

Soumen Sarkar & Craig Cleveland Page 1 of 20

CODE GENERATION USING XML BASED DOCUMENT
TRANSFORMATION

Soumen Sarkar
sarkar_soumen@yahoo.com

Craig Cleaveland
craig@craigc.com

Published on

Soumen Sarkar & Craig Cleveland Page 2 of 20

Abstract

Software projects can greatly benefit from custom document generators. The term
‘document’ in the context of a software project includes various software artifacts. A
software project consists of various activities which lead to the production of documents
in many forms. An example of such a document is a programming language file that is
used to implement computational specifications. The document transformation approach,
when applied to the particular area of code generation, incorporates a higher degree of
automation into the software development life cycle. The benefits of this approach are
model driven programming, automatic update propagation, and a higher degree of
consistency enforced by a generative approach.

With recent interest in XML standards and availability of tools supporting these
standards, it has become possible to generate multiple types of documents by applying
XML document transformation technology. Using XML document transformation
technology, it has become easier to develop custom code/document generators in
application development projects.

An object based server side infrastructure was used in the ‘sample’ project referred to in
this whitepaper. Object and relational model code generation coupled with object
services provided by the EJB framework created a very powerful paradigm of server side
infrastructure development. The project had a tremendous lead by being able to build
further on this sophisticated server side infrastructure rather than spending time on
building the infrastructure itself. The project was totally focused on building application
logic and delivering functionality. Out of approximately 2300 java files in the project,
1900 files were generated using XML document transformation technology.

Introduction

This paper is mostly about how code generation aids speedier application software
development. However, this paper will also highlight the fact that source code generation
processing is a particular application of the broad technology of XML based document
transformation.

Document generation is an old concept in software engineering. In our day-to-day
activities in software development, we use document generators in the form of
programming language compilers, program generators, and html document generators to
name a few. However, software projects also rely on the availability of professionally
developed tools to achieve generation in some fixed areas. Professionally developed tools
may not be free and may not be suited to the custom requirements of a software project.
On the other hand, existing approaches to generation from custom language
specifications are not easy to implement.

In the opinion of the authors, complexities in the current approach to code/document
generation have impeded widespread acceptability of the generative approach in

Soumen Sarkar & Craig Cleveland Page 3 of 20

application software development projects. This article will show how current XML
based standards and freely available tools supporting these standards provide an easier
way to develop custom code/document generators.

Soumen Sarkar & Craig Cleveland Page 4 of 20

A real world software project has greatly benefited by following the generative approach
in application software development. The purpose of the project was to develop a
network management system for a large network. The project used generation extensively
in the areas of Enterprise Java Bean code, SNMP based network management code, Java
helper utilities, and the SQL schema for relational databases. Though the project did not
undertake, it was stillpossible to generate other kinds of documents such as SVG pictures
or PDF documents out of XML data the project had.

This paper is organized into four sections, namely,

• Principles for document/code generation
• An outline of the XML approach
• Details of the XML approach
• The generative approach in application software development projects

While this paper will demonstrate that an XML based generation approach is easy
enough for it to be considered in many projects, it is not a general approach. There are
some limitations. The conclusion addresses this and puts the applicability of the current
XML transformation approach into proper perspective.

Soumen Sarkar & Craig Cleveland

Principles for document/code generation A code generator generally consists of a
number of distinct processing phases as shown in the following figure.

Figure 1: Document Generation Processing Pha

Input files contain specifications of some sort conforming to the syn
language. Input files may be related to each other, for example, the #
C or the import directive in the Java.

The parser, which could be hand written or generated by some tool,
language documents token by token and constructs the input languag
input language conforms to all syntax rules as specified by the gram
error, it is the responsibility of the parser to indicate it at the precise
document. Two kinds of parsers exist, namely, the tree constructin
event driven parser. Tree constructing parsers parse the input docu
construct the tree, and hand it over for further processing. Event dri
user as soon as desired grammatical constructs are recognized. In ev
the user needs to determine which parse events to listen to and whic
user constructs the data structures as parse events are being received

PARSER

INPUT
DOCS

OUTPUT
DOCS

TRANSF

WRITER

DOCUMENT

GENERATION

PROCESSING

PHASES

SELECT
INPUT LANGUAGE
SYNTAX TREES
ORM
ION
OUTPUT LANGUAGE
SYNTAX TREE
 Page 5 of 20

ses

tax of the input
include directive in

parses the input
e syntax tree if the

mar. In case of an
location in the
g parser and the
ment in order to

ven parsers notify the
ent driven parsing,
h ones to ignore. The
. .

