
Access Authorization: 1
Date/Time: 11/27/2004 10:11 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Access Authorization
Performs the necessary access checks to determine if a requester is permitted to access a
given system resource such as data or an executable component.

User

«proxy»

Component

Resource
Registry

AccessManager«implementation»

Component

Component
Factory

lookup component
checkAccessAuthorization

[if true]: create
create

create

perform operation

checkAccessAuthorization

[if true]: perform operation

Background
In an enterprise system every resource is accessed under the context of a user. How do
we determine that a user/requester is eligible to access a given system resource?

We could embed programmatic access checks in the component source code. But that
is an insufficient, unreliable, and maintenance-heavy, and thus, error-prone approach. A
programmatic approach does not secure data resources as such do not have code directly
associated with them. To secure component access, we would have to rely on component
developers to get the security right. Any given approach may be wrong. What is worse, it
may be wrong is subtle ways that are not easily detected even during code reviews. And,
or course, if the enterprise’s security policies were re-specified, every component would
have to be changed manually to conform. This is obviously are very error-prone
approach.

Value and Benefits
Using a Security Policy (page #) we map a given system resource—both data and
executable components inclusive—to a Role (page #). But we still need an intermediary
to perform the access check. The step of intercepting a request for access or execution
and performing the access check is known as authorization, and is codified by the Access
Authorization pattern. This approach addresses all of the weaknesses of the approach
discussed above.

It works sufficiently for both data and component resources. It is a reliable approach
because it is implemented once and works consistently for all components. It is
maintainable and reduces errors to only those injected in the Role (page #) definitions
configured by administrators. Such errors can be easily found because they are isolated in
a configuration and accessible, generally speaking, from within an administration

Access Authorization: 2
Date/Time: 11/27/2004 10:11 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

console. If the enterprise security policies are changed, they may be changed
declaratively, rather than programmatically, from one centralized location. If a hole is
found in the implementation it may be corrected and patched in one fell swoop.

Getting authorization right is important in most cases, and in some cases it is vital.
For example, in the healthcare industry properly authorized system resource access must
not be compromised. In healthcare HIPAA compliance is essential. Otherwise patient
privacy could be compromised, and stiff penalties will have to be paid. Many other
industries both commercial and government, have similar stiff constraints. There is very
high value in succeeding with authorization.

Putting It to Work
The Access Authorization pattern has three primary responsibilities, as are listed here:

1. Intercept control when a secured system resource is requested.
2. Find the Security Policy (page #) that applies to the requested resource.
3. Use the policy’s Role (page #) to check accessibility of the resource.

I discuss each of these responsibilities in order.

Intercept Control
There are a few different approaches to intercepting control: Programmatic Security
Model, Container Security Model, and the Crosscutting Security Model.

While I don’t recommend the use of programmatic access authorization by coding
security checks directly into component source code, it is widely used. Thus, I have to
face the music and codify the Programmatic Security Model.

In terms intercepting control, this is a voluntary approach. The executing component
must relinquish control at the right locations in its methods. Key locations include
component creation, and in business methods that should be executed only by a specific
Role (page #). If your object-oriented language supports creational constructors (such as
C++, Java, and C#) you can insert security checks there. That will prevent unauthorized
users from even creating a component instance. If you use a component Abstract Factory
[GoF] approach (EJB Home interface, for example), then the individual Factory Methods
[GoF] would have security checked coded in. After a user has successfully obtained a
component instance you need to protect access to the business logic in each business
method. Some methods clearly do not need to be secured, in which case there is no need
to insert security code in the method. But other methods must have security constraints.

In whichever methods security is required, where do we place security code? It is
obviously at the very earliest time possible—right at the beginning of each method. You
don’t want to start a transaction, or even check parameters for validity, before
authorization is obtained. To lower the risk of error, the authorization check should be
coded as simply as possible. A one-liner is the optimal, surgical way to do it.

public class BalanceSheet {
 private ComponentContext context;
 // . . .

 public void closeBooks() throws AccountingException, SecurityException {
 AccessManager.checkAccess(context.getUsername(), "Accountant");
 // . . .

Access Authorization: 3
Date/Time: 11/27/2004 10:11 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 }
}

This prolog code does not even have to check for a return value. Class

AccessManager‘s checkAccess() method throws a SecurityException if
the current user is not in the Accountant role at the time of the closeBooks()
method invocation. If the next line of code executes beyond the checkAccess()
invocation, it means that the user is authorized to do so. Notice that this example does not
make use of a Security Policy (page #). Rather the Role (page #) is hard-coded directly in
the method invocation.

