Reviewers: Please enter your comment directly into this document and email them to Sydney_Argenta@msn.com.

PART

THREE

Reviewers: Please enter your comment directly into this document and email them to Sydney_Argenta@msn.com.

Advanced Enterprise JavaBeans Concepts

If you’ve read to this point, you should be quite familiar with the basics of Enterprise JavaBeans development. In Part Three, we raise the bar by moving on to more advanced concepts. These include the following:

EJB Best Practices. Chapter 11 covers a lot of best practices pertinent to EJB such as when to use EJB, how to choose the right Web application framework when working with EJB applications that have Web clients, how to apply aspect-oriented programming concepts with EJB, and many more of such best practices/guidelines.

Transactions. Chapter 12 shows you how to harness transactions to make your EJB deployments reliable. We’ll discuss transactions at a conceptual level and how to apply them to EJB. We’ll also learn about the Java Transaction API (JTA).

EJB Security. Chapter 13 provides an in-depth coverage of techniques and best practices surrounding EJB application security. It covers how to declaratively and programmatically enable authentication and authorization in EJB applications. Also the chapter showcases enabling JAAS based authentication for EJB applications.

EJB Timers. Chapter 14 focuses on building EJB timers. It covers how to write and deploy code that uses the timer service provided by containers.
BMP and CMP relationships. Chapter 15 covers how to build relationships between entity beans, both BMP and CMP. This is an essential EJB 2.0 topic for anyone performing persistent operations with entity beans.
Persistence Best Practices. In Chapter 16, you’ll learn about some of the critical tradeoffs when building a persistence layer—how to choose between session beans and entity beans, how to choose between BMP and CMP—and survey a collection of persistence best practices that we’ve assembled from our knowledge and experience.

EJB-based Integration. Chapter 17 covers various approaches to integrate disparate applications with EJB. Here you will learn how various technologies such as J2EE Connectors and Web services could be used to integrate EJB applications with the outside world.
EJB Performance Optimizations. Chapter 18 covers tips and techniques for boosting EJB performance. You’ll learn about best practices for boosting performance of stateless session bean, stateful session bean, entity beans and message-driven beans. Also, a lot of miscellaneous design and development tips are covered in this chapter.

Clustering. Chapter 19 shows you how EJBs are clustered in large-scale systems. You’ll learn how clustering works behind the scenes, and a few strategies for how containers might achieve clustering. This is a critical topic for anyone building a system that involves several machines working together.

Starting Your EJB Project on the Right Foot. Chapter 20 shows you how to get your project take off in the right direction. This includes how to choose between J2EE and .NET, how to staff your project team, which are the important investment areas to ensure project success, etc.

How to choose an EJB server. In Chapter 21, we’ll describe our methodology for how an organization can compare and contrast different vendors’ offerings. We’ll also list our criteria for what we would want in an EJB server.

EJB-J2EE Integration: Building a Complete Application. Chapter 22 shows how each of the EJB components can work together to solve a business problem, as well as how EJB and J2EE can be integrated, as through Java Servlets and JavaServer Pages (JSPs).
These are extremely interesting middleware topics; indeed, many books could be written on each subject alone. To understand these concepts, we highly recommend you read Part One and Part Two first. If, however, you’re already well versed in EJB, please join us to explore these advanced issues.
Chapter

11
EJB Best Practices

In this chapter, we will discuss best practices in terms of design, development, building, testing and working with EJB. These guidelines will help in answering some of the dilemmas you face in the real world EJB projects. By being aware of these best practices, you will avoid common pitfalls that others have experienced when building EJB systems.

Note that persistence related best practices and various performance optimizations are covered in Chapter 16 and Chapter 18 respectively.

Let us begin now with various design, development, testing, debugging, and deployment strategies.

Note: We do not discuss lower level EJB design patterns in this chapter since there are many resources in terms of books, papers, etc. that already focus on that. Besides, discussing lower level EJB design patterns itself warrant for a whole book. Our recommendation is that you read EJB Design Patterns published by John Wiley & Sons as a guide for EJB Design Patterns.

When to use EJB

Although the answer to this should be fairly simple, in reality, it is not. The cost of not making a correct go or no-go decision for EJB can be very high. It can range from project getting delayed to project getting scrapped. Hence, we would like to take a few moments to address this very crucial design point in the very beginning.

In our opinion, you should think of using EJB in design situations where:

* Remoting is required. Gone are the days when everybody used to think of distributed systems as a panacea. Modeling an application’s functionality into various tiers comprising of reusable components is surely a way to achieve clean and manageable design. However, deploying these components on separate boxes just for the heck of it does not necessarily result in the best systems. Do not confuse the need for componentization vis-à-vis distribution of these components on multiple systems. Both are quite different and both have different costs associated with them.

With that said, once you determine the need for distributed components in your application, consider EJB as your first alternative. Their sole purpose is to provide a programming model to build managed and distributed components in Java platform.

* Transactional capability is required. Transaction semantics are beautifully defined by the EJB standard. A protocol as complicated as 2-phase commit – one of the most widely used protocol in enterprise applications today – is neatly supported by the EJB architecture. Thus, for large-scale (ACID) transactional systems, leveraging EJB makes a lot of sense.

One of the common complains against EJB transaction model is its lack of support for nested transactions and long-running transactions. Well, this will not remain the case for long. JSR 095 [J2EE Activity Service for Extended Transactions] defines a low level framework for creating various transaction models. At the time of this writing JSR 095 is in Proposed Final Draft stage. Hopefully, it shall become part of J2EE 1.5 platform.

* Component-security is required. EJB architecture defines a standard fine-grained security model for the components. Although, EJB architecture does not provide support for fancy security schemes such as Single Sign-On or Biometric authentication as yet, it does provide a basic framework for authentication and access-control that is more than enough to meet security needs of 85% of enterprise applications. So if you have a requirement for access-control at the application component level (and not just at the Web level), then you should consider using EJB.

* Persistence is required. Much has been said – both, good and bad – about the persistence functionality as defined by EJB standard. Although there are numerous ways to achieve persistence in EJB applications these days, ranging from the de facto open source frameworks such as Hibernate to de jure frameworks such as Java Data Objects (JDO), an important point to remember here is that EJB persistence, especially CMP, can come very handy for systems that are extremely transactional and time sensitive. We have dedicated an entire chapter (Chapter 16) to cover best practices related to the various persistence related best practices.

* Integration with legacy applications is required. More recently, this has become one of the main selling points of EJB architecture. EJB provides multiple elegant models viz. J2EE Connector Architecture, EJB Web services, and JMS for integrating with legacy/non-legacy applications deployed on heterogeneous platforms. Thus, if your application requires integration with another application, you should consider using EJB framework for this integration. Chapter 17 covers these EJB integration programming models and related best practices in depth.

