
Business Document Generator: 1
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Business Document Publisher
Aggregates multi-channel data and content templates as input to the generation of a
document that is suitable to serve as an offical statement of record.

ChannelDocumentAdapter

DatabaseChannelDocumentAdapter ContentChannelDocumentAdapterFinancialsChannelDocumentAdapter

StructuredDocumentGenerator BusinessDocumentGenerator

BusinessDocumentPublisher

+ getDocument(DocumentDescriptor) : void

DocumentDescriptor

ConcreteStructuredDocumentGenerator «engine»

FormattingObjectsProcessor

«creates» «runs»«creates»

Background
Organizations have production, reporting, financial, and other data, as well as structured
content that are used as input to create business documents. The business requires an
automated process to deal with the volume. Quality must be high since the documents
officially represent the company and its products and services. The page layout must be
precise since some sections of the document have specific visual constraints and
boundaries. Open standards and open viewing tools are required for truly global
consumption.

Value and Benefits
The volume of documents produced by the business is too great to perform the process
manually. Driving an industry-leading word processor as an automated document engine
is a poor option. Such an engine is slow, imprecise, and fragile. It lacks scalability, and
must be hosted on the operating system that the word processor was designed for.

A publishing process is needed that can consistently gather data, manipulate it, and
put it into a highly readable and printable format. The process needs to be able to
generate a high volume of documents with repeatable precision. It must be fault tolerant,

Business Document Generator: 2
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

scale as business needs grow, and run on whatever enterprise platform and operating
system that best supports the organization’s environment. The published documents must
be consumable using prolific, open tools.

When an organization is required to produce hundreds, thousands, tens of thousands,
or more documents in a day, and can meet that level of service with the desired precision
and consistency, there will be no complaints about document production. When the
consumers of such documents find them highly readable and printable, they will be
pleased with at least this part of their customer experience.

Examples of business documents include the following, many of which I know first
hand:

��Billing and Premium Statements
��Contracts
��Forms
��Instruction and Procedure Manuals
��Insurance Policies and Claims
��Invoices
��Product Catalogs
��Quotation and Pricing Statements
��Student Guides

The list of possible applications literally goes on and on. Note also that there is no

need for the overall pattern to be limited to generating highly chiseled documents. The
four-step process highlighted next, in combination with Styled Page (page #) may be
effectively used for Web publishing.

Putting It to Work
There are four primary steps that are performed in any automated publishing process:

1. Aggregate all the data that will server as input to the document
2. Assemble the gathered data into a structured data stream that can serve as input to

the page layout engine
3. Pour the input data into a page layout and content formatting engine that produces

the desired print-ready document
4. Publish the document by distributing the finished product as necessary

The Business Document Publisher executes those steps. Each is a separate behavioral

concern, and, therefore, can be examined individually as the four key strategies of this
pattern.

Data Aggregation
Data aggregation is the process of gathering information from multiple, disparate sources
into a single object model that can be traversed in a convenient manner. Data gathering
requires some sophistication because of the potential for reading data from multiple,
disparate channels. In the age of enterprise information systems it is not difficult to
imagine an environment in which your data channels consist of a production database, a

Business Document Generator: 3
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

legacy database, an ERP application, a partner catalog, and a content management
system.

It is also not difficult to imagine a much simpler “silo” application. If your domain
will consistently read from a single data channel, such as a production or reporting
database, then there is no reason to tackle the complexities of a multi-channel publisher. I
will first present the single-channel data reader. With that behind us the multi-channel
aggregator will be much easier to understand.

It is fairly common to publish documents out of a single-channel input mechanism. If
you are generating a policy document or another kind of contract, the data that will make
up the document content is probably in the production database of the system that is
publishing the document. It may be a new system that was architected, designed, and
developed to solve a single, well-defined problem. This might correspond to the Basic
B2C or cookie-cutter E-Commerce B2C systems that were described in Chapter 2. The
documents being produced get their data from the application’s native data source.

There are several patterns used to access the domain objects from a standard data
source. One or more of the following1 may be what your enterprise application already
uses. There is no reason for us to search for another access pattern since our document
publisher should use the one that is part of the established system architectural blueprints.
So we will just use what we use elsewhere in the same system:

��Business Object
��Composite Entity
��Data Access Objects
��Domain Model
��Domain Store
��Service Data Objects
��Table Data Gateway
��Table Module

There is generally a root domain object that provides the primary, dominant

information context for the published document. The dominant root context will many
times have a tree or graph of domain objects that are navigable from it. There may be
other extraneous root domain objects that are not naturally part of the primary root
domain object. It is always convenient to access all data as if it were part of the same
domain graph. Or there may be domain objects that are reachable from the primary root
context but that we would rather access without having to navigate to it ourselves using
the available route. In such cases it would be nice to take a shortcut. Or we may not have
a natural domain model at all. Perhaps the access pattern choices prevent the use of a
deep tree or graph of objects. Nonetheless we would like to access the all the data,
whether in a domain object graph or not, in the most convenient way possible. This may
be best accomplished using a Domain Object Model Adapter2:

1 See references: CoreJ2EE, P of EAA, and SDO.
2 This pattern is not documented in this book. It is the basic Adapter pattern [GoF], but tuned to make data
collected from a given data source appear to be domain objects, whether or not they are really domain
objects managed by the Domain Model pattern [P of EAA].