How you actually obtain the user that is in context during this method’s execution is
another manner. The above example uses a context object. This may have been set when
the BalanceSheet component was first created since we assume that the user had to
provide credentials to obtain the object instance. In the world of EJB, the EJB container
sets the component’s context at appropriate times. In a homegrown approach, you will
have to see to this detail yourself.

While I personally do not like the Programmatic Security Model, I must admit that it
demonstrates the basic issues and approach very well. As you read on, use the
background gained from the programmatic approach as a foundation for understanding
the following less obvious models.

The second approach is that used by J2EE containers, such as those that support
Enterprise JavaBeans (EJB) components, data sources, and the like. A similar approach is
also used for COM component access. I call this the Container Security Model, and is the
approach modeled in this pattern’s introductory sequence diagram. Because of the way
security constraints are defined using declarations, this may also be referred to as the
Declarative Security Model. But because the container is the mechanism that actually
enforces the security constraint declarations I favor the former name.

The user requests access to a resource managed by the container. In order to do so the
user must submit credentials to a registry along with a resource identifier. In the case of
J2EE the registry is known as JNDI. If the user does not have sufficient access rights
(role-based or otherwise), access is denied. If the user has the proper access rights, the
registry provides the resource. If the requested resource is for data, subsequent usage is
straightforward.

If the resource is an executable component the user will want to invoke methods on it.
Each method may be protected by a security constraint. If so the user will have to be in
the required role to successfully execute the method’s behavior. How does the container
intercept the method invocation to check access? The component object reference
returned by the registry is not the actual container-managed executable component.
Rather it is a Proxy [GoF] object. The proxy object provides an interface that is identical
to the actual component. However, the method implementations invoke functionality in
the container first, rather than directly onto the actual component. Since the container
gets control first it can execute special behavior, such as security checks, prior to
invoking the requested behavior on the actual component.

The third approach uses Aspect Oriented Programming, or AOP techniques, and is
generally applicable to executable component authorization. AOP, which by its very
nature deals with control interception, is used to deal with crosscutting concerns.

Access Authorization: 4
Date/Time: 11/27/2004 10:11 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Crosscutting is the means of injecting special code into predetermined locations in certain
kinds of software. Therefore, I refer to this as the Crosscutting Security Model.

One such predetermined location is at the beginning of each method in all enterprise
components. Thus, you may tell the AOP crosscutting tool to inject an access
authorization check in the beginning of all methods:

Component Deployer

ComponentCrosscutting Tool

pointcut security code

inject method prolog code

Prolog code is that injected at the beginning of a method, as opposed to code at the
end of a method, which is known as epilog code. Once the code has been injected into the
proper locations, it is ready to perform the access authorization:

User

Component Access Manager

do

canAccess

[if false]: deny

In essence this strategy is very much like the programmatic approach that I highly
recommend avoiding. However, since the special security code that gets injected by the
crosscutting tool is written once and maintained by the same security experts that manage
the other approach, the negatives of programmatic security are overcome.

This approach is not necessarily limited only to method-level security. It may also be
used for the creational security that is managed by the registry in the Container Security
Model, as well. In that case the special creational access check code is inserted into the
Factory Method [GoF] used to obtain a unique instance of component. It may also be
applied to data resource access, but there is no advantage over the registry approach.

Access Authorization: 5
Date/Time: 11/27/2004 10:11 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

Using the Crosscutting Security Model has at least one major advantage over the
traditional Container Security Model approach. This approach generally performs better
because there is no need for a Proxy [GoF] object to invoke methods on a container in
order for security constraints to be enforced. However, this advantage may be negated
unless you also perform other container services using AOP, such as transaction
management. Otherwise you may as well just use the Container Security Model.

In many cases it may be the product that you acquire that determines which
intercepting model you use. In the J2EE world the BEA WebLogic Application Server
and the IBM WebSphere Application Server use the Container Security Model. The
professional open source JBoss Application Server uses the more modern Crosscutting
Security Model.

Find the Security Policy
This responsibility has a relatively straightforward approach. For non-Web components,
such as COM and EJB objects, and data resources, use the resource’s unique identifier to
lookup its Security Policy (page #). For Web components, the requested URL will have
to be compared to the potential wide variety of constraint-registered URL patterns. Here
are a few different ways that the SecurityPolicies component can be used to
obtain the roles declared for specific resources:

AccessManager
«component»

«singleton»

SecurityPolicies

getInstance

getResourceRole(componentIdentifier)

role

getWebResourceRole(url)

role

Of course we need to know the unique identifier for the resource being authorized for
access. But this is not an issue since Access Authorization is used in the context of a
resource registry lookup request or an invocation on one of its methods.

