Object: [null]]
[Object: [Forum] Object: [null]]
[Object: [Forum] Object: [null]]
[Object: [Forum] Object: [null]]

The query returned all Forum instances and only one Topic because only one Forum has a Topic (looks like the
message board needs some users).

Because a LEFT JOIN operator is an effective way to pre-fetch a relationship, the JPA created the FETCH JOIN oper-
ator. The FETCH JOIN operator is covered in the next section.

FETCH JOIN

A fetch join allows you to create queries that pre-fetch an otherwise lazy relationship. If you know a LAZY relation-
ship will be needed after the entities have been fetched and the entities may be detached, you can pre-fetch the rela-
tionship using the FETCH JOIN operator. The FETCH JOIN syntax is:

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 162

[LEFT [OUTER] INNER] JOIN FETCH join_association_path_expression

Unlike the previous join definitions, FETCH JOIN does not have a range variable because you cannot use the
implicitly referenced entity anywhere in the query. The following query will fetch any Forum entity that has a
Topic. Only those Forum instances with Topics are fetched. Listing 7.4 shows how the Forum entity is defined.
Note that the relationship to Topic is Lazy.

Listing 7.4

Here is the query:

SELECT DISTINCT f FROM Forum f JOIN FETCH f.topics

Because five forum instances exist in the database and only one has a topic, the above query will return one forum
instance, and the topic’s relationship will be eagerly fetched. If you did not use the DISTINCT operator, the persis-
tence provider would retrieve one instance of forum for every topic in the system. By using the DISTINCT oper-
ator, any duplicate instances are removed.

To fetch all forum instances and eagerly fetch any topics they have, use LEFT JOIN FETCH, as in the following
query:

SELECT DISTINCT f FROM Forum f LEFT JOIN FETCH f.topics

This query returns a list of unique forum instances, and the topics field is eagerly fetched. The only drawback to
using the JOIN FETCH operator is the need to know the object model. Once you know the fetch type of the rela-
tionships, you can use JOIN FETCH to optimize your queries.

@Entity
public class Forum extends ModelBase implements Serializable {

 @OneToMany(fetch=FetchType.LAZY,
 cascade={CascadeType.PERSIST, CascadeType.MERGE},
 mappedBy="forum")
 @OrderBy("type asc, dateUpdated desc")
 Set<Topic> topics = new HashSet<Topic>();

 // ...
}

JPA 101: Java Persistence Explained

JPQL

PAGE 163

. .
 .

. .

. .WHE R E , GRO U P B Y , HAV I N G

The WHERE clause of a query is composed of conditional expressions that determine the entities to be retrieved.
You can use the GROUP BY clause to aggregate the results of your query as long as the fields you GROUP BY appear
in the SELECT clause. You can further refine your results with the HAVING operator. The JPA specification does not
require persistence providers to support HAVING without GROUP BY; for portability, you might not want to use
HAVING without GROUP BY.

Figure 7.4 is a diagram of a Post/User object.

Figure 7.4: Post/User object diagram

Let’s say you want to determine the number of posts each user in the agoraBB system has made. Using the objects
in Figure 7.4, you will notice that no User to Post relationship exists. Because both User and Post inherit from
the ModelBase MappedSuperclass, we know that each Post object has a createdByUser and updatedByUser
field. Using the inner join syntax, you could write this query:

SELECT count(p) From Post p JOIN p.createdByUser u

The problem is that this query returns the total number of posts that have been created by a user using the
createdByUser field. If you want to know how many posts each user has made, you need to use the GROUP BY
operator:

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 164

SELECT u, count(p) From Post p JOIN p.createdByUser u GROUP BY u

This query returns a user entity and the number of posts the user has made. To further refine your results, you can
filter the groups (identified by GROUP BY) with the HAVING operator. The following query returns users and their
post count as long as they have a password with more than eight characters:

SELECT u, count(p) From Post p JOIN p.createdByUser u GROUP BY u HAVING length(u.password) > 8

CONDITIONAL EXPRESSIONS

Conditional expressions are used in the WHERE clause and HAVING clause of a JPQL query (SELECT, UPDATE, or
DELETE). You should be aware of a couple of restrictions when you are creating a conditional expression:

• Including a LOB state-field in a conditional expression might not allow it to be portable across database
vendors.