Business Document Generator: 4
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

PatientChargesDomainAdapter

Patient

Person

TreatmentCharge

Clinic

Insurer AssistanceTreatmentType

Doctor

TreatmentPrice

The above is a graph that shows a domain-object view of the data we need to publish
our business document. Some of the objects are navigable from multiple associated
objects. For example, Doctors may be found by looking in the Clinic(s) they work
with, and by what Patients the treat. Also Patients may be found by the Clinic
they are treated in or by the Doctor(s) treating them. But depending on the data access
and object container patterns in use, your physical model may or may not at all look like
this. However, in the above example it is class PatientChargesDomainAdapter
that provides a logical and optimal view of the physical data.

This Adapter [GoF] should not be confused with the Remote Façade pattern [P of
EAA]. It does not provide core business logic. It just simplifies access to the underlying
data objects, giving them a unified and logical access point. In fact, you may want to tune
the Adapter to provide an even simpler logical view of the physical data:

Business Document Generator: 5
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

PatientChargesDomainAdapter

Patient

Person

TreatmentCharge
Clinic

Insurer AssistanceTreatmentType

Doctor
TreatmentPrice

So what is the difference? The public methods on the first implementation of the
PatientChargesDomainAdapter would look like this:

public class PatientChargesDomainAdapter {
 public static PatientChargesDomainAdapter getInstance(long aPatientId) . . .
 public Clinic getClinic() . . .
 public Patient getPatient() . . .
}

In order to get the Patient’s Doctor(s), we would need to do the following:

PatientChargesDomainAdapter pca = PatientChargesDomainAdapter.getInstance(id);
List doctorsList = pca.getPatient().getDoctors();

On the other hand, the second implementation of the Adapter would have a method

for accessing each of the major logical domain objects, regardless of the natural
navigation necessary to provide the access:

public class PatientChargesDomainAdapter {
 public static PatientChargesDomainAdapter getInstance(long aPatientId) . . .
 List getCharges() . . .
 Clinic getClinic() . . .
 List getDoctors() . . .
 Patient getPatient() . . .
 List getTreatments() . . .
 TreatmentPrice getTreatmentPrice(Treatment aTreatment) . . .
}

In that case we would now be able to access the Patient’s Doctor(s) more easily:

PatientChargesDomainAdapter pca = PatientChargesDomainAdapter.getInstance(id);
List doctorsList = pca.getDoctors();

Business Document Generator: 6
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

A better adapter is one that makes access to the publishable information convenient to
the aggregation process. It does more adapting per the requirements of its client
consumers.

That’s about it for the information access portion of the data aggregation process. But
it is not all there is to aggregating the data. The other half of the aggregation process is
the one that gathers the data into a format that is more natural for the publication process.
And not surprisingly this half of the aggregation process also uses an Adapter [GoF].
This particular Adapter is different from the Domain Object Model Adapter pattern. It is
not domain-model centric. It is channel-document centric, and thus is called the Channel
Document Adapter3, as is shown in the introductory diagram.

This version focuses on adapting raw data into publishable document information.
For example, the Charge domain object provided by the
PatientChargesDomainAdapter contains information that indicates how much a
Patient was changed for a given Treatment. The monetary value is stored in the
denomination that the corporation deals in. But if the clinic in which the patient was
treated is in a different country the charge must be provided in the local denomination
using the exchange rate governed by the business. The conversion is provided by a
service that has its own domain data, and is not part of the primary domain model in the
PatientChargesDomainAdapter.

PatientChargesDocumentAdapter is a fitting name for this class. As
suggested above, the data adaptation it performs focuses on isolating business logic.
Another example of this class’ business logic adaptation responsibilities is to perform any
necessary calculations (or to delegate them to a rules engine) that are not stored in the
data source, but that are displayed in the published document. It would also associate the
description of the treatment found in the TreatmentType object with the code and
number of units administered in each Treatment object.