Check Accessibility
The final major responsibility of this pattern is to check user accessibility of the requested
resource. Executing this step is a matter of asking whether the requesting user is in the

Access Authorization: 6
Date/Time: 11/27/2004 10:11 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

role associate with the resource’s Security Policy (page #). So once the previous step of
finding the policy is completed, this is a simple last step:

AccessManager
«component»

«interface»

RoleIF

isUserInRole(usename)

If access is permitted then the operation continues as expected. If access is denied
then the operation halts. A logical question is, what should actually happen to ensure that
the operation halts when access is denied? I suggest throwing an appropriate exception,
such as a SecurityException:

if (!role.isUserInRole(username)) {
 throw new SecurityException("User not in the required role: " + role.getName());
}

 Examples
Here I show how the AccessManager, when invoked, tests for authorization. Here is
how authentication is checked for an executable component, which is actually just like
checking a data resource as well:

public class AccessManager {

 // . . .

 public void checkAccessAuthorization(String aUsername, String anIdentifier)
 throws SecurityException {

 SecurityPolicies tempSecurityPolicies = SecurityPolicies.getInstance();
 RoleIF tempRole = tempSecurityPolicies.getResourceRole(anIdentifier);
 this.checkAccessAuthorizationUsing(tempRole, aUsername);
 }

 public void checkAccessAuthorization(String aUsername, URL aURL)
 throws SecurityException {

 SecurityPolicies tempSecurityPolicies = SecurityPolicies.getInstance();
 RoleIF tempRole = tempSecurityPolicies.getWebResourceRole(aURL);
 this.checkAccessAuthorizationUsing(tempRole, aUsername);
 }

 protected void checkAccessAuthorizationUsing(RoleIF aRole, String aUsername)
 throws SecurityException {

 if (!aRole.isUserInRole(aUsername)) {
 throw new SecurityException("User not in the required role: " + aRole.getName());
 }
 }

Access Authorization: 7
Date/Time: 11/27/2004 10:11 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

 // . . .
}

 Whatever approach you use to intercept control and delegate authorization checking

to the AccessManager, you will invoke the access checks in one of the following
ways:

// web request
accessManager.checkAccessAuthorization(context.getUsername(), requestedURL);

// component request
accessManager.checkAccessAuthorization(context.getUsername(), requestedComponentId);

// data resource access
accessManager.checkAccessAuthorization(context.getUsername(), requestedResourceId);

Consequences
You will find tradeoffs among the following competing forces within the Pattern Name
business/solution pattern.

• Beware of the Programmatic Security Model: I know that I should not be so
subtle in my opinion about the programmatic approach to authorization ;), but I
again warn: BEWARE. Even if you start out in a controlled fashion and believe
that this approach is completely maintainable, time may take its toll. Changes in
security that causes a ripple effect across a large body of code can cause a
maintenance nightmare. If you must use the programmatic model, try to make as
little impact on your business code as possible, and test, test, test. If you have the
option to pursue one of the other approaches to intercepting control, do so.

• Caution with the Crosscutting Security Model: While this is a viable approach,
promoting reliability and maintainability, it may still have its perils. If you are
new to AOP, your crosscutting efforts may lack accuracy. If you goof up
attempting to inject authorization checks in essential code locations, your system
will be vulnerable to unauthorized use. This may also occur with the Container
Security Model if you fail to declare the proper constraints. However, declarative
errors are more easily corrected.

• Test Like Crazy: Since authorization is potentially disastrous if you get it wrong,
this is an aspect of your system that must be tested thoroughly. The good news is
that this kind of testing can be performed with automated tools.

Related Patterns
The following are patterns that use the Access Authorization pattern.

• Role (page #): Defines the constraints used by Access Authorization when
checking user accessibility.

• Security Policy (page #): Maps a given system resource to the access constraints
provided by Role.

Frameworks and Tools

Access Authorization: 8
Date/Time: 11/27/2004 10:11 PM

© Copyright 2003,2004 Vaughn Vernon. All rights reserved.

• J2EE: See the J2EE specification, in particular the web.xml and ejb-
jar.xml document types, for examples of this pattern. In particular look at the
JBoss security implementation that uses AOP interceptor technology.

• Microsoft Access Manager: This Microsoft product provides an implementation
of Security Policy.

