
Pattern Name: 1
Date/Time: 9/20/2004 4:34 AM

Stylized Page
Creates pages dynamically using pre-designed style templates. Maintains page design
and layout fluid, allowing design to change without causing a huge impact on human
resources.

Consumer

FrontController UrlMapper Transformer

request page

getPagePartsFromRequest

transformStructuredPageToWebPage

response

Background
Web developers need to produce pages that have desired design characteristics. They
need to add new content on a continual basis and have the new content reflect the same
consistent presentation look and feel as well as elements as existing pages. If the team
decides to use a traditional page design approach the will be a lot of work required for
each page. A Web designer will have to layout each page independently of the others and
create design elements specifically for that page.

Value and Benefits
The goal of this pattern is to reduce the amount of manual labor required to add new
pages to a Web site. Whenever you can reduce the number of redundant steps needed to
maintain a Web site that may contain hundreds or thousands of pages, the more your
business will benefit. You will lower the cost and frustration associated with ongoing
Web site maintenance.

There is the added benefit of providing a common look and feel to your site. You may
insert banner and sidebars images with more ease and consistency. All articles or info
pages on the site will have a common layout and speak well for the organization
providing them.

The principles introduced here may also be applied to the Business Document
Publisher (page #) pattern. This pattern does not address XSL-FO, but the same
techniques can be applied to page layout, design, and generation of PDF and other
printable document formats.

Putting It to Work

Pattern Name: 2
Date/Time: 9/20/2004 4:34 AM

A request is received on your business Dynamic Web Site (page #). The consumer wants
to view a particular page that is described in the request. There are two basic strategies to
this pattern, which I will now present.

Just-In-Time Page
An object that implements the Front Controller pattern [P of EAA] receives the request
dispatch from the Web server. The Front Controller looks up the meaning of the URL. It
may be part of the URL path or a parameter attached to it, but some part of the URL
contains information about what the consumer is requesting. The URLMapper object
maps the URL context to the information packet that describes the parts used to assemble
the requested page. The Front Controller then uses the parts defined in the packet to
create the requested page. An object of class Transformer is used to mold the request
into a page response that fulfills the consumer’s request.

Similar to the Business Document Publisher (page #) pattern, Stylized Page may use
XML structured documents to serve content and XSL and XSLT to transform the XML
into HTML pages. The Transformer reads XML and XSL, and passes the XML
through XSLT to generate HTML. However, unlike the Business Document Publisher
(page #) pattern you would not generate the structured document on the fly using this
strategy. The XML and XSL will be created ahead of time and released to the Web site.
Performance would be too poor to serve all content, back to front, completely
dynamically.

And speaking of performance, one dilemma may need to be settled before you are
satisfied with the implementation of this pattern. Should your Dynamic Web Site (page #)
create Stylized Page output just in time, or should it publish pages out of band and serve
them statically upon request? You will pay a stiff performance penalty if your Web site
cannot produce pages just in time, but rather barely in time or even never in time. Hence,
I next address the advantages of the Pre-Generated Page strategy.

Pre-Generated Page
The only real difference between this strategy and Just-In-Time Page is that with this
approach pages are generated out of band from normal Web site operations. You simply
have a production publish and release process that takes the XML input and passes it
through the XSLT process to create static Web pages. The pages are then pushed out to
the Web site using a release process. The Front Controller would then dispatch requests
directly to the requested pages without performing a transformation at the time pages are
served.

Personally I prefer this strategy to Just-In-Time. It may appear that it is not as easy to
patch your Web site using this strategy. But is that really the case? Using either strategy
you must have to perform publish and release. In the case of Just-In-Time Page the
process will push out XML and XSL. In the case of Pre-Generated Page the process will
push out static HTML or a Dynamic Web Page (page #) component such as JSP or ASP.

If you use this Pre-Generated Page strategy you will never have to change the
process if the Web site ever increases load significantly.

Examples

Pattern Name: 3
Date/Time: 9/20/2004 4:34 AM

The following is a very simple XML document with content that will be dynamically
published in an HTML page (in this case, actually XHTML).

<?xml version="1.0"?>
<pattern>
 <name>Stylized Page</name>
 <summary>
 Creates pages dynamically using pre-designed style templates.
 Maintains page design and layout fluid, allowing design to
 change without causing a huge impact on human resources.
 </summary>
 
</pattern>

There is purposely little content. There is just a name, a summary message, and an

image. The important thing is to grasp what happens when the XML document is passed
through a transformation engine in combination with a controlling XSL document.

Now note the XSL that is used to transform any XML document that conforms to the
above structure:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:param name="contextPath"/>

 <xsl:template match="pattern">
 <html xml:lang="en" lang="en">
 <head>
 <title>Pattern Summary</title>
 <meta http-equiv="Content-Type" content="text/xhtml; charset=UTF-8"/>
 <link href="{$contextPath}/css/site.css" type="text/css" rel="stylesheet"/>
 </head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="name">
 <h1><xsl:apply-templates/></h1>
 </xsl:template>

 <xsl:template match="summary">
 <p class="block"><xsl:apply-templates/></p>
 </xsl:template>

 <xsl:template match="image">
 <p class="block">
 <xsl:apply-templates/>
 </p>
 </xsl:template>

</xsl:stylesheet>

As you may have put together, this example is a pattern summary viewer. It takes as

input an XML document that contains a minimum amount of information about a pattern.
In this example the pattern is the one you are reading, Stylized Page. The XML document
has the pattern’s name, the pattern’s summary, and the introductory UML diagram image.

There is one main section to the XSL document. It is the one that matches on the
outer pattern XML element. When the match is made then the basic HTML page is
generated. Note that everything within the <xsl:template match=”pattern”>

Pattern Name: 4
Date/Time: 9/20/2004 4:34 AM

element is text that is generated into the output stream, which is the skeleton HTML
document.

Inside the HTML body element there is an XSL tag, <xsl:apply-
templates/>. This means that whatever other content is matched in other template
expressions, place them here in the order they are encountered. Now look at the final
three template matches in the XSL document. One match is for the XML document’s
name element, one is for the summary element, and the last is for the image element.
When those matches are made the corresponding HTML inside the XSL template
element is generated, and the results are inserted into the main body region of the
HTML document output stream.

Consequences
I again draw attention to these competing forces.

• Just-In-Time Versus Pre-Generated: You will have to determine whether just-in-
time page generation will have too heavy an impact on your specific Dynamic
Web Site (page #). This may depend much on the selected implementation. If the
performance penalty is too high, you will need to use

Frameworks and Tools
• Xerces: This is an Apache open source project and is a very popular XML parser

and document generation tool. To download see http://www.apache.org/.
• Xalan: This is an Apache open source project and is an XSL transformation

engine. Xalan is well supported, and widely used even by commercial products.
To download and learn more, see http://www.apache.org/.

• Cacoon: This is a Web page publishing framework provided by Apache. It is not
limited to Web page publishing, and I therefore reference it in the Business
Document Publisher (page #) pattern. The example in this pattern was adapted
from examples provided in Cacoon 2.1.5.1.

• .NET Tools: [Provide list.]