A Channel Document Adapter provides accessor methods, such as
getPatientChargesInfo(). Like methods provide a better set of associated data
as far as the document is concerned than does the Domain Object Model Adapter classes’
methods. Besides, running special business logic may produce the channel document
associated data. But frankly, some of the data—perhaps even most of the data—may be a
straight pass through from the underlying Domain Object Model Adapter. We now have
the following class structure to our data aggregation process:

PatientChargesDocumentAdapter PatientChargesDomainAdapter

AbstractDomainObject
This represents multiple
concrete domain objects
such as Patient, Clinic, etc.

3 Like the Domain Object Model Adapter, this one is also based on the standard Adapter pattern [GoF].

Business Document Generator: 7
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Why Two Adapters? You may be strongly questioning why we should go to the
trouble of providing two Adapters, especially when one may simply pass data directly
through from the one below it. This is a separation of concerns decision. The lower-level
Adapter deals with providing data access as a domain model. The higher-level Adapter is
concerned with appropriately assembling to domain model data in a manner that is best
for the document that will be hosting it.

Further, the Domain Object Model Adapter is reusable. If at some point in time you
want use these classes for another purpose. You will be able to do so easily because your
concerns are separated into two patterns and implementing classes.

Should your Channel Document Adapter subclass your Domain Object Model
Adapter so you don’t have to duplicate methods that simply pass data as-is up the chain?
I say “no.” If you subclass the Domain Object Model Adapter classes, besides showing
through public methods that you want the client to see, it will also show through public
methods that client of the Channel Document Adapter should not see. If such methods are
visible to the client they may be used to access data in a way that the document is not
prepared to host.

Now that the single-channel data aggregator is understood, the multi-channel

aggregator is a cinch. All we need to do is provide a pair of Adapters for each channel
being published: one for domain model concerns and one for the document concerns. The
key is, what channels should you publish?

Obviously you will have to publish every channel that contains data that will be
hosted by the end document. But I suggest that a better use of this pattern always
publishes multiple channels. Why? I believe that this pattern should always use at least
two channels, the primary data channel and a content management channel. This point
will be become clearer as we advance to Structured Data Stream Assembly and Page
Layout and Content Formatting processes.

Structured Data Stream Assembly
At this point we have access to all the data objects that will ultimately serve as input to
the published business document. However, the input has not yet been assembled into a
sequence of useful structures that are suitable for input to the eventual Page Layout and
Content Formatting process. That’s what happens now.

What data format will work best for each particular publishing situation? Well, each
publication is unique. So it is impossible to select a single format that works best for
every publishing situation. Really, it would be best to be able to tune the data format for
each and every scenario. But unless this is done carefully we may end up supporting a
plethora of specialty formats. So what works?

I believe that structured data stream assembly is an excellent way to apply XML.
While I openly admit that XML has become overused, publishing is actually one of the
key motivations for its existence. Especially when coupled with the complementary
transformation technologies (see below), we have a strong basis for using this standard
document markup language.

If you don’t believe that XML is the best way to create a structured document for
your publishing process, consider the alternatives. Basically we have the additional

Business Document Generator: 8
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

choice of using a proprietary format, or SGML, the more complex predecessor to XML.
Given that our own proprietary structured document format may become open and
standards-based simply by surrounding data with XML tags and attributes that are
described by a DTD or XSD (Schema) is a very compelling approach.

Admittedly it is not necessarily the best approach for pattern authors to insist on
implementation details. So for the remainder of the pattern I will use XML and related
technologies in my examples, but you should ultimately use the principles presented here
in conjunction with the structured data formatting approach that best suits your
enterprise.

Structure data so that related content and attributes are together. In XML we use a
hierarchy of logically nested elements. For example, if we want to describe a book in
XML, at a high level it might look a lot like this:

<book>
 <info>
 <isbn/>
 <title/>
 <author/>
 </info>
 <toc/>
 <preface/>
 <chapters>
 <chapter number=”1”>...</chapter>
 </chapters>
 <index/>
</book>

The book itself is the outer structure. Inside this structure we find standard info

such as the ISBN, the title, and the author. Each of these is represented by a dedicated
element within info. Following this is the table of contents, or toc. Next a chapters
element encapsulates a separate chapter element for each chapter. The last major
substructure in the structured document is index. What is being emphasized here is that
related data is clustered together in related structures and substructures.

It is likely that related data will be displayed in the published document within the
same proximity. So it makes sense to collect it into the same area of the structured data
stream. In fact, there is nothing wrong with setting up the structured document to follow
the basic logical flow of the published document. It is not absolutely necessary to do so
since the structured document is not trying to be the highly readable and printable
published document, but it may help to expedite the development process to do so.
Certainly, however, if the final published document order and layout change over time
there is no reason to change the order of content in the structured document.

