
Image Producer: 1
Date/Time: 9/7/2004 1:18 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Image Producer
Generates a graphic image on the fly that is compatible with Web browsers. Allows the
business to supply to consumers graphs built from live, up-to-date business data.

Browser

FrontController ImageProducerActionHandler GraphicsToolDataSourceImagePainter

request page image

handleAction

paint(outputStream)

read

createImage

paint(image)

encodeWebImage(image, outputStream)

response

Background
The Web site consumer requests a graph that visually depicts the state of a dataset of
interest. The Web component container dispatches the request to a custom component.
The custom component reads the consumer’s selected dataset and produces an image that
allows the consumer to examine a graphical view of the dataset.

Value and Benefits
It’s relatively easy to enlist a graphic artist to produce a static graphic image that can be
placed in a Web page. As you know, however, the static graphic only reflects an artist’s
rendition of some context at the time it was designed. If the static graphic represented a
data context, then the image may be obsolete by the time it is published to the Web site
and/or viewed by consumers. We obviously cannot use this approach when we are
reflecting visuals of up-to-date, “live” data. Instead the graphic image must be produced
on the fly.

Web browsers are not able to display every graphic image format. If you produce an
image that is native to the toolkit you are using to generate the graph on the fly, the raster
or vector will likely be incompatible with what the consumer’s browser can display.
Therefore, the graphic image must also be converted to a browser-compatible format
before embedding it in the response. What is more, the converted image must be written
into the response buffer that the browser can read.

The Image Producer pattern defines the necessary steps to accomplishing these tasks.
The benefits to the consumer include being able to view their selected dataset of interest
graphically, with up-to-the-second accuracy. The business benefits by adding value to
their information systems managed by their Dynamic Web Site (page #).

Putting It to Work

Image Producer: 2
Date/Time: 9/7/2004 1:18 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

The consumer makes a request, and the Web site must produce a response using Dynamic
Web Page (page #). The page response must include a reference to the generated image
so the browser can request it. The image does not yet exist, however. Therefore, the
generated URL in the page response must refer to a Web custom component that knows
how to produce the image dynamically. The URL is included in a standard HTML IMG
tag:

When the browser parses the page it will encounter the IMG tag. The browser will

then send another request to the Web site asking for the image by its source URL
(SRC="..."). The URL does not reference a static image, but, rather, a custom
component (ImageProducerServlet). The Web server dispatches the request to the
custom component. The custom component gets any pertinent parameter(s)
(featureId=123) and uses the parameter(s) to determine what kind of image it needs
to produce.

Next the custom component gathers the data from the consumer-specified data
source(s). It then creates a graphic image using its native graphics toolkit and executes an
image production strategy using the gathered live data. Once the native image is
produced it must convert the image to one that is compatible with the Web browser. This
typically means .GIF or .JPG.

When the browser-compatible image is produced it is placed into the response output
stream. You must indicate the content type in the response header. Depending on the
image type you produce, you will use one of the following to content types:

image/jpeg
image/gif

You must not use a “cooked” output stream when outputting the image bytes. Use a

raw file, one that accepts bytes that are in no way interpreted as they are written to the
output stream.

Producing Disk Image Files
You will have to determine whether or not to store images on disk. I recommend using
the above procedure, not generating disk files. However you could take the approach of
generating the image and saving it to a disk file when the page is first requested (rather
than generating it later). You would in that case generate a URL to the static image on
disk. The browser would then request the generated static image file, for example:

There are several problems with this approach: How do we clean up after ourselves

and remove the temporary image files when they are no longer needed? We may
conclude that there is an advantage to leaving the file on disk since it could be reused on
subsequent requests (see Server-Side Image Caching below). Granted, this may help to
lessen the load on the server-side application. But how would we determine when each
image is obsolete and that it could be deleted? How would you arrange for the “obsolete
image file strategy” to be executed, and how would it be implemented? How could you

Image Producer: 3
Date/Time: 9/7/2004 1:18 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

be certain that you would have enough disk space to store all the images generated in
behalf of all users during any given peak usage period?

Browser

WebContainer ActionHandler ImagePainter File«dynamic»

WebPage

request page

handleRequest

paint(outputStream)

create

forward

service

setImageFileURL

response

Further, there may be issues around creating files that can be referenced statically by
the Web server. If your Web server and your Web component container are two separate
processes, and the probably are, how will your Web custom component save an image
file into a directory on the Web server that is mapped to your specific application’s site
root?

With all of the potential problems that must be addressed, you have probably
concluded as I did, that providing just-in-time images is a better choice. But you may
decide to use this approach for caching purposes, if caching provides advantages in your
business domain.

Server-Side Image Caching
Is image caching a worthwhile effort? If so, how should it be accomplished?

As previously stated, caching reusable dynamically produced images in a temporary
directory could help to lessen the load on the server-side application. But is caching
really necessary in your business domain? If so, consider some of the following image
caching strategies and their caveats.