Soumen Sarkar & Craig Cleveland Page 6 of 20

The parse tree holds in-memory representation of the input language documents.
Construction of the parse tree is absolutely essential since it captures the document in a
data structure on which all further processing algorithms operate. Note that there can be
more than one tree representing documents conforming to different languages. For
example, Java byte code could be generated from multiple languages including Java, and
there could theoretically be a processor accepting all these languages. This paper shows
an example where application of multiple languages (in a very loose sense) is necessary.

Once the parse tree has been formed, two kinds of processing may occur, namely,
transformation and selection. The goal of the transformation phase is to convert a given
tree into another tree based on some goals. For example, optimization processing might
transform the parse tree into a simpler tree by eliminating redundant information. The
selection phase is more important in the sense that it drives the code generation based on
the information found in the tree. For example, we evaluate an expression like (a+b) by
selecting the + operator and then browsing the tree rooted at the + operator to understand
that variable a and b should be added. In effect, selection means browsing through the
tree and driving the code generation.

The writer operates on the output language syntax tree to produce the output language
document and write it to the file system. The writer is the opposite of the parser in the
sense that it produces the language document from the tree as per the output language
grammar. Bear in mind that the output language document may be of the same or of a
different language.

S

An outline of the XML approach

In the XML approach, the input language is always XML; however, there is no restriction
on what the output can be. XML has a fixed grammar, which has enabled the
development of excellent parsers.. XML, with its element, attribute, and namespace
capability can cover the specification requirements of many domain languages. The best
testament to this fact is the availability of so many domain specific languages that are
based on XML. From this standpoint it could be argued that XML is a very good base
language to define domain specific languages. For example, consider that Java does not
have an enumeration type. A project using Java may use the following XML specification
to generate Java utility classes having enumeration functionality:

T
e
d
a
e
e
d

O
p
v
c
s
t
X
M
X
p
(
d
n
a
a
c
e

<EnumDef name = ‘DayOfWeek’>
 <choices>
 <choice name = 'SUNDAY' value = '0' />
 <choice name = 'MONDAY' value = '1' >
 ……
 <choice name = 'SATURDAY' value = '6' />
 </choices>
</EnumDef>
oumen Sarkar & Craig Cleveland Page 7 of 20

he above specification is intuitive enough to convey the fact that DayOfWeek is an
numerated type with seven distinct values. This also shows that the process of defining a
omain specific language in XML consists of defining the markup elements and element
ttributes. In the case where domain language elements clash with preexisting XML
lements, the XML namespace facility should be used to distinguish domain language
lements. The set of XML namespace, elements and tag attributes define the XML based
omain language.

nce the input language document is defined in XML, XSLT scripts can be written to
rocess documents conforming to the input language and generate output documents in
arious forms. As previously explained, a document could be a source code file or it
ould be an electronic document in various forms. XSLT is an XML based language
tandardized by W3C. Processors supporting the XSLT language standard are used to
ranslate XML documents into other XML or text documents. There are a number of free
SLT processors available; this study used the SAXON XSLT processor developed by
ichael Kay.
SLT is used for document transformation; for example, it can be used in a multiple line
ublishing scenario including HTML for web clients, Wireless Markup Language
WML) for wireless clients, and Portable Document Format (PDF) for print
ocumentation. The concern of one document content yet multiple presentation formats is
eatly addressed by using XSLT transformation in the web based information
rchitecture. However, in our opinion, the preceding use of XSLT has received the most
ttention in web document publishing scenarios and not for its utility of custom
ode/document generation in application software development projects. This paper
mphasizes the fact that XSLT offers an easy approach to code generation.

Soumen Sarkar & Craig Cleveland Page 8 of 20

Please note that this strategy of code generation is perfectly in accordance with the
processing model in figure 1. Compared to the traditional approach of code generation
using lex and yacc, this approach has many features aiding the faster development of
code generators as shown below:

Parser: XML document parsing is implemented in the XSLT processor, whereas with a
custom parser, one needs to implement the parser or understand how to use a program
generator such as lex/yacc to generate the parsing framework.