* Scalability is required. EJB technology was designed with scalability in mind. The idea is to make scaling up of applications seamless, i.e. without re-architecting and re-programming, so that it simply becomes a matter of throwing more hardware at an application. J2EE lets you scale your EJB and Web tiers separately. Remoting allows for you to keep both of these tiers on separate boxes and scale these boxes as per the need. For example, an application that involves simple Web interface but complex middle-tier processing, throwing more resources at systems on which EJB application is deployed just makes more sense.

In conclusion, if you are going to need transactions, remoting, security, persistence, application integration and other such infrastructure oriented facilities in your application, consider leveraging the time-tested EJB framework in your project. Working with EJB can get complex if not done right. However, there are thousands of ways to deal with this complexity. But, creating your own framework is definitely not one of them.

is using a POJO + framework combination ALWAYS a good idea?

Recent wave in enterprise Java computing is to replace all or some parts of EJB framework with frameworks such as Spring, Hibernate, etc. Spring framework (http://www.springframework.org) is a J2EE framework. Spring applications can be built using EJB or using POJO. In case you choose latter, Spring can provide declarative local transactions for your POJO without relying on the EJB container. Similarly, Spring supports data access via JDBC and O/R mapping frameworks such as Hibernate. Thus, Spring is unique in the sense that it makes using heavy-weight EJB containers a matter of choice and not necessity in some respects. It provides a lightweight framework alternative for writing business tier objects.

Hibernate (http://www.hibernate.org) is another popular O/R framework whose biggest value proposition is ease of use. It is POJO-driven lightweight transactional persistence and data access framework. One of the interesting features it provides is modeling of inheritance relationships of data.

Like always, we would like to maintain that just as EJB is not a sure shot way of building robust and scalable applications, similarly using POJO frameworks are also not sure shot way of simplifying business tier development and deployment. Think of using POJOs only when the architectural benefits are substantial. Note that ease of development is not always equipped with highly transactional enterprise functionality. For instance, if distributed transactions are a must for your application, Spring + POJO would not work.

Safest route is to stick to EJBs and trust JCP to evolve the standard, and evolve they will. EJB 3.0 entity beans, from the draft specification, seem to have borrowed many concepts from Hibernate. If the direction taken by EJB 3.0 tells us anything, it is that JCP is open to gain from the experiences of the community.

How to choose a Web application framework to work with EJB

Model 2 Web application frameworks have very much become a part of infrastructure software these days and rightly so. Working with such frameworks guarantee a lot of functionality related to localization, error handling, validation of form data, etc. out of the box which otherwise needs to be coded when working with raw Web components such as Servlet and JSP.

There are dozens of Web application frameworks, both open source and closed source, to choose from. Choosing a Web application framework is an important decision point for you as an architect. Here are some of the factors that you should consider while deciding upon a Web application framework for your EJB project:

* Integration with EJB technology. In EJB projects one of the obvious requirements for your Web application framework would be – how well it integrates with EJB technology. EJB integration basically implies the support for EJB design patterns, EJB entity beans handling, etc. from within the framework components. For instance, Struts community has made it quite simple to work with EJB via the StrutsEJB project (http://strutsejb.dev.java.net). StrutsEJB project provides base classes and patterns (mainly – Service Locator, Business Delegate, DTO, and Session Façade patterns) to build a Struts Web application that uses EJB in the business tier.

* Tools support. Tools enable Rapid Application Development (RAD) thereby increasing productivity. Most of the framework communities / vendors provide some kind of IDE plug-in technology based tools to help in development. However, usually this plug-in support is limited to one or two IDE at most. So if you are using a different IDE than what the plug-in supports, you might have no tools available for the framework.

For instance, although Tapestry is a powerful framework, Spindle, a plug-in that provides IDE support for Tapestry, is only available for Eclipse IDE. As a result, projects that use other IDE such as NetBeans have to manually develop and deploy the framework components.

On the other hand, mature frameworks such as Struts have good tools support in the form of IDE plug-ins (Struts Console plug-in for NetBeans, Eclipse and Struts Tools for IBM WSAD, etc.) and stand-alone GUI tools (Struts Console and Struts Studio).

* Small device support. Generating content in a markup language such that it can be rendered on small devices is a very real requirement of today’s business applications. If your application falls in this category then you should select an application framework that provides a comparatively painless way of generating markup content for small device browsers. Most of the device browsers today support WML, HDML, cHTML or XHTML markup languages. Frameworks such as Cocoon, SOFIA, and Struts provide tag libraries for generating device markups such as WML, HDML, and XHTML.

Note: If your candidate framework does not provide a tag library for the needed markup language, then you should think about developing a new tag library. Developing a tag library is a non-trivial task and hence, should be considered only when other options are not available.

* Standards support. View technology leveraged by these Web application frameworks should be standards based simply because you do not want to trade innovation from the wider JCP community for innovation from your specific Web application framework community. Although, all the Web application frameworks are based on standards, watch out for those proprietary hooks.

* Learning curve and availability of expertise. If you are planning on using your existing staff for application development, then you should consider the learning curve required for them in order to efficiently develop using the candidate Web application framework. Make sure that proper help and documentation is available for the candidate framework, regardless of whether it is open or closed sourced, to speed up the learning. On the other hand, if you are planning to hire new people for your project then select a framework that is popular and widely used so that finding the right talent is possible.

* Open source vs. closed source. At the end of the day, if most of your requirements in the above areas are met by a given application framework, we’d like to say - it does not matter whether it is closed source or open source. However, that is what we see in reality. In the real world, both cost and a sense of control over your own destiny are important concerns. We have witnessed quite a few projects where open source Web application frameworks were chosen because they were “good enough” and were “free”. In some other projects, open source Web application frameworks were chosen simply because their source was made available for tweaking. Whereas in a select few cases customers went for closed source application frameworks from vendors because of a well-defined product support model.

Whatever your reasons might be to choose open source or closed source Web application framework, we recommend that you select a framework that meets most of the criteria given above.

Note: A very interesting project named Wafer (www.waferproject.org) is underway. Wafer aims at comparing some of the popular Web application frameworks using a common application. The criteria for comparison includes support for localization, form validation, documentation, error handling, tools, integration with other technologies, small devices, etc. At the time of this writing, Wafer was evaluating only open source Web application frameworks.

Applying Model Driven Development (MDD) in EJB projects

MDD is becoming more and more popular with the developer community lately because of its promise of increased productivity over the traditional code-centric development approach. MDD is a development methodology wherein a model is at the core of development. In this context, model typically represents an entity in the problem domain and applicable business logic that needs to be performed on this domain entity. For example, in a typical Order Processing System, a Customer model will represent appropriate data attributes and business operations applicable to a customer entity. Thus, if such an Order Processing System is developed using MDD paradigm, a given MDD tool will take Customer model as an input and generate application code off of it, thereby establishing a close link between the model and its system implementation.

Here an obvious question is – what is the difference between the modeling tools such as Together or Rational Rose and MDD tools? After all, modeling tools have been generating skeleton implementation code from models for years.