The requested URL could be used to determine whether a consumer is requesting an
image previously requested. If a URL is identical to one previously received, the
previously generated image could be reused. In that case we would probably create a
URL-to-image-file mapping. This approach would have some overhead since you may
choose to store the mapping in a persistent store. Otherwise, if the server is stopped you
may as well remove all disk cached image files and start from scratch upon server restart.
So calculate the value of preserving a mapping and searching it on each dynamic image
request.

You could name the image file based on the URL that created it. This would negate
the need to create a URL-to-image-file mapping in a database. But you would still have
to hit the disk on each request to find out whether or not the image already exists.

Image Producer: 4
Date/Time: 9/7/2004 1:18 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

We could cache images in memory inside the Web component container. We might
accomplish this by creating a URL-to-image mapping using a Dictionary or Map
object. We would use the URL string as the key for retrieving the image object. This
approach would only keep images cached while the server is running, unless we persist
and re-read the mapping whenever the server is bounced. But there is potentially a huge
memory overhead to this approach. Similar to the disk caching approach, how could we
be certain that there would be enough memory to store all the images generated in behalf
of all users during any given peak usage period?

Map

+ get(Object) : Object
+ put(Object, Object) : void

URL2ImageCacheMap

URL WebImage

«realize»

key value

Reaping memory back from the in-memory strategy may be an issue. We could use a
background thread to destroy cached images if they have not been used by the end of
some predetermined time period. Caution should be used with this approach, however.
Starting background threads may not be legal on a given platform. For example, starting a
background thread might be permitted on the Web tier, but not on the business tier. The
EJB specification stipulates that user-created threads inside the EJB container are
forbidden. There are ways to get around the limitation, but keep this in mind if you
decide to implement a memory reaper for in-memory caching.

So how would caching benefit your enterprise? A dynamically produced image that is
requested multiple times using identical data may be rare in many business domains. You
will have to determine if this is the case in your specific domain. In many cases identical
requests are more likely to occur for the same consumer. If that is true in your domain,
remember that the consumer’s Web browser will probably cache the image on the client
side. Subsequent requests for the identical URL will more than likely cause the browser
to reload the image from its own client-side cache. Hence, server-side caching may
actually be wasteful.

With that thought, a related concern now comes to the fore. What if we want to
guarantee that the browser never recalls a cached dynamically produced image, and that a
fresh image is always generated? Make sure that each Dynamic Web Page (page #)
response somehow generates a unique URL every time for each user. Here is one strategy
to accomplish this:

Image Producer: 5
Date/Time: 9/7/2004 1:18 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

<% long tempNow = System.currentTimeMillis() %>
. . .
<IMG SRC="/webAppName/ImageProducerServlet?featureId=123&uniqueId=<%= tempNow %>"/>

This URL adds an additional parameter, uniqueId. The additional parameter is set

to the system time in milliseconds. Since it is virtually impossible for the same consumer
to make two or more requests at exactly the same time, the above URL can be considered
absolutely unique. There is no reason for the server-side component to make use of the
uniqueId parameter when it generates the image. In fact, it will probably always be
ignored. This unique identifier simply ensures that the browser will consider every
dynamic image request to be unique, which will ensure that the image will always be
requested anew.

Example
The following sequence diagram illustrates the behavior of the implementation strategies
I use in my example. I do not attempt the use of an image caching mechanism. The thrust
of my example is to demonstrate the core concepts behind a Java-based Image Producer.

The sequence diagram is more of an analysis-level diagram rather than design-level.
It is meant to show the logical intentions of the solution, not the details. However the
subsequent code snippets provide a fair amount of detail.

Consumer

ActionServlet DataSourceAccountTrendsAction GraphicsToolAccountTrends.jspImageProducerAction

request page

execute

read
forward

service

setImageProducerURL

response

request page image

execute

read

createImage

encodeWebGraph(outputStream)

response

I have based my example on the use of the Struts framework, but my intention is to
highlight Image Producer, not Struts. The example I present is the happy-path flow in a
Show Account Trends use case. The requirement is to show consumers graphically what
activities have occurred in their stock trading account over a selected period of time.