Tree: The XSLT processor constructs the tree and provides access to the tree as per the
XPATH specification. The user does not have to bother constructing the tree at all. With
the custom parser, the user needs to populate the tree as the parsing progresses.

Tree processing: The XSLT processor provides access to the tree through the XPATH
expression and provides many programmatic constructs and functions to perform tree
processing. In other words, XSLT users write XSLT scripts to perform operations on the
tree. On the other hand, this part needs to be programmatically implemented by code
generator writers following other approaches. XSLT programming for code generation
programming is at a high level, namely, at the level of tree abstraction. Note that with
XSLT, eventhough the code generation programming is at the tree level abstraction, the
programmer never needs to worry about tree data structure implementation details.

Writer: The XSLT processor implements this part too.

To write a code generator, the software developer only writes XSLT scripts using XSLT
and XPATH facilities. Another important benefit of XSLT based code generation is the
amount of flexibility that is allowed in the change of input document grammar.More
specifically, additional elements and attributes can be introduced in the input language
specification without affecting code generation scripts. Contrast this to a custom parser
driven approach, where there will be major change propagation throughout the code
generation system. These are complexities in the application software development of
custom code generation not present in the use of XSLT.

Figure 2 shows the process of document generation using XSLT. Typically, XSLT
processors produce one output file. An external utility could break the single output file
into multiple files. For example, in the case of source code, the output file can delimit the
beginning and the end of each file with markers not likely to occur as part of the source
code. Furthermore, the location of each file could also be indicated as part of the
generation. The external utility then processes the single output file to produce multiple
files in multiple locations. Similarly, input to the XSLT processor should preferably be
one XML file including other XML files. There are techniques to achieve XML include
and W3C is working on a standardized XML include mechanism.

Soumen Sarkar & Craig Cleveland Page 9 of 20

Figure 2: XSLT based document generation process

XSLT PROCESSOR

X
M
L

P
A
R
S
E
R

X
M
L

W
R
I
T
E
R

I
N
P
U
T

T
R
E
E
S

O
U
T
P
U
T

T
R
E
E

T
R
E
E

T
R
A
N
S
F
O
R
M

INPUT XML
FILES

OUTPUT
FILES

XSLT
SCRIPTS

Soumen Sarkar & Craig Cleveland Page 10 of 20

Details of the XML approach

The detail lies in the use of XSLT and XPATH to implement the desired transformation
from the XML source document to the destination document. XPATH is a separate W3C
standard that is intimately related to XSLT. XSLT defines a transformation language that
operates on the tree representation of XML documents. XPATH defines the syntax of a
language that is used within XSLT scripts to address parts of the XML document tree
being transformed. XPATH is the ‘tree addressing’ language. An XSLT processor
implements XSLT and XPATH specifications and, optionally, some extension functions
to make the life of an XSLT script-writer easier. Accordingly, code or document
generation using XML/XSLT requires the following abilities:

• Ability 1: The ability to define the application’s specifications in XML. This
involves the determination of XML elements, XML element attribute names,
values, and the nesting structure.

• Ability 2: The ability to visualize the tree that will result from the input XML

documents containing code generation specifications.

• Ability 3: The ability to use XSLT and XPATH facilities to browse through

the XML tree and generate output based on the tree content.

It is beyond the scope of this paper to explain XSLT and XPATH. There are a number of
well-written books and internet resources available on these subjects. Installation and
usage details of the XSLT processor are very easy. This section demonstrates the
concepts covered so far in two ways, namely:

• Through a very simple code generation example. The example will illustrate
the need for the three required abilities as defined above.

• By Describing the various areas of code generation in a real world software

project.

Soumen Sarkar & Craig Cleveland Page 11 of 20

 Example

Let us demonstrate the Java enumeration utility class code generation. We first need to
decide how we would like to specify the code generation (ability 1). We decided that a
particular enumeration specification will look like the following:

The specification has the following statements, not expressible formally with XML
syntax:

1. <EnumDef> element attribute name, <choice> element attribute name can
only have values as per Java language specifications for variable names. This is
due to the fact that the target language is Java.

2. <choice> element attribute value can only have distinct integral values. There
has to be at least one <choice> element nested within the <choices>
element.