Well, the difference is in how far the tool can take you with a model. Any modeling tool these days can generate Java class from a corresponding UML class diagram. However, is that enough? No. Because even after the tool generates Java class we are still required to write code for utilizing persistence, security, logging, transactions and other such services of the underlying EJB/JDO/JDBC/XYZ framework. Similarly, we still need to write code for accessing other services, implemented as POJO, EJB, or Web services, from our Java class.

On the other hand, a MDD tool will generate most of these relevant artifacts from a given model and also potentially adhere to the industry best practices of the underlying platform, say Java, J2EE or .NET. Thus, MDD tools translate domain model to code not just based on technical specifications, but also based on best practices and design patterns. For example, application code generated by Compuware’s OptimalJ or open source AndroMDA MDD tools can implement the core J2EE design patterns such as Command, DAO, etc. of course, with discretion from the Architect. Thus, MDD tools are capable of generating highly functional and quality code.

Evidently tools play a crucial role in MDD paradigm. We believe that a natural evolution for modeling tools today would be towards supporting MDD. Now, MDD tools can be categorized into:

* Tools that follow standards. Tools such as Compuware’s OptimalJ, InferData’s Model Component Compiler (MCC), Interactive Objects’ ArcStyler, open source tools such as AndroMDA and OpenMDX, etc. support Model Driven Architecture (MDA), an OMG vendor-neutral standard of building platform-independent models for consumption by MDD tools. MDA extensively uses UML and XMI (XML Meta-Data Interchange) to achieve its goal of platform independence.

* Tools that do not follow standards. Tools such as IBM’s Rational Rapid Developer (RRD) do not support any specific standard for MDD but rather follow their own paradigm. For example, RRD is based on proprietary MDD methodology named Architectured Rapid Application Development (ARAD).

Here are some suggestions for those considering MDD for EJB projects:

* Begin with a Proof-of-Concept. Start with developing a small application using both traditional code-centric and MDD approaches to verify whether MDD does in fact bring productivity gains to your team. Also in our opinion, it is easier to apply MDD approach to new application development than to existing application development or maintenance. This is because, at present not many tools provide a sound strategy for migrating existing applications developed using code-centric approach to MDD.

* Consider use of standards-based tools. Using tools that follow standard, such as MDA, protects you from vendor lock-in. A healthy ecosystem of tools around a given standard enables migration of platform independent domain models from one tool to another in future.

* Consider MDD tool integration with existing infrastructure. Consider how well your candidate MDD tool integrates with the existing platform infrastructure products used in your shop. For instance, if using JBoss an obvious question should be whether MDD tool would generate packaging and deployment artifacts specific to JBoss.

Similarly, not all MDD tools (for example, OpenMDX) provide modeling facility for building models. As a result, you will have to make sure that the MDD tool of choice integrates with your existing modeling tool.

* Leverage existing research. The Middleware Company has done extensive research on MDD methodology and published reports comparing traditional code-centric application development with MDD. They have also compared two prevalent MDD tools viz. OptimalJ and RRD in terms of how they support MDD. Our suggestion is – leverage this research in your decision-making. These reports are available for free at http://www.middlewareresearch.com/endeavors/031126MDDCOMP/endeavor.jsp.

Applying Extreme Programming (XP) in EJB Projects

XP is a software engineering discipline whose core practices revolve around an underlying assumption – change in requirements and hence, software design will inevitably occur during the course of software development. As almost all software development methodology pundits agree, XP’s underlying assumption is not far from reality. After all, how many projects have you worked on where the design was freezed before writing a single line of code such that it never had to change? None.

This pragmatic approach that XP takes is what makes it extremely alluring to architects and development team leaders. There are almost a dozen practices defined by the original thinker of XP, Kent Beck. However, we do not think that you need to understand and implement all of them in your EJB projects as long as you follow a couple of core practices strictly.

One of the great advantages of using XP is availability of wide variety of tools which can be used for functions ranging from unit testing XP code to managing XP projects to continually integrating components developed using XP methodology. Even better, most of these tools are highly functional, time tested and open source.

In our opinion, here is how the core principles of XP should be followed in EJB projects:

* Iterative development. Iterative development is where the development team is given a certain target to meet per iteration. These iterations can last 1 week, 2 weeks, or more; whatever seems reasonable to code your requirements. Each such successful iteration will lead the system towards its final form. You will need to divide your EJB projects into such iterations. What has worked very well for us in the past is dividing a given iteration further into three sub-phases.

* EJB sub-phase. This is when we develop, build and deploy the EJB – session beans, message-driven beans or entity beans – on development systems.

* Testing sub-phase. This is when we build the unit test clients that follow simple test cases such as checking the getters/setters, mocking the calls to beans, checking if the data in the database gets added/updated/deleted properly. Various strategies for unit testing EJB are discussed in the best practice titled “How to test EJB”.

* User sub-phase. In this phase, we present the work we have done in the given iteration to the actual users. These users might be people from other business units who in turn will be using your application OR it can be people from your customer’s. The clients define various acceptance tests that they would use in this sub-phase to make sure that their requirements, defined during the iteration planning, are met.

An important factor for the success of iterative development is setting and meeting deadlines. In order to meet deadlines, you should refrain from adding new functionality in the middle of the iteration. The idea is keep your iterations short and yet meaningful.

* Continuous Integration. Continuous integration is about keeping various application components in sync with each other so that the system is fully integrated at most of the times. The motivation behind this practice is to avoid integration nightmares, which usually arise when you take a piecemeal approach towards application development and do not stop to check if various pieces work with each other. Frequently checking as to whether different parts of application fit nicely leads to lesser or no surprises during the testing sub-phase. Continuous integration is achieved by typically building the system at least once a day, however, the exact period between consequent builds will mostly depend on how long your iteration is. But the idea is to not defer integration of application components until last moment.

* Re-factoring. Refactoring is a process of continuously improving the design of existing code without affecting the code behavior. Refactoring usually comprises of restructuring code so as to remove the redundant code or reduce coupling in the code or introduce better naming conventions in the code or organize the code more cohesively and consistently.

An example of a good refactoring candidate would be an EJB application where one EJB, say SavingsBean, has a method named calculateInterest() which accepts parameters in this order – accountId and interestRate. While another EJB, say MortgageBean, has a method named calculateMortgage() accepts parameters in this order – interestRate and accountId. Here, one of the bean methods takes accountId parameter first whereas the other bean method takes interestRate first. This is a clear example of inconsistency in code design and hence, a good candidate for refactoring.

Thus, each cycle of refactoring transforms your code into a more evolved structure. A good practice to follow is to keep the changes during refactoring small and have multiple such refactoring cycles. Each refactoring cycle should be followed with continuous integration and then testing to assure that your code evolution has not introduced any new bugs.