• String literals are enclosed in single quotes like ‘this’. If you need to use a single quote in your query, use
two single quotes together. You cannot use a Java escape sequence in a query (for example, \’ to represent
a single quote). Boolean values are represented with the TRUE and FALSE literal (they are not case
sensitive), numeric literals follow Java conversions, and date literals are not supported. Enum literals are
also supported, but you must use the fully qualified name of the Enum, such as
com.sourcebeat.jpa.model.FTPType.

• Identification variables must appear in the FROM clause of a SELECT or DELTE query. If you are writing an
UPDATE query, the identification variable must appear in the UPDATE clause. Identification variables always
represent the entity type for which they are defined and do not represent entities in a collection.

• You can use positional or named input parameters, but you cannot mix the two types within a given query.
An input parameter can appear in the WHERE clause and/or the HAVING clause of a query.

• The format for a positional parameter is question mark (?) followed by a positive integer starting from
1. For example, ?1. You can repeat the same positional multiple times in a query, as in the following
example:

SELECT u FROM User u WHERE u.dateCreated = ?1 OR u.dateUpdated = ?1

• A named parameter is represented by a colon (:) followed by a Java identifier, such as a java variable
name. Named parameters look like this:

SELECT u FROM User u WHERE u.dateCreated = :aDate OR u.dateUpdated = :aDate

JPA 101: Java Persistence Explained

JPQL

PAGE 165

. .
 .

. .

FUNCTIONS AND EXPRESSIONS

JPQL supports functions, various IN, LIKE, and BETWEEN style expressions, and collection-oriented conditional
expressions. This section details the various options that are available to you when you are writing a query.

The operator precedence in a JPQL query is:

• Navigation operator (.)

• Unary (+,-)

• Multiplication (*), Division (/)

• Addition (+), Subtraction (-)

• Comparison operators =, >, >=, <, <=,<> (not equal), [NOT] BETWEEN, [NOT] LIKE, [NOT] IN,
IS [NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF]

• Logical operators: NOT, AND, OR

BETWEEN
The BETWEEN comparison operator allows you to specify a range of values for the field of an entity. The syntax of
BETWEEN is:

expression [NOT] BETWEEN expression AND expression

Where expression is a string, arithmetic, or datetime expression. Here are some example queries using the
BETWEEN operator:

SELECT u FROM User u WHERE u.dateCreated between :startDate AND :endDate
SELECT t FROM Topic t WHERE t.postCount NOT BETWEEN ?1 AND ?2

IN
The IN comparison operator enables you to specify a list of values for a state-field. You can list one or more items
as literals or parameter values (named or positional) or use a subquery to dynamically generate a list of values.
String, numeric, or enum type state-fields can be used with the IN operator. The state-field type must match the
type of the list of values. The syntax for the IN operator is:

state-field [NOT] in (item {, item2}* | subquery).

Here are a couple of examples:

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 166

SELECT f FROM Forum f WHERE f.type IN (?1, ?2)
SELECT f FROM Forum f WHERE f.type IN (1, 2)

LIKE
The LIKE operator allows you to search string fields for partial values. JPQL uses an underscore (_) to represent
any one character in your search string. The percent character (%) represents a sequence of characters; all other
characters represent themselves in the query. The general format of LIKE is:

string-expression [NOT] LIKE pattern [ESCAPE escape-char]

If you need to use the underscore or percent sign as a literal in your query, use the ESCAPE format. For example,
use forum.description like ‘QA_%’ ESCAPE ‘\’. You must include the backslash before the underscore or
percent sign, and you must include the ESCAPE ‘\’ syntax after the search string. Here are some examples:

• ‘tr_ck’ matches ‘truck’ and ‘trick’, but not ‘trucker’.

• ‘tr%’ matches ‘truck’, ‘tractor’, ‘trick’, and so on.

• ‘tr_ck%’ matches ‘truck’, ‘trick’, and ‘trucker’.