With this specification in mind, we start defining XML documents containing Java
enumeration code generation specifications. We have two documents shown below. As
the names hint, AuthoredEnum.xml was authored by project software developers,
whereas GeneratedEnums.xml was generated by a utility program from some data
source.

AuthoredEnums.xml GeneratedEnums.xml
<Enumerations>
<EnumDef name = ‘AccessEnum’>
<choices>
<choice name = ‘read_only’ value =
‘1’/>
<choice name = ‘read_write’ value =
‘2’/>
</choices>
</EnumDef>
<EnumDef name = ‘SeverityEnum’>
<choices>
<choice name = ‘critical’ value =
‘1’/>
<choice name = ‘major’ value =
‘2’/>
<choice name = ‘minor’ value =
‘3’/>
<choice name = ‘warning’ value =
‘4’/>
</choices>
</EnumDef>
</Enumerations>

<Enumerations>
<EnumDef name = “ActionEnum”>
<choices>
<choice name = “start” value =
“1”/>
<choice name = “stop” value = “2”/>
<choice name = “test” value = “3”/>
</choices>
</EnumDef>
<EnumDef name =
“AccessControlEnum”>
<choices>
<choice name = “permit” value =
“1”/>
<choice name = “deny” value = “2”/>
</choices>
</EnumDef>
</Enumerations>

<EnumDef name = ‘name of the enum’>
<choices>
<choice name = ‘name of the choice’ value = ‘integer value’/>
</choices>
</EnumDef>

Soumen Sarkar & Craig Cleveland Page 12 of 20

Figure 3:

One technique of XML inclusion (using an external parseable entity reference) is used to
present only one XML input file at XSLT processing time. The XML file in effect has all
the enumeration definitions. The XML file is shown below:

AllEnums.xml
<?xml version = “1.0”?>
<!DOCTYPE AllEnums[
<!ENTITY include_authored_enums SYSTEM “AuthoredEnums.xml”>
<!ENTITY include_generated_enums SYSTEM “GeneratedEnums.xml”>
]>
<AllEnums>
&include_authored_enums;
&include_generated_enums;
</AllEnums>

Figure 4: Technique for XML include

The second step is to visualize the internal tree structure that will be created inside the
XSLT processor. The tree structure is depicted in two parts. The first part shows the
overall tree structure and the second part shows the tree structure rooted at the first
<EnumDef> element.

Figure 5: Part 1 of the tree structure

Figure 6: Part 2 of the tree structure

For the sake of accuracy, it should be emphasized here that the actual tree structure is
much more detailed than what is depicted here. For example, attributes are nodes; text

<AllEnums>

<Enumerations> <Enumerations>

<EnumDef name=’ActionEnum’> <EnumDef name=’AccessControlEnum’>
NOT

SHOWN

<EnumDef name=’ActionEnum’>

<choices>

<choice name=’start’ value=’1’/>

<choice name=’stop’ value=’2’/>

<choice name=’test’ value=’3’/>

Soumen Sarkar & Craig Cleveland Page 13 of 20

values are nodes and so on. However, Figures 5 and 6 are sufficient to continue our
present discussion.

Soumen Sarkar & Craig Cleveland Page 14 of 20

The third step is to use XSLT and XPATH facilities to process this tree to produce the
output files. The XSLT script processes the AllEnums.xml file and produces one output
file named enum_codegen.snp which is processed (snipped) by a utility program (file
snipper) to produce four java files named AccessEnum.java, SeverityEnum.java,
ActionEnum.java and AccessControlEnum.java respectively. For the sake of
simplicity, each Java class has only one method whose purpose is to return the string
value of the enum, given the integral value. After setting the classpath environment
variable to contain saxon6.4.3.jar, the following command will execute the XSLT
script to generate code for the enumerations.

java com.icl.saxon.StyleSheet –o gen_enum.snp AllEnums.xml
enum_codegen.xslt

What this command is saying is ‘execute the XSLT processor
com.icl.saxon.StyleSheet to produce output file gen_enum.snp from input
file AllEnums.xml by using XSLT script file enum_codegen.xslt.’

In Figure 7, the XSLT script and the output it produces are shown side by side. The
output is shortened for brevity.