Martin Fowler’s book Refactoring: Improving the Design of Existing Code is a good resource in that it discusses various techniques for code refactoring such that the underlying behavior is retained. Also http://industriallogic.com/xp/refactoring/catalog.html maintains a catalog of patterns to be used during code design to achieve maximum refactoring. Most of the J2EE/EJB IDEs these days support refactoring transformations of code. Some tools such as Eclipse also allow previewing the changes resulting from a refactoring action before actually carrying them out. They also can let you know the potential problems refactoring might lead to in the functioning of your code.

* Test-driven Development. XP focuses tremendously on testing and thereby obtaining feedback from customers at various logical points (end of iteration cycles) in the development lifecycle. Also XP style test-driven development encourages doing a lot of unit testing of new or modified code. A typical XP project will maintain a set of unit test cases that a developer will run whenever new or modified code is released. Quite a lot of emphasis is put on automation of these tests to make XP even more efficient. We talk about EJB testing best practices in the next section.

XP development, thus, is lightweight and flexible as compared to more formal development methodologies such as Rational Unified Process or even some of the obsolete development models such as Waterfall Model. We think that applying XP to your EJB projects can provide good benefits regardless of the project complexity given that core principles of XP are followed strictly.

How to test EJB

Of the three types of testing—code testing, regression/functional testing, and load testing—we will focus on the techniques for code testing using unit tests because that is area where you can automate a lot and thereby make code testing easier and more efficient. Code testing is about ensuring that the given code behaves the way a developer intended it to behave; code unit test is a piece of code that checks the behavior of the target code. While code unit testing leads to acceptance of a piece of code, functional unit testing leads to acceptance of a subsystem of application. The quality assurance team does functional testing at the use case level, and it often comprises of customers.

You can write code unit tests for your EJB to see if your beans are doing the right things. For example a code unit test for a BMP account entity bean can check if the bean’s ejbCreate() method is inserting the account data in the database properly. Similarly, a code unit test for a mortgage session bean might check whether its calculateMortgage() method is calculating the mortgage payment right. Thus, code unit test is always about testing the piece of code and its localized behavior. Another important reason to unit test your EJB code is that it helps you catch the inconsistencies and difficulties in using the EJB interfaces early on.

The tricky thing about unit testing EJB code is that it cannot be tested as you would a plain Java class. An EJB comprising of three Java classes has to be tested in a holistic manner i.e. you will have to deploy the EJB first and then write a client that can talk to the EJB. This means that our unit tests must encompass deployment and probably redeployment of EJB. The good news is that we can automate deployment. Another consideration while creating EJB code unit tests is about whether to use test client that sits within the container versus outside the container. Also testing EJB as a stand-alone component might not make much of a sense in certain scenarios. For example, consider a design where a stateless session bean is acting as a façade to other session beans and entity beans. In that case, you should also deploy these other beans in order to unit test the façade stateless session beans. Similarly for entity beans that are having relationships with other entity beans, you will have to ready all the relationship beans in order to unit test the original entity bean.

You will need to deploy and redeploy various beans during the testing process. Deploying EJB is a tedious step; it requires a lot of parameters to be specified. Hence, it is best to automate the deployment process for your beans. Pretty much all EJB servers provide command line tools to deploy EJB. You can use these tools in combination with Ant scripts to automate the deployment. You can also automate redeployment consisting of two steps—undeploying the existing EJB and deploying the newer version again.

Using a framework will help in reducing the effort involved in unit testing. For instance, a unit test framework such as JUnit will make it easier to create unit tests by extending unit test cases from the framework base classes. JUnit also provides the facility to create test suite comprising of tests that you want to run in inclusion. Hence, you can combine several unit tests in a test suite to enable regression testing. Graphical test runners based on Swing are made available by JUnit. Test runners are responsible for running JUnit tests and collect, summarize, and format their results.

JUnit also integrates with Ant so that you can run various tests as part of the build process. For this you will have to insert the <junit> Ant task in the ant script. The <junit> Ant task can also create a file consisting of statuses for each test. This integration with Ant is very useful because now you can bundle not just the test cases but also the configuration needed to run them as part of your Ant scripts. Another benefit of using JUnit and Ant together is to enable generation of HTML test reports by using the <junitreport> task. This task uses XSLT technology to transform XML test results to HTML.

JUnit is widely adopted framework with great tools support. It integrates with IDEs such as Eclipse, Netbeans, Oracle JDeveloper, IntelliJ IDEA, Borland JBuilder, etc. Also, several modeling tools such as Borland TogetherJ support generation of test cases based on JUnit framework.

Another test framework of interest could be Apache Cactus. Cactus is an extension of JUnit and it specifically caters to testing of enterprise Java applications. You can unit test EJB using classic JUnit framework itself, however, you should use Cactus if your EJB clients also run in a J2EE environment, as is the case when Servlets/JSPs use your beans. This is a requirement for more than half of the EJB applications and Cactus comes in handy for testing such applications because it unit tests these client J2EE components as well, apart from EJB. Thus, what you get with Cactus is an end-to-end framework for unit testing EJB applications with web front end. Cactus allows for writing three types of test case classes based on ServletTestCase, JspTestCase, and FilterTestCase classes also known as redirectors. Hence, your test case classes will extend any one of these, depending on which client model you use, and get a home reference to your EJB, create an instance, call the method on it and assert the test results.

Like <junit> Ant task, <cactus> Ant task provides Cactus integration with Ant. In fact, <cactus> extends <junit> task to enable in-container testing. It deploys the WAR/EAR containing Cactus classes and related deployment information into the target container, starts the container if it is not started, and runs the Cactus tests. It supports most of the Web and EJB containers including Apache Tomcat, JBoss, Orion, Resin, WebLogic. Also if your container is not supported explicitly by Cactus then you can use a generic Cactus container, which lets you specify Ant targets to be executed in order to start up and shut down your container.

Using Mock objects could be another approach to unit testing EJB. A mock is a dummy placeholder object instead of a real object such that

* It acts as a false implementation of an interface or a class mimicking the external behavior of their true implementation

* It observes how other objects interact with its methods and compares this with preset expectations. If a discrepancy occurs, the mock object interrupts the test and reports about it.

Expectations, a terminology often used in the mock object world, is a set of conditions that we want met in our code. For example, we might expect that after using a database connection it should be closed by our code. A mock object can be told to expect conditions such as these so that it can let us know when our expectations are not met.

You should use mock objects when unit testing complex logic, which has dependencies on other objects and you want to test its interaction with these objects. The mock object will assert whether the tested code calls the right methods on the mocked object, with the correct parameters. There are a number of mock object based unit testing frameworks such as MockObjects. There are also quite a few mock object code generation utilities such as MockMaker and MockDoclet. Both these code generation tools rely on the doclet tags embedded within the Javadocs of the class being mocked a.k.a. target object. These doclet tags are read during the preprocessing in order to generate mocks. It is a good idea to use mock object code generation utilities when the target object has a frequently changing API. Another genre of mock object code generation consists of utilities such as EasyMock and jMock (previously Dynamocks). Both of them use dynamic proxy approach to generate mock objects. Hence, you can only generate mock objects for target objects that implement interfaces using these utilities unless you apply patches to enable mock object code generation for target objects that do not implement interfaces. Hence, mocking objects is a good solution to unit testing although it can/should not be used for integration tests since during integration tests you are supposed to test your entire application end-to-end.