If you want to search for the literal string ‘_hello’, your query would be:

‘_hello’ ESCAPE ‘\’

ESCAPE ‘\’ tells the database: “I’m using the backslash as an escape character.” Here is what this looks like in
code:

em.createQuery("SELECT f FROM Forum f " +
 "WHERE f.description LIKE '_%' ESCAPE '\\'");

In this code, you use two backslash characters: The first for the Java compiler and the second for the JPQL parser.

If you try to execute the example ESCAPE query with the MySQL database, you might get a database exception. By
default, MySQL is configured to recognize the backslash as an escape character, so telling it to treat the backslash
as an escape character is an error. In order for your query to be portable across database vendors, you need to turn
off backslash escapes in MySQL (available in version 5.0 and later) for all MySQL instances or in the JDBC
connection. To disable backslash escapes for your JDBC connection, add the sessionVariables portion of the
following URL to your JDBC URL:

jdbc:mysql://localhost:3306/db?sessionVariables=sql_mode=NO_BACKSLASH_ESCAPES

For more information, see the MySQL documentation.

http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html

JPA 101: Java Persistence Explained

JPQL

PAGE 167

. .
 .

. .

IS NULL
The IS NULL comparison operator enables you to test for NULL fields — either a single-valued path expression or
an input parameter. You can use IS NOT NULL to ensure a single-valued path expression has a value, or use IS
NULL to check for NULL values.

SELECT p FROM PrivateMessage p WHERE p.dateRead IS NOT NULL
// toUser references a many-to-one relationship, so you can use IS [NOT] NULL
SELECT p FROM PrivateMessage p WHERE p.toUser IS NOT NULL
// this query does not work because we are using a
// collection-value path-expression
SELECT f FROM Forum f WHERE f.topics IS NULL

IS EMPTY
The IS [NOT] EMPTY operator is used to test for empty or not empty collection-value path-expressions.

// the above query rewritten to use IS EMPTY
SELECT f FROM Forum f WHERE f.topics IS EMPTY
// this query will find all forum entities with topics
// (i.e. the collection is not empty)
SELECT f FROM Forum f WHERE f.topics IS NOT EMPTY

MEMBER
The [NOT] MEMBER [OF] comparison operator allows you to determine whether an entity is part of a collection.
The [OF] reference is optional and does not affect the MEMBER comparison operator. You can use it or leave it off.

Use NOT MEMBER to determine whether an entity is not part of a collection. The syntax of the MEMBER operator is:

Expression [NOT] MEMBER [OF] collection-valued path-expression
// find the forum instance that contains Topic t
Query q2 = em.createQuery("SELECT f FROM Forum f " +
 "WHERE :topic MEMBER f.topics");
q2.setParameter("topic", t);
List results2 = q2.getResultList();

ST R I N G F U N C T I O N S

The following string functions are supported as functional expressions in the WHERE or HAVING clause of JPQL
query:

• CONCAT(string 1, string 2): Appends string 2 to string 1.

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 168

• SUBSTRING(string, starting position, length): Extracts length characters from string starting
at starting position.

• LOWER(string): Converts a string into lowercase.

• UPPER(string): Converts a string into uppercase.

• LENGTH(string): Returns the length of string as an integer.

• TRIM([[LEADING|TRAILING|BOTH] [char] FROM] string):Trims all leading, trailing, or both
instances of char from string. The simplest form of trim is TRIM(string), which removes BOTH the
leading and trailing space char from string.

• LOCATE(string1, string2 [,start]): Returns the position of string2 in string1. You can
optionally define a start position for the locate function.

AR I T H M E T I C F U N C T I O N S

The following arithmetic functions are supported as functional expressions in the WHERE or HAVING clause of a
JPQL query:

• ABS(arithmetic expression): Returns the unsigned value of arithmetic expressions.

• SQRT(arithmetic expression): Returns the square root of arithmetic expression as a Double.

• MOD(arithmetic expression 1, arithmetic expression 2): Takes the modulus for argument one
and two and returns an integer.