I want to emphasize that the stream part of the Structured Data Stream Assembly
process should if all possible truly be a stream. That is, the structured data is written to an
output stream, that becomes an input stream to the Page Layout and Content Formatting
process. While text characters can be written to a disk file as a stream and read from the
disk file through a stream, it is advantageous to use memory streams instead. Keeping the
structured document entirely in memory has obvious performance benefits. It also
reduces the amount of housekeeping necessary to clean up after the document is
published. If your publisher is multithreaded the output data stream may be read as input
by the Page Layout and Content Formatting process as the data streams.

Business Document Generator: 9
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

There are situations in which the use of disk files is a necessity. One situation has to
do with the size of the documents being generated. Another has to do with the total
number of output parts. It may be that several structured documents must be generated
for the publication of a single finished document. In this case, especially if the structured
documents are large, it may be best to write output to disk files.

Anytime that the structured data stream must be placed into one or more disk files it
is best to create them in a temporary location. Since the structured documents do not need
to be accessible to consumers there is no need to make the temporary directory and files
relative to the Web site. Rather any temporary directory will do. We must only exercise
care to clean up after the end document is generated. It may be that some temporary files
are used by more than one document. For example, document templates and standard
boilerplate content could be used across many documents. In that case it is advantageous
to preserve multi-use streams (or files) around for subsequent generation processes.

This leads us to the classes needed to assemble the structured data stream. In this
pattern’s introductory diagram note the abstract and concrete classes. The abstract class,
StructuredDocumentGenerator, contains default behavior for the generation
process. This includes the creation of memory and file streams, and their cleanup. If
XML is used this class would also include default behavior for creating the structured
documents, such as an interface to a standard XML generation API.

The ConcreteStructuredDocumentGenerator class represents the class or
classes you would create specifically for the generation of the structured documents for a
particular publication. It is not the actual name, however. The prefix name would be
based on the publication at hand. Returning to the patient charges example, these are the
possible classes involved:

StructuredDocumentGenerator

PatientCharrgesStructuredDocGenerator

There is no reason that the number of structured documents generated must be limited
to one or even a few. Theoretically any number of structured documents could serve as
input to the final business document. In that case the primary concrete structured
document generator subclass becomes a driver for the creation of all such documents. It
may make sense to generate multiple documents—perhaps even one per input data
channel—under a few circumstances. For one, if creating a single structured document
would make its structure so complex (e.g. many nested XML elements) that it would be
more difficult to work with than multiple files, then use multiple files.

Another good reason is if you will be using some or most input data channels in
multiple final business documents using the same data, it may be best to produce one
structured document per input data channel. Doing so will make each concrete structured

Business Document Generator: 10
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

document generator highly reusable. In that case you simply create a unique primary
concrete structured document generator subclass to drive the operation of the lower
worker-bee generators. Using the patient charges example we may formulate our
structured document generators like the following:

PatientChargesStructuredDocGenerator

PatientInfoStructuredDocGenerator InsuranceInfoStructuredDocGenerator TreatmentChargesStructuredDocGenerator

BusinessDocumentPubisher

StructuredDocumentGenerator

All of the concrete structured document generators above are subclasses of the
abstract class StructuredDocumentGenerator, although I do not show this detail
here to keep the diagram simple. The class at the top of the diagram,
BusinessDocumentPublisher, is the overall controller for the patient charges
publishing processes. There may be no reason to provide a specialized publisher for each
document type. The driver class PatientChargesStructuredDocGenerator
controls all other worker-bee structured document generators. The controlling publisher
need not directly know about driver structured document generator. In fact it is best if the
publisher knows only about the StructuredDocumentGenerator abstract class.
This will lend to this Business Document Publisher solution pattern serving as a pattern
framework that is highly reusable.

But how does the BusinessDocumentPublisher know how to create each of
its Structured Document Generator classes and their corresponding Domain Object
Model Adapters and Channel Document Adapters? The short answer is, it doesn’t know
how to create them. The more complete answer is that object creation responsibility is
placed on the DocumentDescriptor.

