
User: 1 
Date/Time: 11/10/2004 8:51 PM 

© Copyright 2003,2004 Vaughn Vernon. All rights reserved. 

User 
Defines the data structure and persistence of the authentication credentials of each user 
of a system. It optionally provides an alternative means of authenticating without a 
password. 

User

- username:  String
- password:  String
- pin:  String
- altQuestion:  String
- altAnswer:  String

 

Background 
Every system that has users and needs to grant unique and secure access to its resources 
and services has to maintain a set of credentials for each individual user. This involves 
defining the information and structure necessary to support the approval of system 
access. 

Value and Benefits 
The User pattern defines the data necessary to secure system/application access to 
approved users.  A user is granted access to the system if they are able to exactly match 
one of the registered usernames and passwords. Alternatively they are also be granted 
access if they provide a username, and then responded correctly to a special question as 
specified by this pattern’s alt-question and alt-answer. Additionally a second-level 
security property may also be supported. This is the PIN, or personal identification 
number. 

The Sign On (page #) pattern provides a more sophisticated means of restoring access 
to the system when a password cannot be provided. However, since the Sign On (page #) 
pattern will not necessarily have use of the Fundamental Identity (page #) pattern, 
necessary information (the user’s email address) may not be available to implement that 
strategy. In such cases the Sign On (page #) pattern may use a less sophisticated and 
secure strategy supported by the question/answer data defined herein. 

Separating the structure, persistence, and access of authentication credentials from the 
individual user’s personal information and the sign on behavior has its advantages. 
Privacy is a factor. By separating concerns the user’s personal information need not be 
accessed in order to authenticate them. The system may support authentication without 
ever collecting personal information at all. Thus, the Fundamental Identity (page #) 
pattern may not be required. The behavior of signing on may change over time as new 
user interface trends appear. Separating the definition structure, persistence, and access of 
user credentials allows sign on behavior to change without having an impact on the 
business end of the system. 

Putting It to Work 



User: 2 
Date/Time: 11/10/2004 8:51 PM 

© Copyright 2003,2004 Vaughn Vernon. All rights reserved. 

Similar to the Fundamental Identity (page #) pattern, the User pattern focuses on 
information and structure, not behavior. As you can see from the domain object presented 
in the pattern summary it maintains user credentials. 

Five attributes are obtained from the system consumer: username, password, 
pin, altQuestion, and altAnswer. The last three attributes are optional. These are 
collected through Registration (page #) pattern, which is the same pattern used to collect 
data for Fundamental Identity (page #). Some businesses require general usernames 
and/or passwords to be assigned by the system. In that case you will not need registration. 
You will always need to support the Sign On (page #) pattern to challenge the user to 
submits credentials for authentication. 

The PIN is a user-provided value that is analogous to those supported by a bank 
ATM. Using a PIN along with a password in effect adds a second-level password. The 
PIN is a number that the user is familiar with, perhaps even more so than the chosen 
password. 

If you decide to support the alternative question and answer means of authentication, 
you will want to weigh carefully what kind of questions to support. If the question, for 
example, is “What is your favorite color?” no doubt any malicious person will have little 
trouble eventually coming up with correct answers for nearly any random user. You may 
choose to provide a set of canned questions that the user selects one of when registering. 
Some users will not feel comfortable with your canned questions, so you may allow the 
user to define their own question. There are both security and usability issues to consider. 

Composition of Associated Objects 
If you make use of Fundamental Identity (page #), you should add the associated 
Person to the User domain object, as specified in the associate pattern. The first 
opportunity for these separate concerns to be composed as one logical unit will be at 
registration time. From then on when instantiating the User domain object the Person 
object may be instantiated along with the User object’s standard attributes using 
appropriate data. Of course the rules of lazy-loading techniques are in force, if applicable. 
The following class diagram illustrates the composition of objects associated with the 
User: 
 



User: 3 
Date/Time: 11/10/2004 8:51 PM 

© Copyright 2003,2004 Vaughn Vernon. All rights reserved. 