Thus, by using such frameworks developers can test their EJB code and make design changes, if necessary, before the code moves to QA.

How to implement client-side callback functionality in EJB

Imagine a scenario wherein an EJB has to place a callback to the client. How would you implement this scenario? There is no provision for implementing client-side callback in EJB standard. As a result, developers find themselves in tough spot when faced with this requirement. The three viable strategies for implementing client-side callbacks in EJB are presented below. Note that all these strategies have their own pros and cons and should be applied under specific situations, as you are about to find out.

* JMS. In this strategy, the client will use JMS temporary destinations (queue or topic, depending on your need) to receive callback notifications from EJB server components. The reason we want to use temporary JMS destination for each client is because we do not want multiple clients popping messages from the same JMS destination i.e. we want EJB server components to have unique ReplyTo addresses for all our clients.

Before calling a given method on EJB, the client will create a temporary JMS destination from which it will later receive messages. Client passes JNDI name of the temporary JMS destination to the bean during the method call. The client starts listening, on a separate thread, to the temporary destination that it created earlier. On the EJB side, the bean will send a JMS message when it needs to callback the client. The client JMS listener receives the message and notifies the application upon receipt. Finally, client deletes the temporary destination and closes the JMS connection.

As far as we know, this is the simplest way to achieve client-side callback functionality in EJB today. However, creating temporary destination for each client does consume resources. You should do enough load testing to ensure that this model scales up to your needs.

* RMI. This strategy is particularly useful with application clients. The idea here is to create RMI remote object on the client side that implements java.rmi.Remote interface and register it with the EJB. After registering this remote object, the client can continue doing its work, until the server calls a method on the registered RMI Remote object.

Implementing this strategy is fairly straightforward. You will need to provide the callback object stubs to the EJB.

* Web service. This strategy is useful in order to make callbacks happen across the firewalls OR when the client is a J2EE Web application. Here, the client implements a JAX-RPC service endpoint to which the EJB will send a SOAP message in case of a callback. The bean will use Dynamic Invocation Interface (DII) to keep the callback Web service client code generic. On the client side, you can use either document model or RPC model for implementing such a callback Web service.

One of the major drawbacks associated with this strategy is lack of reliability. The SOAP message sent by the bean might never reach the client-side callback Web service. This is because, SOAP over HTTP is inherently unreliable and industry is still working towards defining semantics of reliable SOAP over HTTP. We will eventually get there once OASIS finalizes Web Services Reliable Messaging standard (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm).

Choosing between Servlet and Stateless Session Bean as service endpoint

J2EE Web services are based on three main technologies – JAX-RPC, Servlet and Stateless Session Beans. As you know by now, a J2EE Web service endpoint can be implemented either as Stateless Session Bean or as a Servlet. So then, which component model should you use for your Web services? Servlet or Stateless Session Bean? Here are some guidelines that should help you in choosing between the two.

* Use Servlet as Web service endpoint if:

* The business logic of the service is within a Web tier, because in this case both, the endpoint and service’s business implementation, will reside in the same tier.

* You need a lightweight Web service container viz. Servlet container.

* You need to execute some logic, which resides on the Web tier, before invoking Web services.

* You do not mind writing logic for synchronizing multi-threaded access to your service. This is required since Servlet container does not synchronize concurrent requests to the Servlet instance and hence, in this case, your Web service endpoint.

* Use Stateless Session Bean as Web service endpoint if:

* The business logic of the service is within an EJB tier, because in this case both, the endpoint and service’s business implementation will reside in the same tier.

* You need the Web service implementation to avail the transaction and component-level security services from the container.

* You need to execute some logic, which resides on the EJB tier, before invoking Web services.

* You want the container to take care of synchronizing concurrent access to your service.

Considering the use of Aspect Oriented Programming (AOP) technique in EJB Projects

There has been a lot of discussion lately about using Aspect Oriented Programming or AOP with EJB. Here are some of the concepts that are worth understanding about AOP, before we continue our discussion on when you should use AOP in EJB projects.

Aspect Oriented Programming

AOP techniques are not new. They have been around for close to a decade; in fact, Microsoft Transaction Server is one of the early implementations that employed AOP techniques followed by EJB servers.

So what is AOP? Obviously, aspect forms the core of AOP. Aspects are reusable services that are quintessentially crosscutting to your application. In the context of a business application, services that provide authentication of users, authorization of users, logging of access to the system, persistence of application data, etc. are examples of crosscutting services or concerns for a business application developer—concerns because a developer cannot write robust application without taking care of them. Hence, AOP can be defined as—A programming platform that facilitates development of aspects to mitigate concerns such that aspects can be reused by all the living objects within a given environment. Note the emphasis placed on reuse here.

With this in mind, come back to the EJB world and think whether it uses AOP techniques or not—of course it does. All the services that our beans get are aspects; for example, like persistence, lifecycle management, transaction management, security and dozens of other things are concerns that we, the business application developers, care about. EJB containers implement these crosscutting concerns and provide reusable aspects such that all the beans deployed within the container can offload these concerns on the container aspects. So yes, it is very much an aspects oriented implementation.

However, here is the caveat—EJB programming model does not allow you to develop new aspects to take care of concerns, which are not supported by the EJB container. Not today at least and therefore EJB, and J2EE for that matter, is not an AOP platform even though EJB technology uses AOP techniques.

When to use AOP in EJB applications

In order to do AOP in EJB, you will need to use tools such as AspectJ, Spring AOP or tools provided by your application server. Quite a few application server vendors such as JBoss Group and IBM already support or have declared to support AOP in their products. The only thing you have to be wary about when going AOP route is that standard Java platform does not provide inherent support in terms of APIs and compilers for AOP, and that you are embedding AOP in your application at the risk of losing portability.

We present some of the scenarios here to consider use of AOP with EJB:

* Support custom concerns. EJB container does provide implementation of some of the very common infrastructure concerns such as transaction management, security, persistence, etc. However, EJB designers have kept the implementation of these aspects transparent to the EJB developers. Meaning, developers cannot customize the behavior of aspects beyond what deployment descriptor configuration parameters allow nor can they create new aspects using EJB programming model. As a result, if you want to support a concern that is crosscutting across your application components but is not provided by EJB container then you will have to go outside the domain of what EJB can provide, and use AOP for developing aspect to address your concern.