The DocumentDescriptor is a creational design-level pattern. It contains
references to all the parts necessary to create the final business document. The client of
class BusinessDocumentPublisher is responsible for setting up the

Business Document Generator: 11
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

DocumentDescriptor before passing it to the publisher. The description of Domain
Object Model Adapter, Channel Document Adapter, and Structured Document Generator
may be done through configuration. For example a properties file or a more sophisticated
runtime configuration management approach, such as a JMX (Java Management
Extensions) MBean, could be used. Logically the descriptor is initialized as follows:

String patientId = patientAcct.getPatientId();
DocumentDescriptor docDesc = new PatientChargesDocumentDescriptor();
docDesc.setDocumentInputProvider(new PatientChargesDocInputProvider(patientId));
docDesc.addDomainAdapterClass(PatientChargesDomainAdapter.class);
docDesc.addChannelAdapterClass(PatientChargesChannelDataAdapter.class);
docDesc.addStructuredDocGeneratorClass(PatientChargesStructuredDocGenerator.class);
docDesc.addBusinessDocGeneratorClass(PatientChargesBusinessDocGenerator.class);
docDesc.setOutputDocumentType(DocumentDescriptor.PDF);
docDesc.setOutputDocumentFilename(“PatientCharges.pdf”);
docDesc.setOutputTempDirectory(env.getPublisherTempDir(patientId));
docDesc.addTargetPublisher(new EmailTargetPublisher(patientAcct));

The “add” methods facilitate the possibility of multiple participating classes. You

should establish a specification for identifying the primary, controlling participant from
each category, namely domain adapters, channel data adapters, structured document
generators, and business document generators. For example, you could establish that the
first class added to the DocumentDescriptor for each category serves as the primary
controller.

Later inside the BusinessDocumentPublisher implementation the following
creates the parts that the publisher uses to fulfill the publish request:

StructuredDocumentGenerator structDoc = docDesc.createStructuredDocumentGenerator();
BusinessDocumentGenerator bizDoc = docDesc.createBusinessDocumentGenerator();
. . .

Once the StructuredDocumentGenerator instance is created, all participating
Domain Object Model Adapters and Channel Document Adapters are automatically
created as well, and all dependencies are wired. Thus the data access and structured
document workers are prepared for use. Next the publisher’s specific
BusinessDocumentGenerator is created. The various worker parts know what
patient to generator a business document for by the DocumentInputProvider
subclass established at the invocation of setDocumentInputProvider().

Page Layout and Content Formatting
There is certainly a lot of work put into preparing data as input to the publication of the
final business document. But we have finally come to the point where the business
document actually gets generated. As I stated earlier I am using XML for the structured
document and related transformation technologies (XSLT) to create the finished
document. Again, it is not absolutely necessary to use XML and XSLT. You could create
your document using any proprietary page layout process. It’s just that I think that the use
of XML and XSLT will help your enterprise to remain open and for a broader cross-
section of technologists to contribute to your development efforts.

Before going into the details of page layout, it is appropriate to establish the kind of
document we will produce. Adobe’s Portable Document Format (PDF) has earned
worldwide acceptance as an open standard that supports a highly readable, highly

Business Document Generator: 12
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

printable electronic document. I believe it would be foolish not to leverage the strengths
of PDF and related tools and utilities.

These are the basic steps to producing a PDF using XML technologies:

1. Create an XSL style sheet for transforming the structured document
2. Parse the structured document(s) using a XSL and XSLT (transformation)
3. As your XSLT matches key elements from the structured document, output the

structured document’s content and attributes along with interspersed XML-based
page layout and text formatting objects

The first two steps are probably intuitively obvious to you. If you are not familiar

with XSL and XSLT, I suggest that you inform yourself about it. What may not be
obvious is included in the third step; the generation of ‘XML-based page formatting
objects.’ This is known as XSL-FO. The FO stands for Formatting Objects, and is the
name of an open standard for creating high-precision documents such as PostScript and
closely related PDF. Basically FO is a set of page layout and formatting commands in the
form of XML tags that are interpreted by a document-formatting engine. As the
document formatting engine processes the page layout and formatting commands, as well
as text and image content, it uses a PostScript or PDF API to create respective
documents.

There is actually no need to generate an intermediate set of structured documents that
are passed through XSLT. We could generate the structured documents with FO
commands embedded in them. However, this approach does not separate concerns—data
from page layout—and is thus not reusable. I emphasize that the greater the potential for
reuse the better the overall solution. Therefore, this pattern generates structured
documents and then transforms the documents into a stream of content with page layout
and content formatting commands using XML, XSLT, and FO.

There are a few choices in XSL-FO engines available. One is the Apache Software
Foundation’s FOP, or Formatting Objects Processor. It is a fairly complete
implementation of the standard. FOP has been known to exhibit some memory problems,
but these are not uncommon to any and all FO processors, even commercial. More
information on this is provided below under the Robustness subsection.

As you can see in the Examples section there are two kinds of FO commands. One is
concerned with page layout, its dimensions. The other is for content formatting. Both are
used in conjunction to make the generated business document look they way you want it
to look.