Enum_codegen.xslt(version 1) gen_enum.snp

<?xml version=’1.0’?>
<xsl:stylesheet version=’1.0’
xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>
<xsl:output omit-xml-declaration=’yes’/>

<xsl:template match = ‘/’>
<xsl:for-each select=’//EnumDef’’>
//@@@BEGIN_FILE <xsl:value-of select=’@name’/>.java
//@@@LOCATION common.gencode.enums
//*************************************
//*********** Generated code. ************
//*************************************
public class <xsl:value-of select=’@name’/>
{
 public static String getEnumValueAsString(int
enumValue)
 {
 }
}
//@@@END_FILE AccessEnum.java
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

//@@@BEGIN_FILE ActionEnum.java
//@@@LOCATION common.gencode.enums
//*************************************
//*********** Generated code. ************
//*************************************
public class ActionEnum
{
 public static String getEnumValueAsString(int enumValue)
 {
 }
}
//@@@END_FILE ActionEnum.java
…….
Repetition of above pattern for SeverityEnum.java,
AccessEnum.java, AccessControlEnum.java
…….

Figure 7: The XSLT script and the output produced

Soumen Sarkar & Craig Cleveland Page 15 of 20

The code generation script enum_codegen.xslt, version 1, could be explained as
follows:

1. The first four lines are declarations, which are not very relevant from a code
generation point of view.

2. The line <xsl:template match = ‘/’> instructs the XSLT processor to find the

root node in the tree and apply the rules contained in the template body. The body
works as follows:

a. The xsl:for-each loop selects <EnumDef> child nodes within the

root node or from its descendants. There are four <EnumDef> children
found within the node hierarchy starting from the root node. So, the
xsl:for-each loop will execute four times. Please refer to figure 5.

b. For each execution of the xsl:for-each loop, all non xsl text is copied

to the output. That means the first line within the xsl:for-each loop
copies //@@@BEGIN_FILE to the output. The XSLT processor then
processes the instruction <xsl:value-of select=’@name’/>.java
which outputs the value of the name attribute of the current <Enumdef>
child followed by the .java extension. In a similar manner, you can analyze
what happens for the other lines within the xsl:for-each loop.

This step illustrates why it is important to visualize the input tree. At every
instruction, we are using the XSLT or XPATH facility to navigate the input tree
and select content from it to mix with our java bits and pieces to produce the
output java files. Without a clear idea of the input tree, it would not be possible to
use XSLT effectively to generate the desired code.

Hopefully, this explains the code generation development process with XML/XSLT. We
are now in a position to show the XSLT script fragment, which completes
getEnumValueAsString(). Please refer to Figure 6.

XSLT code fragment Corresponding generated code fragment
Public static String getEnumValueAsString(int
enumValue)
{
 switch(enumValue)
 {<xsl:for-each select=’choices/choice’>
 case <xsl:value-of select=’@value’/>:
 return “<xsl:value-of select=’@name’/>;
 </xsl:for-each>

 default:
 return null;
 }
}

public static String getEnumValueAsString(int
enumValue)
{
 switch(enumValue)
 {
 case 1:
 return “start”;
 case 2:
 return “stop”;
 case 3:
 return “test”;

 default:
 return null;
 }
}

Soumen Sarkar & Craig Cleveland Page 16 of 20

Figure 8: Completing the code generation for method getEnumValueAsString

Generative approach in an Application Software Development Project

The purpose of the project was to develop a Network Management System (NMS).
Network management systems are like typical IT applications with the exception that
they have to manage the information of a communication network. As a result, a major
portion of the NMS igoes into providing network device access through some
management protocol. Another core part of the NMS is the object infrastructure, which
captures the information of the managed network based on an object and relationship
model. The project benefited heavily by using a generative approach in these core areas.
As was illustrated earlier, a lot of Java enumeration code was also generated. Although
the project did not undertake, it was possible to generate other kinds of documents from
the XML data the project had.

Network Access code generation

Simple Network Management Protocol is a UDP based network management protocol
applied extensively in the data communication industry. Data exchanged over SNMP is
defined in Management Information Base (MIB) with a language called Abstract Syntax
Notation One (ASN.1). A commercial ASN.1 MIB compiler was used to ‘dump’ the MIB
in text form. The MIB dump was then processed by a Java utility program to convert the
ASCII MIB dump to XML. Essentially, the XML form has every bit of information that
is available in the ASN.1 based management information base.