• SIZE(collection-valued path-expression): Calculates the number of elements in a collection and
returns an integer. If the collection is empty, SIZE returns zero (0).

DA T E T I M E F U N C T I O N S

The following Datetime functions are supported:

• CURRENT_DATE: The current date, as defined by the database.

• CURRENT_TIME: The current time, as defined by the database.

• CURRENT_TIMESTAMP: The current date and time, as defined by the database.

JPA 101: Java Persistence Explained

JPQL

PAGE 169

. .
 .

. .

. .TH E SELECT F U N C T I O N

The SELECT clause identifies the result of the query. The SELECT clause contains one or more of the following
elements:

• A path expression or identification variable: Identifies an entity to be returned.

• A single-valued path-expression: Specifies a field or an entity to be returned.

• An aggregate SELECT expression: Indicates a calculated value is returned (for example, COUNT (e))

• A constructor expression: Allows you to return a new object from the items selected.

The SELECT clause enables you to query for a large variety of entities, calculated values, projected values, and non-
entity classes. You cannot use a collection-value path-expression in a SELECT clause; therefore, the following query
is not valid:

SELECT f.topics FROM Forum f

As noted earlier, some of the current JPA persistence providers allow this type of query. For portability, you should
use the following query instead (see the Joins section):

SELECT t FROM Forum f JOIN f.topics t

The result of your query can be an abstract schema type (entity), a state-field (field or property of an entity), the
result of an aggregate function, an object created with the NEW operator, or any combination of these possibilities.
If you select an abstract schema type or construct a new object, the result of your query will be a list of objects with
types that are the entity or new object. If you use aggregate functions, select state-fields, or select a variety of types,
the result of your query will be a list of object array (Object[]) instances. The objects in the array correspond to
the order in which they were specified in the query. For example:

SELECT t.subject, t.content FROM Topic t

The query returns a list of Object[] instances. Each item in the list consists of two String objects: The first item
(index 0) is the subject, and the second item (index 1) is the content of the Topic.

CONSTRUCTOR EXPRESSION

You can create a new object as the result of your query. The object does not need to be an entity, but it does need
a constructor that matches the order and type of your SELECT clause. Listing 7.5 is a transient object to hold user
statistics:

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 170

Listing 7.5

The following query will calculate the number of posts each user has made in the system and store the result, the
user name, and the user ID in a UserStatistics transient object:

Query q = em.createQuery("SELECT NEW com.sourcebeat.jpa.model.UserStatistics("
 +"u.username, u.id, COUNT(p)) “
 + “FROM Post p JOIN p.createdByUser u "
 + "WHERE p.parent IS NOT NULL GROUP BY u");
List results = q.getResultList();

AGGREGATE FUNCTIONS

Use the following aggregate functions (applied to a path expression) in a SELECT clause.

AVG
Calculates the average value of the numeric argument across the result of the query and returns a Double integer

SELECT AVG(f.forumPostCount) FROM Forum f

COUNT
Calculates the total number of entities found and returns a Long integer. If no entities are found, COUNT returns 0

SELECT COUNT(f) FROM Forum f

public class UserStatistics {

 private String username;
 private Integer userId;
 private long postCount;

 public UserStatistics(String username, Integer userId, long postCount) {
 super();
 this.username = username;
 this.userId = userId;
 this.postCount = postCount;
 }
 // getter methods removed for readability
}

JPA 101: Java Persistence Explained

JPQL

PAGE 171

. .
 .

. .

MAX
Calculates the maximum value of the argument across the result of the query and returns the same types as the
argument. The MAX function can be applied to any orderable state-field, including numeric types, strings, character
types, or dates.

SELECT MAX(f.forumPostCount) FROM Forum f

MIN
Calculates the minimum value of the argument across the result of the query and returns the same types as the
argument. The MIN function can be applied to any orderable state-field, including numeric types, strings, character
types, or dates.

SELECT MIN(f.dateCreated) FROM Forum f

SUM
Calculates the sum of the numeric argument across the result of the query and returns a Double integer when the
argument is a floating point type, a BigInteger when a BigInteger type is used, and a BigDecimal integer when
the argument is a BigDecimal.