Where does the XSL document come from? Recall that above I suggested using at
least two data channels. One of the two minimum channels is the primary data channel—
where your document’s data comes from. The second of the two minimum channels is a
content management channel. You would retrieve the XSL document from this special
channel. Some content management systems can be slow to retrieve content just in time.
Therefore, we must weigh the performance consequences of reading the XSL from the
content management channel on demand. It may be best to cache often-used XSL in
memory rather than reading it just in time.

After you have assembled all structured documents and XSL page layout and
formatting templates into streams, it’s time to run the transformation process. See the

Business Document Generator: 13
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Examples section for more detail, but the following diagram shows the high-level object
interactions that run the end-to-end process:

BusinessDocumentPublisher Transformer FOEngine

transformXmlToXslFO

createPdfFromFO

Now that we have a highly readable, highly printable electronic document in our
PDF, we are ready to publish the document to one or more of its final destinations.

Publishing
Publishing is just a placeholder for a much more wordy description of the forth step in the
overall pattern process. What publishing really means is putting the finished document in
all the places it needs to go to be consumed.

If the business document is going to be referenced by pages on your business
Dynamic Web Site (page #) then it will have to be placed in a directory that can be
referenced by an HTML link in one or more Web pages. If the business document is
going to be emailed to a consumer then it will have to be put into an email document as
an attachment and sent. If the business document is going to be transferred to a partner, it
will need to be passed on to a messaging or service dispatcher.

There are many possible targets for the finished business document. You might even
need to support multiple targets for a single document. Whatever the case the
DocumentDescriptor, defined in the above Structured Data Stream Assembly
subsection, contains the targets used by the publisher to complete the process:

DocumentDescriptor docDesc = new PatientChargesDocumentDescriptor();
. . .
docDesc.addTargetPublisher(new EmailTargetPublisher(patientAcct));
docDesc.addTargetPublisher(new PayorPartnerTargetPublisher(partnerAcct));

This code supports two targets, an email publisher that sends to the patient directly

and a partner publisher that ensures that the partner receives a copy of the patient charges
statement. If the target were a Dynamic Web Site (page #) the DocumentDescriptor
code would look something like this:

DocumentDescriptor docDesc = new CorporateReportDocumentDescriptor();
. . .
docDesc.addTargetPublisher(new WebTargetPublisher(corpReportUrl));

After the document is sent to all recipients then it is the publisher’s responsibility to

clean up. It does so by removing all temporary files and finished product business

Business Document Generator: 14
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

documents from their temporary working directories. If all production and publishing is
accomplished using memory streams, the garbage collection takes care of the clean up
(assuming your implementation language supports it).

Robustness
I repeat the robustness goals we have for our Business Document Publisher:

1. Publishing must be fault tolerant
2. The processing must scale as business needs grow
3. It must be executable on whatever enterprise platform and operating system that

best supports the organization’s environment

Fault Tolerant. This quality describes the enterprise’s ability to recover automatically

from processing crashes. With enough know-how and effort anyone can create a fault
tolerant system. But this has already been accomplished by application server vendors
through implementations of such standards as J2EE and .NET. It would be most
productive to build your publisher behind such standard component technologies as EJB
Session Beans, Web Services, messaging, and the like. These component frameworks
implement the Remote Façade pattern [P of EAA] and facilitate advanced messaging
patterns [EIP].

You can also take measures to prevent problems with the tools you use to process and
publish. As previously stated, XSL-FO processors at times exhibit memory problems.
These issues are generally related to the need for the processor to preserve page after
page of formatted document in cache. This happens when the processor cannot resolve
certain page elements until subsequent pages or even the entire document has been
processed. One such situation is when a running footer includes page numbering in the
form “Page X of Y.” Y, or the total number of pages, is unknown until the document is
fully processed. FOP will cache all pages in memory until it knows the total page count.
It will then make a second pass through the document filling in the appropriate value of Y
on each referencing page. As can be imagined, the larger the document the more memory
needed to process it.

You have a couple of options to prevent such issues in your software. First, you may
be able to avoid the document formatting constructs that cause the problems. Since this
will not be possible in many cases, your second option is to protect your enterprise
applications and systems from FO processing glitches and give them as much memory as
possible to operate in. How?

Beware of using FOP or any other FO engine inside an application server container
(such as a J2EE container) that also hosts your core application components. The
container and your application probably already have serious memory overhead. Adding
an FO engine with its page cache overhead can literally cause the container to encounter
out-of-memory exceptions.

You should consider running your FO engine in its own dedicated application server
instance or set of instances for increased robustness. All components used by your
Business Document Publisher could be deployed in the same instance. Your core
application components could interact with the Business Document Publisher via Remote
Façade pattern [P of EAA] or via messaging [EIP].