Once the SNMP MIB was available in XML form, XSLT processing was applied to
generate object-oriented Java APIs on a very high level (i.e far removed from the
drudgery of programming according to low level SNMP APIs). The high level SNMP
APIs were flawlessly used by all project software developers. This approach could be
compared with CORBA. Before CORBA, distributed application programming used to
be done by expert TCP/IP programmers. With the advent of CORBA, TCP/IP based code
was generated from the contract language. Thus, distributed application programming
nowadays no longer requires TCP/IP experts. With SNMP code generation in our project,
device control code no longer required SNMP experts.

There is another benefit of generating high-level APIs for network access. Two flavors of
implementation were generated. One flavor provides network access by way of SNMP.
Another flavor simulates network access by storing/retrieving data from local files.
Application code using the high level API remains unaffected when one implementation
is switched with another. Code generation for file based SNMP simulation allowed the
project to proceed without waiting for the actual device to be ready. This is a tremendous
advantage since network management development can proceed in parallel and can be
tested with a very large simulated network.

S

Server side code generation

An object based server side infrastructure was used in this project. Application servers
complying to the Enterprise Java Bean (EJB) standard provide concurrency, transaction,
security, persistence, and naming services for the objects. A server side system
development consists of implementing the information model by using Enterprise Java
Beans and providing interfaces for remote access to the information which satisfy
graphical user interface use cases. The project specified the information model along with
a number of relationships in XML. A fictitious object showing object and relationship
model capability is shown below. The model specifies the following:

• The Employee object has attributes like salary, job-title, join-date. It will
inherit other attributes from the Person object.

• The Employee object cannot exist without a containing Division object.
• If one has access to the Employee object, one can get access to all its

subordinates, which are objects of class Employee.
• If one has access to the Employee object, one can get access to the supervisor,

which is an object of class Employee.

A
r
a
r
a
c

O
E
d
f
b
l

<managed-object class-name = “Employee”>
<base-object class-name = “Person”/>
<containing-object class-name = “Division”/>
< one-to-many-relation role-name = “my-subordinates” class-name =
“Employee”/>
<one-to-one-relation role-name = “my-boss” class-name =
“Employee”/>
<attribute name = “salary” type = “float”/>
<attribute name = “job-title” type = “string”/>
<attribute name = “join-date” type = “java.util.Date”/>
</managed-object-class>
oumen Sarkar & Craig Cleveland Page 17 of 20

Figure 9: An example of object and relational modeling in XML

ll of the above specifications were implemented by auto generation. Similarly, a
elational database schema in SQL was generated for implementing persistence of object
nd relational model information. XML deployment descriptors were generated for
untime deployment of Enterprise Java Beans. Further, semantics were imparted by using
pplication classes inheriting generated classes, and application specific behavior was
oded in derived classes.

bject and relational model code generation coupled with object services provided by the
JB framework created a very powerful paradigm of server side infrastructure
evelopment for the project. The project had a tremendous lead by being able to build
urther on this sophisticated server side infrastructure rather than spending time on
uilding the infrastructure itself. The project was totally focused on building application
ogic and delivering functionality.

Soumen Sarkar & Craig Cleveland Page 18 of 20

Limitations

The approach of code generation starting from XML and applying XSLT has some
limitations. We experienced these limitations when doing extensive code generation work
in real application software projects. These limitations are listed below.

• The input language is XML. XML syntax may be abhorrent to some. XML
should be considered an underlying data representation language. Tools such
as editors, both textual and visual, provide high level browsing and editing
capabilities. These tools should be used while working with XML. If XML is
generated from some other source (like ASN.1 mib), then this concern does
not arise.

• XSLT is a purely functional language, which means there are no side effects
allowed. For example, to implement a for-loop of fixed count one needs to
implement a tail recursive template with a suitable termination condition.
There are many more ‘habit adjustments’ application programmers need to
make before becoming comfortable with XSLT programming. Moreover,
XSLT has a ‘logic programming flavor’, a paradigm with which some
application developers may not be familiar. XSLT syntax is quite verbose
which is bothersome to say the least. XML escape mechanisms needs to be
used for generating symbols like ‘<’ (less than), ‘>’ (greater than) and others
which are heavily used in source code. Some XSLT workbenches are
available to mitigate this inconvenience.