* Supply aspects to the world outside EJB. Almost all of us have worked in EJB projects where we had to use POJOs in order to get around constrains imposed by EJB standard—so as to do things like access file system or read/write static fields. We might also end up reusing these POJOs outside EJB container, in a Web application or a Swing application say. In this scenario, it might be better to write reusable aspects to address concerns relevant to your POJOs.
For example, consider a POJO that reads and writes to a file. Here you might need to log the timestamp of last updating the file. In which case create an aspect to address the logging concern. This way you can use the Logging aspect no matter whether your POJO is being used within an EJB container or within a Web container or in a vanilla Java swing application.

A word of caution—do not use aspects for the sake of it. Especially, do not replace EJB services with your aspects, unless you are very sure of what you are doing. After all, EJB vendors have pre-written these aspects to keep you out of implementing them mainly because implementing them is a humungous task. And finally, do not think that AOP is going to replace OOP!

Is AOP different than OOP?

We see this question many times and the simple answer to it is—yes. One of the common traits of both OOP and AOP platforms is their support for reusability. However, OOP instills reusability via inheritance. This means that in order to reuse the behavior encapsulated in an object, say A, some object B will have to inherit A. Inheritance is the key word here. B is able to reuse A’s behavior only if it accepts to build a long-lasting relationship with A i.e. a parent-child relationship. This works excellent if B does not mind A’s sub-imposed behavior as a side effect of reuse and direct effect of inheritance.

However, OOP does not work when behavior needs to be reused horizontally, owing to the behavior’s crosscutting nature. Now why would you need to reuse behavior horizontally? Because you do not want your business object say a ShoppingCart, to inherit the behavior pertaining to transactions, since both these behaviors are unrelated; you do not want apple to inherit grape like qualities rather you want to mix apples and grapes to prepare a margarita drink. This is where AOP comes into picture.

AOP and OOP thus are not competing but complementary technologies. Consider for example an EJB server where crosscutting aspects are provided to your object oriented beans. In conclusion, OOP and AOP co-exist.

Reflection, Dynamic Proxy, and EJB

When you call EJB, you write code that essentially takes the binding information of EJB home object in JNDI, gets the home object, creates EJB object and finally invokes methods on an EJB object. This style of invocation is usually referred to as static invocation where both, the information about the interface and methods to invoke on its object are known at the compile time. Although there are advantages to other styles of invocation models, such as dynamic proxy and dynamic invocation interface (DII), EJB programming APIs supports only static invocation.

In dynamic proxy approach, a proxy class implements a list of interfaces specified by client at runtime. Hence, this approach provides a type-safe invocation on interfaces wherein proxy is generated dynamically during runtime rather than at compile time. Any method invocation on an instance of dynamic proxy object i.e. java.lang.reflect.Proxy object is dispatched to a single method, invoke(), in the instance’s invocation handler object; invoke() accepts method information via java.lang.reflect.Method object as well as method arguments via an object array. Dynamic proxy invocation is slightly different than reflective invocation in that former provides a generic API for implementing methods of a class manufactured at runtime whereas latter provides a generic API for dynamic invocation of already implemented methods. Combining dynamic proxies with reflective invocation leads to a powerful generic object, which is capable of intercepting methods from the clients on any server object.

Hence, you may want to use dynamic proxies for EJB method invocation in order to:

* Dynamically invoke methods on EJB in scenarios where client does not have a priori knowledge of interfaces implemented by EJB.

* Write interceptors which can provide additional services during invocation such as security services, logging services, etc.

Before making a decision to invoke your EJB using dynamic proxies always remember that reflective invocation is slower than direct method invocation even with all the reflection oriented performance enhancements in JDK 1.4. Besides this, debugging dynamic proxy stack trace is generally trickier than static invocation stack.

How to deploy EJB applications to various application servers

Deploying EJB applications can be trickier than you think especially when you are trying to package EJB applications such that they can be deployed on multiple application servers. Multiple application server deployment is a common requirement for commercial applications written using EJB framework. In spite of standardization of most of the EJB application metadata in the form of deployment descriptors, a lot of deployment information still remains in application server specific deployment descriptors. A good example of this is the metadata for mapping CMP data attributes to database schema, which is normally kept in a deployment descriptor specific to the target application server.

Thus, in situations where you are required to automate deployment of your EJB applications on multiple application servers, your obvious choice should be to use open source XDoclet framework. XDoclet is a powerful attribute oriented code generation open source engine. Using XDoclet, a developer can generate practically anything – XML descriptors, such as deployment descriptors, source code (for instance, while generating code for EJB it can generate code for value classes, primary key classes, generate a struts action form based on Entity EJB, home and remote interfaces), etc. – by inserting attributes (metadata) within the JavaDoc for their source. Finally, when the XDoclet engine parses the source file it generates the code necessary for supporting the semantics of attributes. Note that apart from generating code for standard frameworks such as EJB, Servlet, JDO etc., XDoclet is also capable of generating code for non-standard but popular frameworks such as Hibernate, Castor, and Struts.

XDoclet can generate server specific deployment descriptors, apart from standard deployment descriptors (ejb-jar.xml), for all major application servers including JBoss, IBM WebSphere, BEA WebLogic, Sun Java System Application Server, Pramati, etc. with the help of their respective attributes. For example, @jboss.persistence datasource java:comp/env/jdbc/employeeDB specifies the jndi-name used to look up the data source. Also, integration of XDoclet with Ant through ejbdoclet tasks makes it an even more powerful framework for deployments.

Attribute Oriented Programming

Note: Attribute Oriented Programming is a technique that revolves around the notion of using attributes aka metadata aka annotations within the source to instruct the underlying framework to perform a certain action upon encountering an attribute while parsing the source. This “action” might be about generating programming artifacts – for example, skeleton code for EJB home, remote and bean classes – or might be about providing cross-cutting functionality – for example, security or logging – at a certain juncture in the source.

Two interesting JSR efforts in this area are JSR 175 and JSR 181. JSR 175 defines Java programming language syntax for supplying metadata information for classes, interfaces, methods, and fields, as well as it defines an API that can be used by tools and libraries to access the metadata information within the source and act on it. JSR 181 defines metadata/annotations, which can be used to simplify development of Java Web services.

EJB 3.0 (for J2EE 1.5 platform) is planning on using metadata to greatly simplify the EJB development and deployment kind of similar to the way JBoss IDE uses XDoclet today for generating EJB code from a single source.