Business Document Generator: 15
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

You may also want to consider running your FO engine entirely out-of-band. In other
words, you could run FOP as a detached process (Unix fork() with exec(), or Java’s
Runtime.exec() to achieve the same thing). This will allow you to get maximum
memory usage out of FOP’s JVM (for example).

Scalability. Not surprisingly most of the principals already stated regarding fault
tolerance are applicable to scalability. Placing your Business Document Publisher and
related components in a dedicated application server instance (or instances) will promote
scalability as well. The application server instances (which may be a Windows Server in
the case of .NET) may be on the same hardware as other instances to start out. Later as
application throughput is more seriously challenged the Business Document Publisher
could be moved off of a shared server and one to one or more dedicated hardware
servers. Since the Remote Façade pattern [P of EAA] or messaging patterns [EIP] would
already be in use, there would be little if any rework to scale the platform out to meet
your growing business needs.

Run Anywhere. What this means is practicality—run where you need it to run. FOP,
for example, runs on any platform for which a compatible Java Runtime Environment
(JRE) is available. A Web Services (again via Remote Façade) or messaging interface
would allow any external system to access the Business Document Publisher provided by
FOP or another Java solution. There are also available XSL-FO engines available for the
.NET platform, such as [get the product names]. The important thing to note is that XML,
XSL, XSLT, and XSL-FO are open standards and, therefore, potentially have
implementations for any platform.

Example
My example focuses on the XSL-FO used to generate the business document. I do not
provide a full implementation here, but the snippets are from a full example that I have
posted on my Web site. See Frameworks and Tools below for more details. The examples
here assume that the XML structured document has already been produced and that the
XSL is now reading that document. You can find Java code snippets scattered thought
this pattern that demonstrate the other important strategies it describes.

Here is a snippet of an XSL document that describes the page layout. This particular
snippet defines the layout for only odd-numbered pages using Letter pages:

<xsl:template name="book-page-layout">
 <fo:layout-master-set>
 <fo:simple-page-master
 master-name="odd-book"
 page-height="11in"
 page-width="8.5in"
 margin-top="0.5in"
 margin-bottom="0.5in"
 margin-left="1.25in"
 margin-right="0.75in">
 <fo:region-body
 margin-left="0in"
 margin-right="0in"
 margin-top="0.5in"
 margin-bottom="0.5in"/>
 <fo:region-before
 region-name="op-before"
 extent="0.5in"/>
 <fo:region-after
 region-name="op-after"

Business Document Generator: 16
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 extent="0.5in"/>
 <fo:region-start
 region-name="op-start"
 extent="0in"/>
 <fo:region-end
 region-name="op-end"
 extent="0in"/>
 </fo:simple-page-master>
 . . .

Note that the margin-left attribute of the fo:simple-page-master element

uses the value of 1.25 inches and the right-margin attribute uses 0.75 inches. This
means that the surrounding page margins are both 0.75 inches, but that a gutter margin of
an additional 0.5 inches is included at the left of the page. The pages will be bound on the
left-hand side of odd-numbered pages, so the extra 0.5 inches of “gutter” or non-usable
margin. We would naturally expect for even-numbered pages to specify the opposite
layout since they will be bound on their right-hand side:

 <fo:simple-page-master
 master-name="even-book"
 page-height="11in"
 page-width="8.5in"
 margin-top="0.5in"
 margin-bottom="0.5in"
 margin-left="0.75in"
 margin-right="1.25in">
 . . .

The formatting commands are a bit different. While the page layout commands deal

with the general size and shape of the page—its dimensions—the formatting commands
make the content look the way you want it to look. Here is the opening matching and
formatting commands of a document:

<xsl:template match="bookInfo">
 <fo:block xsl:use-attribute-sets="title-font-attr"
 text-align="center"
 space-after="8pt"
 margin-left="1.6in"
 margin-right="1.6in">
 Book, Author, and Schedule Information for Hosting Review on TheServerSide.com
 </fo:block>

The structured document takes the following form:

<bookSchedule>
 <overview/>
 <bookInfo>
 <title>Patterns of Enterprise Business Solutions</title>
 <description/>

 <author>
 <name>Vaughn Vernon</name>
 <contact type="email">vaughn@jubatus.com</contact>
 <about/>
 </author>
 <pages>450</pages>
 </bookInfo>
 <phases>
 <phase name="Phase 1">
 <description/>
 <deliverables>
 <deliverable section="1" chapter="1" title="Introduction" dueDate="8/9/04"/>
 ...