User

Person

ContactInformation

EmailAddress TelephoneNumberPostalAddress

0..*0..*0..*

 
 

In order to address privacy concerns you can support a “lite user” for authentication 
purposes. A “lite user” is a domain object that contains only the data necessary for 
authentication, and nothing more. 

Technology Considerations 
If possible you will want to use the same technology to back this pattern as you do (or 
would use) for Fundamental Identity (page #). If you determine that a directory service 
(such as LDAP) is best for your implementation, then the username, password, and 
optional PIN and question attributes would be stored there. If, however, you decide to use 
a database, such as a relational database, then the same attributes can be stored there. On 
the other hand, there is nothing preventing you from using a relational database, for 
example, to persist data associated with this pattern, and using LDAP for persisting 
Fundamental Identity (page #) information. 

Examples 
The J2EE implementation of the User domain object can be found in the following 
package, which includes the listed supporting classes. This is part of the implementation 
provided with the rest of Identity and Access Management (page #), and is posted on my 
Web site. This implementation, like the others within Identity and Access Management 
(page #), uses LDAP via JNDI. First I present interface UserIF followed by its 
implementer, class User: 
 
package com.jubatus.business.domain.user; 
 



User: 4 
Date/Time: 11/10/2004 8:51 PM 

© Copyright 2003,2004 Vaughn Vernon. All rights reserved. 

import com.jubatus.business.domain.DirectoryDomainObjectIF; 
import com.jubatus.business.domain.person.PersonIF; 
 
public interface UserIF extends DirectoryDomainObjectIF { 
  public String getPassword(); 
  public PersonIF getPerson(); 
  public String getPin(); 
  public String getUsername(); 
  public void setPassword(String aPassword); 
  public void setPerson(PersonIF aPerson); 
  public void setPin(String aPin); 
  public void setUsername(String aUsername); 
} 

 
package com.jubatus.business.domain.user; 
 
import com.jubatus.business.domain.group.MemberIF; 
import com.jubatus.business.domain.person.PersonIF; 
import com.jubatus.business.service.directory.DirectorySessionIF; 
 
public class User implements UserIF, MemberIF { 
  private DirectorySessionIF directorySession; 
  private String password; 
  private PersonIF person; 
  private String username; 
   
  public User() { 
    super(); 
  } 
   
  public DirectorySessionIF getDirectorySession() { 
    if (directorySession == null) { 
      directorySession = new UserDirectorySession(); 
    } 
    return directorySession; 
  } 
   
  public String getPassword() { 
    return password; 
  } 
 
  public PersonIF getPerson() { 
    return person; 
  } 
 
  public String getPin() { 
    throw new UnsupportedOperationException("PIN not supported"); 
  } 
   
  public Object getUniqueId() { 
    return this.getUsername(); 
  } 
   
  public String getUsername() { 
    return username; 
  } 
   
  public boolean isGroup() { 
    return false; 
  } 
   
  public boolean isUser() { 
    return true; 
  } 
   
  public void setPassword(String aPassword) { 
    password = aPassword; 
  } 
 
  public void setPerson(PersonIF aPerson) { 
    person = aPerson; 



User: 5 
Date/Time: 11/10/2004 8:51 PM 

© Copyright 2003,2004 Vaughn Vernon. All rights reserved. 