How to debug EJB

As EJB technology is evolving quickly, the containers are evolving as well. The containers or their tools often have small oddities. In addition, users may introduce bugs that are difficult to debug. How do you debug with EJB?
Unfortunately, true debugging is a problem with EJB. Because your beans run under the hood of a container, you’d have to load the container itself into a debugger. But for some containers, this is impossible because you don’t have access to the container’s source code, or the source code has been obfuscated. For these situations, you may need to use the tried-and-true debugging method of logging.
An even more serious debugging problem occurs if exceptions are being thrown from the EJB container, rather than from your beans. This can happen for a number of reasons:

Your EJB container’s generated classes are incorrect because your interfaces, classes, or deployment descriptor haven’t fully complied with the EJB specification. Your EJB container’s tools should ship with compliance checkers to help resolve this. But know that not everything can be checked. Often because of user error, your deployment descriptor will not match your interfaces. This type of problem is extremely difficult to target, especially if your container tools crash!
Your EJB container has a real bug. This is a definite possibility that you must be prepared to encounter. In the future, however, this should not happen very often because EJB containers that comply with J2EE must test their implementations against Sun Microsystems’ J2EE Compatibility Toolkit (J2EE TCK).
A user error occurs within the EJB container. Probably the most frustrating part of an application is doing the database work. Punctuation errors or misspellings are tough to debug when performing JDBC. This is because your JDBC queries are not compiled—they are interpreted at runtime, so you don’t get the nifty things like type checking that the Java language gives you. You are basically at the mercy of the JDBC driver. It may or may not give you useful error description. For example, let’s say that you’re modeling a product, and you use the word desc rather than description to describe your products. Unfortunately, the keyword desc is a SQL reserved keyword. This means that your JDBC driver would throw an exception when trying to execute any database updates that involved the word desc. These exceptions might be cryptic at best, depending on your JDBC driver. And when you try to figure out why JDBC code is acting up, you will run into a roadblock: With container managed persistence, the JDBC code won’t be available because your bean does not perform its own data access! What do you do in this situation?
When you’re faced with grim situations like these, contacting your EJB vendor is probably not going to be very helpful. If you are operating with a deadline, it may be too late by the time your vendor comes up with a solution. If you could only somehow get access to the JDBC code, you could try the query yourself using the database’s tools.
You can try several options here:

*
Some EJB containers support IDE debugging environments, allowing you to step through your code in real time to pinpoint problems. This is something you should look for when choosing a container.

*
Check your database’s log file to view a snapshot of what is really happening. This is especially useful when you are using CMP.

*
Use a JDBC driver wrapper that logs all SQL statements such as P6Spy driver from Provision6, Inc.

*
Your EJB container tools may have an option to keep generated Java files, rather than to delete them when compiling them into classes. For example, you can do this with BEA’s WebLogic with the keepgenerated option to its EJB compiler tool. This is analogous to how you can use the keepgenerated option to keep generated proxies with Java RMI’s rmic compiler.

*
As a last resort, you may have to decompile the offending classes to see what’s going on. A good decompiler is Jad by Pavel Kouznetsov (see the book’s accompanying Web site for a link). Of course, decompiling may be illegal, depending on your container’s license agreement.

Inheritance and code reuse in EJB

Our next best practice addresses the challenge of developing reusable components. This may be important, for example, if you’re developing beans to be reused by other business units within your organization or if you are shipping a product assembled as EJB components and your customers want to customize your product. There can be many such situations.

First, let’s do a reality check—don’t believe anyone who tells you that enterprise beans are reusable by definition because that is not true, at least not today. You need to design your beans correctly if you want them to be reusable. You need to consider the different applications, domains, and users of your enterprise beans, and you need to develop your beans with as much flexibility as possible. Developing a truly reusable set of beans will likely require many iterations of feedback from customers using your beans in real-world situations.
Roughly speaking, bean reusability can fall into three different levels:

Reuse as given. The application assembler uses the acquired bean as is to build an application. The bean functionality cannot be tailored to fit the application. Most projects will have a difficult time reusing these components because of their inflexibility.
Reuse by customization. The application assembler configures the acquired bean by modifying the bean properties to fit the specific needs of the application. Bean customization typically occurs during deployment time. To allow for a more flexible maintenance environment, some bean providers allow runtime bean customization.
Reuse by extension (subclass). This is the kind of reuse which is not possible, not in a straightforward way, in EJB simply because EJB does not support component level inheritance. By component level inheritance, we mean extending EJB component A to enable its reuse by another EJB component B. This level of reusability is generally more powerful but not available in EJB. Hence, you will have to use a technique to enable reuse by extension of EJB components—put all the bean logic in a POJO and make your bean class inherit this POJO. However, this hack does not present a good solution for EJB reuse by extension in case of entity beans because it does not take into consideration complexities involved around reuse of entity beans such as, what would the relationship between the primary keys of the two entities look like where one entity inherits another. The good news is EJB 3.0 seems to address these issues around entity reuse at the component level. Check out its early draft specification at http://java.sun.com/products/ejb/docs.html.
The more reusability levels that a bean can provide, the more useful a bean becomes. By leveraging pre-built beans, organizations can potentially lower the development time of building enterprise applications.
Many organizations have tried—and failed—at truly reusing components. Because of this, it is a perfectly valid strategy to not attempt true reuse at all. Rather, you can shoot for a copy-and-paste reuse strategy, which means to make the source code for components available in a registry to other team members or other teams. They can take your components’ code and change them as necessary to fit their business problem. While this may not be true reuse, it still offers some benefits. The Middleware Company offers a service to help organizations re-architect their applications in this manner.

How to write singletons in EJB

A singleton is a very useful design pattern in software engineering. In a nutshell, a singleton is a single instantiation of a class with one global point of access. You would normally create a singleton in Java by using the static keyword when defining a class. However, one restriction of EJB is that you cannot use static fields in your beans. This precludes the use of the singleton design pattern. But if you still have to use singleton then here are a couple of strategies:
Limit the pool size. If your EJB product lets you finely tune the EJB bean instance pool then you can limit the size of the bean instances to 1, by setting both the initial and maximum size to 1. This is not truly singleton, although it simulates singleton-like behavior, because although the container guarantees that at any given point in time there would only be one instance of bean in the pool, it does not guarantee that it would always be the same bean instance in the pool. The container might destroy the bean instance if it remains inactive for a certain period of time.

Use RMI/IIOP and JNDI. You can use JNDI to store arbitrary objects to simulate the singleton pattern. If all your objects know of a single, well-known place in a JNDI tree where a particular object is stored, they can effectively treat the object as a single instance. You can perform this by binding an RMI-IIOP stub to a JNDI tree. Any client code that accessed the JNDI tree would get a copy of that remote stub, and each copy would point back to the same RMI-IIOP server object. The downside to this pattern is you are leaving the EJB sandbox and downgrading to vanilla RMI-IIOP, and thus you lose all the services provided by EJB.
When to use XML with EJB

XML is a popular buzzword these days, and so we should discuss the appropriateness of XML in an EJB deployment. XML is useful in the following scenarios:

* For data-driven integration. If you have a large number of legacy systems, or even if you have one big hairy legacy system, you’ll need a way to view the data that you send and receive from the legacy system. XML can help you here. Rather than sending and receiving data in proprietary structures that the legacy system might understand, you can invent an XML façade to the legacy systems. The façade takes XML input from your EJB components and maps that XML to the proprietary structures that the legacy system supports. When the legacy system returns data to your EJB application, the XML façade transforms the legacy data into XML data that your EJB application can understand.