Business Document Generator: 17
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 <deliverable section="2" chapter="5" title="Dynamic Web Site" dueDate="9/6/04"/>
 ...
 </deliverables>
 </phase>
 ...
 </phases>
</bookSchedule>

When the XSL matches the bookInfo element it generates the corresponding

fo:block element into its output stream. The document title text “Book, Author, and
Schedule Information for Hosting Review on TheServerSide.com” is generated using
title-font-attr. Above in the same template the title-font-attr global
attribute is defined:

<xsl:attribute-set name="title-font-attr">
 <xsl:attribute name="font-family">Times-Roman, ZapfDingbats</xsl:attribute>
 <xsl:attribute name="font-size">12pt</xsl:attribute>
 <xsl:attribute name="font-weight">bold</xsl:attribute>
 <xsl:attribute name="text-align">justify</xsl:attribute>
</xsl:attribute-set>

When the title-font-attr is referenced in the block as an attribute set, the font

definition is generated into the output stream. Besides 12 point Times-Roman Bold font,
the fo:block also that the title text should be centered and that a blank line of 8 points
in height should follow the title. I suggest that you see the full example on my Web site
for more information on how XSL-FO works.

If you are creating PDF from XML using FOP, you may use a command-line
invocation of the formatting engine, or you may run the engine using Java code to drive
the processing. Here a command-line example:

fop -xml bookSchedule.xml -xsl bookSchedule.xsl -pdf bookSchedule.pdf

There are two steps to FOP’s processing of this command. It first runs the XML

structured document bookSchedule.xml through XSLT to produce the intermediate
XSL-FO document. In the background this produces a stream that might be named
bookSchedule.fo. FOP then processes the XSL-FO stream through the FO engine
and produces its output, bookSchedule.pdf. The XML to XSL-FO transformation is
not part of FOP’s core processing responsibilities. In fact FOP simply delegates this
transformation to the Apache Xalan XSLT engine. In effect, this is the Xalan command
that could be issued and the following FOP command to accomplish the same thing as the
preceding example command line:

xalan -in bookSchedule.xml -xsl bookSchedule.xsl -out bookSchedule.fo
fop -fo bookSchedule.fo -pdf bookSchedule.pdf

Running such commands may be a reasonable approach if you are running FOP out

of band. It will allow Xalan and FOP to use the own memory space in a private JVM. If
you conclude that this is not optimal for your enterprise you may always used the fine-
grained control of using the Xalan and FOP Java APIs directly.

Consequences
You will find these functional tradeoffs within the Business Document Publisher pattern.

Business Document Generator: 18
Date/Time: 9/19/2004 2:07 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

• Open Versus Proprietary Processing: Your enterprise may seem to lend itself to
the use of proprietary implementations. This may be justifiable if you already
have many legacy processes in place that were built long before open standards
emerged. However, should your business continue to invest in the use of
proprietary tools and formats as time passes? It may be best to begin a regimen of
using open standards for all new business document publishing. Once you have
gained expertise in the open technologies you may then determine that migrating
proprietary legacy publishing processes to the open standard. This would have
highest benefits if there is a lot of maintenance associated with the proprietary
solution.

• Use of Open Source Or Commercial Products: Since there are many open source
products available for this pattern, it makes sense to evaluate them for your
enterprise. Admittedly XSL-FO is less popular than general XML and XSL tools.
Thus, we may find less support for FOP than for Xerces and Xalan. This fact may
justify the evaluation of commercial XSL-FO processors. Note those available in
the Frameworks and Tools section below.

Frameworks and Tools
• Xerces: This is an Apache open source project and is an XML parser and

document generation tool. It is a fine product, well supported, and widely used
even by commercial products. To download see http://www.apache.org/.

• Xalan: This is an Apache open source project and is an XSL transformation
engine. Xalan is also a fine product, it is well supported, and widely used even by
commercial products. To download and learn more, see
http://www.apache.org/.

• FOP: This tool is an Apache open source project that supports the processing of
XSL-FO documents into several target formats. Among the most popular of
support formats is PDF. Others include Java AWT-based screen output, MIF,
PCL, PostScript, text, SVG, and direct to printer. See
http://www.apache.org/.

• Cacoon: This is a full publishing framework provided by Apache. It includes a
transformation engine and the FOP toolkit for publishing PDF and other XSL-FO
output. Cacoon is traditionally recognized as a Web page publisher, and is
therefore applicable to the Stylized Page (page #) pattern.

• .NET Tools: [Provide list.]
• Resources: Thanks go to my colleague Glenn Pearson for providing the XSLT

and XSL-FO examples found in this book. Glenn has many years of SGML,
XML, XSL, and XSL-FO experience. I have worked with Glenn on two different
projects that made use of XSL-FO. I have posted Glenn’s examples on my Web
site, http://www.jubatus.com. Glenn can be reached at
gpearson@documite.com.