• There is no Integrated Development Environment (IDE) available for XSLT
yet. Unlike the IDEs we have for C++/Java development with graphical
debugging capabilities, no such things exist yet for XSLT . The debugging
technique that was followed is to print part of the tree in the output document
itself, i.e., by using <xsl:value-of ..>. The printed tree was then inspected to
understand how a desired selection/transformation could be caused using
XSLT/XPATH.

• The XSLT processor is quite permissive with regards to mistakes/omissions
made in input the document. For example, missing elements or attributes do
not cause the XSLT processor to fail. They cause missing output!
Consequently, for source code generation, there will be compiler errors
somewhere down the line. There are a number of solutions to this problem of
input document validation. For example, one can use Schematron, an XSLT
based assertion facility for XML document validation. XML schema enabled
parsers may be able to do some validation based on the schema description of
the document.

• XSLT is not a complete programming language. It is not possible to do certain
kinds of transformations using just XSLT. There are a number of efforts in
achieving XML transformation parallel to XSLT. Take a look at fxt

Soumen Sarkar & Craig Cleveland Page 19 of 20

(Functional XML Transformation) by Alexandru Berla et al and GSLgen from
iMatrix.

Regardless of the above limitations, it could be argued that XSLT is being used to
support application software development rather than being used directly in application
software development. Consequently, project members’ exposure to XSLT will be
minimal once the correct code generation has been figured out. For most code generation
purposes, an XSLT based solution is feasible. It is our belief that an XML based
document transformation approach needs to become more widely known among
application software developers in order to achieve its benefits as demonstrated in this
paper.

Conclusion

This paper showed how XML based document transformation technology can benefit
application software development projects. Here are some software metrics to show you
how our project benefited:

• Out of approximately 2300 java files in the project, 1900 files were generated.

• SNMP coding was extremely easy. For example it took only one line of Java
code to display the RFC1213 ipRouteTable as shown below

System.out.println(new IpRouteTableUtils().getIpRouteTable(deviceInfo));

IpRouteTableUtils is generated from RFC1213 ASN.1 MIB. The method
getIpRouteTable returns the table object which is displayed in the
System.out.println call. The deviceInfo object has the device IP address and the
SNMP read community.

With the standardization of XML transformation by XSLT/XPATH, and with the
increasing availability of good literature on the subject, it is our firm belief that code
generation by XML transformation using XSLT will give application software
development projects tremendous leverage in attaining increased productivity without
sacrificing quality. One developer’s expertise in XSLT and code generation could
dramatically lessen the burden on other software developers by providing semantically
rich, high-level APIs through code generation. With XSLT 2.0 features, the task of code
generation will become easier.

Soumen Sarkar & Craig Cleveland Page 20 of 20

 Author Biographies
Soumen Sarkar is currently Lead Software Engineer in Atoga Systems Inc. He specializes
in building large-scale distributed object systems, network management protocols and
software architectures. He has more than ten years of experience in building object
oriented software.

Craig Cleveland is an independent software consultant, instructor, and author of
“Program Generators with XML and Java”. He specializes in domain engineering,
Internet applications using Java and XML, and software architectures. Previously, he
worked at AT&T Bell Labs developing and promoting program generator technologies.
At Internet Games Corporation, Craig designed and implemented multi-player game sites
including rating systems and fully automated tournaments. Visit him at http://craigc.com.

References

1. Program Generators with XML and Java by J. CRAIG CLEAVELAND.

2. XSLT 2nd Edition, Programmer’s Reference by Michael Kay.

3. SAXON XSLT Processor, http://saxon.sourceforge.net/

4. GSLgen, http://www.imatix.com/html/gslgen/index.htm

5. Fxt, generator of XML document transformers,
http://www.informatik.uni-trier.de/~aberlea/Fxt/

6. Schematron: A XML Structure Validation Language,
http://www.ascc.net/xml/resource/schematron/schematron.html

7. XML in 10 points, http://www.w3.org/XML/1999/XML-in-10-points

8. Extensible Markup Language (1.0), http://www.w3.org/TR/REC-xml

9. XSL Transformation (XSLT) Version 1.0, http://www.w3.org/TR/xslt

10. XML Path Language (XPATH) Version 1.0, http://www.w3.org/TR/xpath

	Soumen Sarkar
	
	
	
	
	Published on

	Introduction
	
	Figure 2: XSLT based document generation process