*
As a document persistence mechanism. If you are persisting large documents (news reports, articles, books, and so on), representing those documents using XML may be appropriate. This will help to translate the XML documents into various markups supported by client devices.

*
As a Web service interface. As described in Chapter 5, EJB components can also be accessed as Web service, in which case XML becomes the on-the-wire data format sent between Web services.

The one important scenario that XML is not useful for is as an on-the-wire format for communication between EJB components.
The idea is that rather than application components sending proprietary data to each other, components could interoperate by passing XML documents as parameters. Because the data is formatted in XML, each component could inspect the XML document to determine what data it received.

Although several J2EE-based workflow solutions use this approach, XML is often inappropriate for EJB-EJB communications because of performance. Parsing XML documents takes time, and sending XML documents over the wire takes even longer. For high-performance enterprise applications, using XML at runtime for routine operations is costly. The performance barrier is slowly becoming less important, however, as XML parsers become higher performing and as people begin to use several techniques such as XML compression before sending XML documents over the wire. However, it is still remains the bottleneck in many systems.

Another important reason not to use XML is because it’s often simply not needed. Assuming that a single organization writes all your EJB applications, there is less need for data mapping between these various systems, since you control the object model.

When to use messaging versus RMI-IIOP

Another hot topic when designing an EJB object model is choosing when (and when not) to use messaging, rather than RMI-IIOP.
The following advantages of messaging provide reasons why you might want to use it:
Database performance. If you are going to perform relational database work, such as persisting an order to a database, it may be advantageous to use messaging. Sending a message to a secondary message queue to be processed later relieves stress on your primary database during peak hours. In the wee hours of the morning, when site traffic is low, you can process messages off the message queue and insert the orders into the database. Note that this only works if the user doesn’t need an immediate answer to whether his operation was a success. It would not work, for example, when checking the validity of a credit card.
Quick responses. A client may not want to block and wait for a response that it knows does not exist. For methods that return void, the only possible return values are nothing or an exception. If a client never expects to receive an exception, why should it block for a response? Messaging allows clients to process other items when they would otherwise be blocking for the method to return.
Smoothens load balancing. In Chapter 9, we discussed how message-driven beans distribute load more smoothly than session or entity beans. With session and entity beans, a load-balancing algorithm makes an educated guess about which server is the least burdened. With messaging, the server that is the least burdened will ask for a message and get the message for processing. This also aids in upgrading your systems in terms of capacity because all you need to do now is merely detect when your queue size reaches a threshold. When the queue size reaches threshold value, it indicates that the number of consumers is not enough to meet the messaging load and that you need to add new machines.

Request prioritization. Asynchronous servers can queue, prioritize, and process messages in a different order than they arrive into the system. Some messaging systems allow message queues to be prioritized, to order messages, based upon business rules. For example, in a military battle tank, if all requests for the system sent to a centralized dispatch queue are made asynchronously, disaster could result if a fire control message was queued up behind 100 communication messages that had to be processed first. In a military system, it would be advantageous to process any fire control and safety messages before communication messages. A prioritized queue would allow for the reordering of messages on the queue to account for the urgency of fire control in a battle tank.

Rapid integration of disparate systems. Many legacy systems are based on message-oriented middleware and can easily interact with your J2EE system through messaging. Messaging provides a rapid development environment for systems that have distributed nodes that perform business processing and must communicate with one another.

Loosely coupled systems. Messaging enables loose coupling between applications. Applications do not need to know about each other at compile time. This empowers you to have dynamic consumption of applications and services, which may be useful in a rapidly changing, service-oriented business environment.

Geographically disperse systems. Messaging is very useful when you have applications communicating over the Internet or a wide-area network. The network is slow and unreliable, and RMI-IIOP is not intended for such broad-range communications. Messaging along with guaranteed message delivery adds an element of safety to your transactions.

Parallel processing. Messaging is a way to perform pseudo-threading in an EJB deployment. You can launch a series of messages and continue processing, which is the distributed equivalent of launching threads.

Reliability. Messaging can be used even if a server is down. System-level problems (such as a database crashing) typically do not affect the success of the operation, because when you’re using guaranteed message delivery the message remains on the queue until the system-level problem is resolved. Even if the message queue fails, message producers can spool messages and send them when the queue comes back up (called store and forward). By combining guaranteed message delivery with store-and-forward, the system will not lose any requests unless a complete system failure happens at all tiers (extremely unlikely).

Many-to-many communications. If you have several parties communicating together, messaging is appropriate since it enables many producers and many consumers to collaborate, whereas RMI-IIOP is a single-source, ​ single-sink request model.
The following are scenarios for which you might not want to use messaging:
When you’re not sure if the operation will succeed. RMI-IIOP systems can throw exceptions, whereas message-driven beans cannot.
When you need a return result. RMI-IIOP systems can return a result immediately because the request is executed immediately. Not so for messaging. You can return results eventually with messaging, but it’s clunky—you need to send a separate return message and have the original client listen for it.
When you need an operation to be part of a larger transaction. When you put a message onto a destination, the receiving message-driven bean does not act upon that message until a future transaction. This is inappropriate when you need the operation to be part of a single, atomic transaction that involves other operations. For example, if you’re performing a bank account transfer, it would be a bad idea to deposit money into one bank account using RMI-IIOP and then withdraw money using messaging, because the deposit and withdrawal operations will not occur as part of a single transaction and hence, the failure in latter will not roll back the former.

When you need to propagate the client’s security identity to the server. Since messaging does not propagate the client’s security identity to the receiving message-driven bean, you cannot easily secure your business operations.

When you are concerned about request performance. Messaging is inherently slower than RMI-IIOP because there’s a middleman (the JMS destination) sitting between the sender and the receiver.

When you want a strongly-typed, OO system. You send messages using a messaging API such as JMS. This is a flat API and is not object-oriented. If you want to perform different operations, the server needs to crack open the message or filter it somehow. In comparison, RMI-IIOP allows you to call different business methods depending on the business operation you want to perform. This is much more intuitive. It’s also easier to perform compile-time semantic checking.

When you want a tighter, more straightforward system. Synchronous development tends to be more straightforward than messaging. You have great freedom when sending data types, and the amount of code you need to write is minimal compared to messaging. Debugging is also much more straightforward. When using services that are completely synchronous, each client thread of control has a single execution path that can be traced from the client to the server and vice versa. The effort to trace any bugs in the system is thus minimal.

Summary

We covered so many best practices in this chapter—and we aren’t even half done on best practices yet! We will talk about persistence best practices in Chapter 16 and performance related best practices and tuning tips in Chapter 18. Also, we do have weaved the discussion on best practices related to integration from EJB world in the next chapter. So there is a lot more to come.