The Consumer requests a specific page from our Web server. The Struts
ActionServlet gets control from the servlet container (perhaps Tomcat). It then
dispatches the request to an action handler object of the class
AccountTrendsAction. The AccountTrendsAction object retrieves some data

Image Producer: 6
Date/Time: 9/7/2004 1:18 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

from a data source and prepares it to be forwarded to the page
AccountsTrends.jsp. Now as we peer inside that Dynamic Web Page (page #) we
find the following HTML and scriptlet code:

<IMG SRC="/traderApp/ImageProducer.do?img=acctTrends&accountRef=<%=
trader.getAccountRef() %>"/>

This produces markup to the page output stream that the consumer’s Web browser

encounters while parsing the page. The actual markup text may end up looking something
like the following:

When the browser sees this IMG tag, it requests the URL found in the value of the

tag’s SRC attribute from the Web server:

/traderApp/ImageProducer.do?img=acctTrends&accountRef=A72547731ZZY

When the ActionServlet receives this request (by way of the Web server and

servlet container), it dispatches action handling to the handler mapped to
ImageProducer.do in struts-config.xml. In this case it is an instance of class
ImageProducerAction. Inside class ImageProducerAction we find the code:

public ActionForward execute(
 ActionMapping anActionMapping,
 ActionForm anActionForm,
 HttpServletRequest aRequest,
 HttpServletResponse aResponse) throws Exception
{
 String tempAccountRef = anActionForm.getAccountRef();
 AccountTrendInfo tempTrendInfo = this.getAccountTrendInfo(tempAccountRef);
 this.produceImage(anActionForm, aResponse, tempTrendInfo);
 return null; // response complete; back to browser
}

protected AccountTrendInfo getAccountTrendInfo(String anAccountRef)
{
 // . . .
}

protected Dimension getImageSize(ActionForm anActionForm)
{
 // . . .
}

protected void paint(Graphics aGraphics, AccountTrendInfo anAccountTrendInfo)
{
 // . . .
}

protected void produceImage(
 ActionForm anActionForm,
 HttpServletResponse aResponse,
 AccountTrendInfo anAccountTrendInfo) throws Exception
{
 Dimension tempDim = this.getImageSize(anActionForm);
 Frame tempFrm = new Frame();
 tempFrm.addNotify();
 Image tempImage = tempFrm.createImage(tempDim.width, tempDim.height);
 this.paint(tempImage.getGraphics(),anAccountTrendInfo);
 aResponse.setContentType("image/gif");
 OutputStream tempOutputStream = aResponse.getOutputStream();

Image Producer: 7
Date/Time: 9/7/2004 1:18 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 GifEncoder tempGif = new GifEncoder(tempImage, tempOutputStream);
 tempGif.encode();
 tempOutputStream.flush(); // to browser
}

The action handler’s execute() method uses the accountRef URL parameter to

retrieve data from the data store containing consumer accounts (details of
getAccountTrendInfo() not shown). Then the real fun begins. The method
produceImage() is invoked. It might be that the URL parameters include some
indication of the image size to be produced. The internal getImageSize() method
determines the existence of such parameters, and if missing answers a default size. With
the image size specified, the Image object is now created. The internal paint()
method is used to paint the trends graph on the Image (again details not shown). Finally
the HttpServletResponse object is prepared for output. The image/gif content
type is set. Then the graphics image is put on the response object’s raw output stream by
the GifEncoder tool (see Frameworks and Tools below). The final step of flushing the
output stream is important as it causes the output stream to be sent to the requesting
browser. Also, answering null from the execute() method is necessary to tell the
Struts framework that the response is complete, and not to forward.

I suggest that you create a simple abstract class that implements the reusable behavior
of this example. The GifServlet (see Frameworks and Tools below) provides such a
framework for the Acme GifEncoder. This limits you to implementing Image
Producer through a servlet. If you are using Struts you will want to create an abstract
Action subclass, or better yet, make a plain-old-Java-object implementation that is
reusable with all Web or business platform and frameworks.

Consequences
Tradeoffs exist among the following competing forces within the Image Producer
solution pattern.

• Generate Image Files If Advantageous: There are several complexities around
this approach, including accessing the appropriate directory and housekeeping.
You will want to use this strategy if you determine that image file caching is
useful in your environment.

• Use Caching If Necessary: Server-side image caching may reduce processing
load, but it will be more complex to implement properly than to function without
it. Determine whether or not caching will provide an advantage in your business
domain before going to the trouble of implementing it.

• Select the Right Tier: Consider the impact of dynamic image production on each
tier. Both load and required facilities should be calculated. If throughput will be
poor or necessary facilities are lacking, place the Image Producer on a different
tier. If your business must produce a very high volume of dynamic images
consider dedicating a separate tier to your Image Producer. This will be more
costly in hardware, software, development, and administration. Nonetheless, if
you business requires high volume image throughput a dedicated tier may be a
necessity.

Frameworks and Tools

Image Producer: 8
Date/Time: 9/7/2004 1:18 PM

Copyright 2003,2004 Vaughn Vernon. All rights reserved.

• Java Tools: If you are using Java, the JDK includes the class
JPEGImageEncoder that is used to convert an AWT image into a JPEG
format. If you prefer to generate GIF images in Java, you should look at the Acme
(really!) JMP package, and the GifEncoder class in particular. You may also
find Sun Microsystem’s JIMI product useful. Further, Aaron Porter has written a
GifServlet for J2EE dynamic image production.