SELECT SUM(f.forumPostCount) FROM Forum f

RU L E S O F U S A G E

These functions — except for COUNT — must be applied to a path expression that ends in a state-field. You can
use a state-field, an association-field, or an identification variable as an argument to the COUNT function.

If no value exists for the SUM, AVG, MIN, and MAX functions, they return NULL.

To remove duplicates from your query before the aggregate function is applied, use the DISTINCT operator;
however, it is illegal to use the DISTINCT operator with MAX or MIN. In addition, NULL values are removed before
the functions calculate their results, regardless of whether DISTINCT is used.

The return type of these functions is important when you are using a constructor-expression SELECT statement.
The postCount property of the UserAverages object is a Long. Initially, I made it an int, but when the query ran,
Hibernate threw an IllegalArgumentException indicating no appropriate constructor was present in UserSta-
tistics. Once I realized that COUNT returns a Long, I updated UserStatistics, and the query worked correctly.

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 172

. .ORD E R BY

The ORDER BY operator allows you to order the results of your query. The database will do a more efficient job of
sorting than your application will. To maintain the order of your collection, use the ORDER BY operator (see the
@OrderBy annotation in Chapter 3: Entities Part II for more information).

Here is where the ORDER BY operator is placed in a JPQL query:

select from [where] [group by] [having] [order by]

The syntax for ORDER BY is:

ORDER BY expression [ASC | DESC] {, expression [ASC | DESC]}*

Here are a few valid ORDER BY examples:

• SELECT u FROM User u ORDER BY u

• SELECT u FROM User u ORDER BY u.address

• SELECT u.username, u.id FROM User u ORDER BY u.username DESC

expression can be an identification variable, a single-value association path, or a state-field path expression; the
queries here illustrate each of these types of ORDER BY.

You should be aware of a couple of restrictions for using the ORDER BY operator:

• When using an identification variable or single-valued association path, the item you are ordering your
query by must be an orderable type, such as a numeric type, a string, a character type, or a date.

• If you use a state-field path expression, it must also appear in the SELECT clause.

ASC represents ascending order (smallest to largest) and is the default ordering. DESC represents descending order
(largest to smallest) and is used only if you explicitly add it to the ORDER BY clause of your query. Sorting prece-
dence is from left to right in the order you list the fields.

With these conditions in mind, the following query is not valid because it orders on a field that is not included in
the SELECT clause:

SELECT u.username, u.id FROM User u ORDER BY u.password

JPA 101: Java Persistence Explained

JPQL

PAGE 173

. .
 .

. .

. .BU L K O P E R A T I O N S

The JPQL provides an alternative for updating and deleting one or more entities in a single statement. The bulk
operation support in JPQL works with one entity type (and its subclasses) at a time; that is, you can identify only
one entity in the FROM or UPDATE clause. Here is the syntax for an UPDATE query:

UPDATE abstract_persistence_scheama_name [AS] identification_variable
 SET state_field | single_value_association_field = value
 {,state_field | single_value_association_field = value }*

The value reference must be compatible with the type of the state-field or single-value association-field you are
updating. You can use any of the following values for value:

• an arithmetic expression

• string

• datetime

• boolean

• enum

• simple entity expression

• NULL

The DELETE query looks like this:

DELETE FROM abstract_persistence_scheama_name [[AS] identification_variable]
 [WHERE clause]

The syntax of the WHERE clause is the same as a SELECT query. (See the WHERE clause section for more informa-
tion.) The DELETE operation affects only the entity and the subclasses that are identified in the FROM clause. The
operation is not cascaded to any related entities. In addition, the UPDATE operation does not update the entity’s
version column.

Bulk operations are converted into SQL and executed in the database, bypassing the persistence context. When
using a transaction-scoped persistence context, execute bulk operations in their own transaction or at the begin-
ning of a transaction.

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 174

Bulk operations and extended persistence contexts are a difficult combination to manage. Because an extended
persistence context isn’t synchronized with the database until it joins a transaction, you might have entities that
were deleted but are still in the persistence-context.