  } 
 
  public void setPin(String aPin) { 
    throw new UnsupportedOperationException("PIN not supported"); 
  } 
 
  public void setUsername(String aUsername) { 
    username = aUsername; 
  } 
} 

 
The more interesting class is UserDirectorySession, which interacts with class 

DirectoryService as noted in the overarching pattern: 
 
package com.jubatus.business.domain.user; 
 
import javax.naming.directory.Attributes; 
import javax.naming.directory.BasicAttribute; 
import javax.naming.directory.BasicAttributes; 
 
import com.jubatus.business.domain.DirectoryDomainObjectIF; 
import com.jubatus.business.domain.person.PersonIF; 
import com.jubatus.business.service.directory.DirectoryException; 
import com.jubatus.business.service.directory.DirectoryService; 
import com.jubatus.business.service.directory.DirectorySessionIF; 
 
class UserDirectorySession implements DirectorySessionIF { 
 
  private static final String CANIDATE_STATUS = "CANIDATE"; 
  private static final String MEMBER_STATUS = "MEMBER"; 
  private static final String STATUS = "ebpStatus"; 
  private static final String UID = "uid"; 
   
  UserDirectorySession() { 
    super(); 
  } 
   
  public void save(DirectoryDomainObjectIF anObject) throws DirectoryException { 
    if (anObject == null) { 
      throw new NullPointerException("UserIF must not be null"); 
    } 
     
    UserIF tempUser = (UserIF) anObject; 
    PersonIF tempPerson = tempUser.getPerson(); 
     
    if (tempPerson == null) { 
      throw new NullPointerException("PersonIF must not be null"); 
    } 
     
    DirectoryService tempDirService = DirectoryService.getInstance(); 
     
    String tempContext = tempDirService.getUserAccountContext(tempUser.getUsername()); 
     
    Attributes tempAttrs = new BasicAttributes(); 
    tempAttrs.put(tempDirService.getUserAccountObjectClasses()); 
    tempAttrs.put(new BasicAttribute(UID,  tempUser.getUsername())); 
    tempAttrs.put(new BasicAttribute(STATUS, CANIDATE_STATUS)); 
     
    tempDirService.createSubcontext(tempContext, tempAttrs); 
     
    tempUser.getPerson().getDirectorySession().setParentContext(tempContext); 
    tempUser.getPerson().getDirectorySession().save(tempPerson); 
  } 
 
  public void setParentContext(String aContext) { 
    // not used 
  } 
   
  public void update(DirectoryDomainObjectIF anObject) throws DirectoryException { 



User: 6 
Date/Time: 11/10/2004 8:51 PM 

© Copyright 2003,2004 Vaughn Vernon. All rights reserved. 

    // . . . 
  } 
} 

 
I chose not to provide the PIN or alternate question/answer support for my User/Sign 

On pattern combination. The PIN is easily added if you choose to support it. In the case 
of an unavailable password, I favored the email forgotten password strategy. Hence the 
corresponding attributes are missing from the above listing. Because I have implemented 
the Fundamental Identity (page #) pattern, I have included references in the User 
domain object to the corresponding Person object. For the purposes of simplicity I do 
not support a “lite user” object. 

Consequences 
You will find tradeoffs among the following competing forces within the User solution 
pattern. 

 
• Assigning Roles to Users: For details see the corresponding consequence under 

the Identity Grouping (page #) pattern. 
• Use PIN In High-Security Domains: The PIN is an added level of security. If 

you support an enterprise that demands high security, adding a PIN along with the 
username and password will make the system and its users more secure. There are 
few negative consequences in this case, other than the user needing to remember 
one more password. If you support single sign on within a corporate portal, for 
example, trading in many usernames and passwords for one the additional 
password is a small price to pay for security. 

• Use Alternative Authorization, Or Not: You will have to determine whether or 
not system access should be granted via alt-question and alt-answer, and if so 
how it will be implemented. Bear in mind the caveats stated above. 

• Standardize Across the Board: Again, your technology decisions are key. In this 
case putting all your eggs in one basket actually has a higher pay back. If you 
have no choice on selection then ignore this tradeoff. 

Related Patterns 
The following are the solution patterns that may be used in conjunction with the solution 
patterns key to the User pattern. 

 
• User Account (page #): The User pattern provides a bridge between Fundamental 

Identity (page #), Role (page #), (and other identity and access management 
patterns for that matter) and User Account (page #). 

 