Persistence providers typically invalidate some of their cache before you execute bulk operations. Depending on
the provider, some or all of the cache may be invalidated. Using bulk operations frequently can impact the perfor-
mance of your application. For these reasons, you should perform bulk operations in their own transactions or at
the beginning of a transaction.

EXAMPLES

When you create an UPDATE or DELETE query, you need to use the Query API method, executeUpdate(), to
perform the update or delete. If you use getResultList() or getSingleResult(), the persistence provider
throws an IllegalStateException. Also, if you try to execute a SELECT query with the executeUpdate()
method, the persistence provider throws an IllegalStateException.

The following listings are some bulk UPDATE examples:

• Double the post count of a forum. See Listing 7.6:

Listing 7.6

• Set the dateUpdated field of all Role entities to the current date and time. See Listing 7.7:

Listing 7.7

• Set the Boolean field (pruningEnabled) to true. In the agoraBB application, an EntityListener class
normally sets dateUpdated and updatedByUser fields. The persistence provider manages the version
column. Because these hooks are bypassed when you perform a bulk operation, the query is written to

Query q2 = em.createQuery("UPDATE Forum AS f "
 +"SET f.forumPostCount = f.forumPostCount * 2");

q2.executeUpdate();

Query q = em.createQuery("UPDATE Role AS r " +
 "SET r.dateUpdated = CURRENT_TIMESTAMP");

q.executeUpdate();

JPA 101: Java Persistence Explained

JPQL

PAGE 175

. .
 .

. .

update these fields. Also, note that executeUpdate will return the number of entities updated (or deleted
when using DELETE). See Listing 7.8:
Listing 7.8

You can reset the change to the pruningEnabled field in Listing 7.8 by setting the field to null, as shown in
Listing 7.9:

Listing 7.9

This update sets the value of an enum field. You need to use the fully qualified name of the enum class because
the enum is not an entity and the persistence provider does not know anything about Status, although it can
resolve com.sourcebeat.jpa.model.Status. See Listing 7.10:

Listing 7.10

Here are a couple of DELETE examples

• Delete all Users from the system who do not have a password. See Listing 7.11.

// Assume we already fetched the correct User identified by
// the variable adminUser
Query forumUpdate = em.createQuery("UPDATE Forum AS f " +
 "SET f.pruningEnabled = TRUE, f.dateUpdated = CURRENT_TIMESTAMP, " +
 "f.version = f.version + 1, f.updatedByUser = :user");

forumUpdate.setParameter("user", adminUser);

int entitiesUpdated = forumUpdate.executeUpdate();

Query pruningReset = em.createQuery("UPDATE Forum AS f " +
 "SET f.pruningEnabled = NULL");

pruningReset.executeUpdate();

Query enumUpdate = em.createQuery("UPDATE Forum AS f " +
 "SET f.status = com.sourcebeat.jpa.model.Status.LOCKED " +
 "WHERE f.type = com.sourcebeat.jpa.model.FTPType.ANNONUCEMENT");

int enumUpdateCount = enumUpdate.executeUpdate();

Chapter 7: JPQL

JPA 101: JAVA PERSISTENCE EXPLAINED

. .
 .

. .

PAGE 176

Listing 7.11

• Delete Forum instances that do not have any Topics. See Listing 7.12:

Listing 7.12

. .SU M M A R Y

The JPQL provides a variety of options for selecting, grouping, ordering, and summarizing your entities. It
includes rich support for joins and the ability to eagerly fetch lazy relationships. You have explored the various
functions and expressions supported and worked through all the options available to you with the SELECT clause.
The final section of this chapter ends with bulk operations, which is the ability to affect one or more entities with a
single query (actually a DELETE or UPDATE statement).

You should now be familiar enough with the options provided to you by the JPQL to create your own query from
the simple to the complex.

Query removeRoles = em.createQuery("DELETE FROM User u " +
 "WHERE u.password = NULL");

int rolesRemoved = removeRoles.executeUpdate();

Query removeForums = em.createQuery("DELETE FROM Forum f " +
 "WHERE f.topics IS EMPTY");

int forumsRemoved = removeForums.executeUpdate();

